Skip to main content

Abstract

The qualities of waters are constantly diminishing due to release of toxic components into the environment. It is very important to treat wastewater in order to remove pollutants and improve water quality. Generally, adsorption technology has proven to be one of the most effective techniques in the separation and removal of a wide variety of organic and inorganic pollutants from wastewater. Recently, carbon nanomaterials such as fullerene, carbon nanotubes (CNT) and graphene-family have become promising adsorbents for water treatment. This chapter compiles relevant knowledge about the experimental and theoretical adsorption activities of fullerene, CNT and graphene-family as nanoadsorbents for removal of organic and inorganic environmental pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AR-183:

Acid Red 183

BPH A:

Bisphenol A

COD:

Chemical Oxygen Demand

CP:

Chlorpyrifos

CNT:

Carbon Nanotube

DB-53:

Direct Blue 53 dye

DCL:

Sodium Diclofenac

DFT:

Density Functional Theory

DOX:

Doxorubicin

EDC:

Endocrine Disrupting Compounds

ES:

Endosulfan

GO:

Graphene Oxide

GNSs:

Graphene Nanosheets

MB:

Methyl Blue

ML:

Malathion

MO:

Methyl Orange

MWCNT:

Multi-Walled Carbon Nanotube

NAPH:

2-Naphthol and Naphthalene

PAC:

Powdered Activated Carbon

RB-4:

Reactive Blue 4

rGO:

Reduced Graphene Oxide

RRM:

Reactive Red M-2BE

SIESTA:

Spanish Initiative for Electronic Simulations with Thousands of Atoms

SWCNT:

Single-Walled Carbon Nanotube

TCB:

1,2,4-Trichlorobenzene

TCP:

2,4,6-Trichlorophenol

References

  1. Gupta VK, Saleh TA (2013) Sorption of pollutants by porous carbon, carbon nanotubes and fullerene—an overview. Environ Sci Pollut Res 20:2828–2843

    Article  Google Scholar 

  2. Kroto HW, Heath JR, Obrien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162–163

    Article  Google Scholar 

  3. Pan B, Lin D, Mashayekhi H, Xing B (2008) Adsorption and hysteresis of bisphenol A and 17r-ethinyl estradiol on carbon nanomaterials. Environ Sci Technol 42:5480–5485

    Article  Google Scholar 

  4. Yang Y, Nakada N, Tanaka H (2013) Adsorption of fullerene nC60 on activated sludge: kinetics, equilibrium and influencing factors. Chem Eng J 225:365–371

    Article  Google Scholar 

  5. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  6. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    Article  Google Scholar 

  7. Bethune DS, Klang CH, De Vries MS et al (2003) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605–607

    Article  Google Scholar 

  8. Machado FM, Bergmann CP, Fernandes THM et al (2011) Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon. J Hazard Mater 192:1122–1131

    Article  Google Scholar 

  9. Machado FM, Bergmann CP, Lima EC et al (2012) Adsorption of Reactive Blue 4 dye from water solutions by carbon nanotubes: experiment and theory. Phys Chem Chem Phys 14:11139–11153

    Article  Google Scholar 

  10. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  Google Scholar 

  11. Ramesha GK, Kumara AV, Muralidhara HB, Sampath S (2011) Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. J Colloid Interface Sci 361:270–277

    Article  Google Scholar 

  12. Chowdhury S, Balasubramanian R (2014) Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Adv Colloid Interface Sci 204:35–56

    Article  Google Scholar 

  13. Salam MA, Al-Zhrani G, Kosa SA (2014) Removal of heavy metallic ions from aqueous solution by multi-walled carbon nanotubes modified with 8-hydroxyquinoline: kinetic study. J Ind Eng Chem 20:572–580

    Article  Google Scholar 

  14. Ren X, Li J, Tan X, Wang X (2013) Comparative study of graphene oxide, activated carbon and carbon nanotubes as adsorbents for copper decontamination. Dalton Trans 42:5266–5274

    Article  Google Scholar 

  15. Lu CS, Chiu HS (2006) Adsorption of zinc(II) from water with purified carbon nanotubes. Chem Eng Sci 61:1138–1145

    Article  Google Scholar 

  16. Li YH, Di Z, Ding J, Wu D, Luan Z, Zhu Y (2005) Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Res 39:605–609

    Article  Google Scholar 

  17. Schierz A, Zänker H (2009) Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption. Environ Pollut 157:1088–1094

    Article  Google Scholar 

  18. Li YH, Wang S, Luan Z, Ding J, Xu C, Wu D (2003) Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubos. Carbon 41:1057–1062

    Article  Google Scholar 

  19. Rao GP, Lu C, Su F (2007) Sorption of divalent metallic ions from aqueous solution by carbon nanotubes: a review. Sep Purif Technol 58:224–231

    Article  Google Scholar 

  20. Salam MA (2013) Removal of heavy metallic ions from aqueous solutions with multi-walled carbon nanotubes: kinetic and thermodynamic studies. Int J Environ Sci Technol 10:677–688

    Article  Google Scholar 

  21. Lu C, Liu C (2006) Removal of nickel(II) from aqueous solution by carbon nanotubos. J Chem Technol Biotechnol 81:1932–1940

    Article  Google Scholar 

  22. Bayazit ȘS, Inci I (2013) Adsorption of Pb(II) ions from aqueous solutions by carbon nanotubes oxidized different methods. J Ind Eng Chem 19:2064–2071

    Article  Google Scholar 

  23. Kuo CY (2009) Water purification of removal aqueous copper(II) by as-grown and modified multi-walled carbon nanotubes. Desalination 249:781–785

    Article  Google Scholar 

  24. Hu J, Chen C, Zhu X, Wang X (2009) Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes. J Hazard Mater 162:1542–1550

    Article  Google Scholar 

  25. Pillaya K, Cukrowska EM, Coville NJ (2009) Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution. J Hazard Mater 166:1067–1075

    Article  Google Scholar 

  26. Leng Y, Guo W, Su S, Yi C, Xing L (2012) Removal of antimony(III) from aqueous solution by graphene as an adsorbent. Chem Eng J 211–212(15):406–411

    Article  Google Scholar 

  27. Huang Z-H, Zheng X, Lv W, Wang M, Yang Q-H, Kang F (2011) Adsorption of lead(II) ions from aqueous solution on low-temperature exfoliated graphene nanosheets. Langmuir 27:7558–7562

    Article  Google Scholar 

  28. Yang S, Li L, Peia Z (2014) Adsorption kinetics, isotherms and thermodynamics of Cr(III) on graphene oxide. Colloids Surf A 457:100–106

    Article  Google Scholar 

  29. Wu W, Yang Y, Zhou H et al (2013) Highly efficient removal of Cu(II) from aqueous solution by using graphene oxide. Water Air Soil Pollut 224:1372–1375

    Article  Google Scholar 

  30. Sitko R, Turek E, Zawisz B et al (2013) Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans 42:5682–5689

    Article  Google Scholar 

  31. Pan N, Deng J, Guan D, Jin Y, Xia C (2013) Adsorption characteristics of Th(IV) ions on reduced graphene oxide from aqueous solutions. Appl Surf Sci 287:478–483

    Article  Google Scholar 

  32. Alencar WS, Lima EC, Royer B et al (2012) Application of aqai stalks as biosorbents for the removal of the dye Procion Blue MX-R from aqueous solution. Sep Sci Technol 47:513–526

    Article  Google Scholar 

  33. Hessel C, Allegre C, Maisseu M, Charbit F, Moulin P (2007) Guidelines and legislation for dye house effluents. J Environ Manage 83:171–180

    Article  Google Scholar 

  34. Cardoso NF, Lima EC, Royer B et al (2012) Comparison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of Reactive Red 120 dye from aqueous effluents. J Hazard Mater 241–242:146–153

    Article  Google Scholar 

  35. Carneiro PA, Umbuzeiro GA, Oliveira DP, Zanoni MVB (2010) Assessment of water contamination caused by a mutagenic textile effluent/dye house effluent bearing disperse dyes. J Hazard Mater 174(1–3):694–699

    Article  Google Scholar 

  36. Prola LDT, Acayanka E, Lima EC et al (2013) Comparison of Jatropha curcas shells in natural form and treated by non-thermal plasma as biosorbents for removal of Reactive Red 120 textile dye from aqueous solution. Ind Crop Prod 46:328–340

    Article  Google Scholar 

  37. Li Y, Du Q, Liu T et al (2013) Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. Chem Eng Res Des 91:361–368

    Article  Google Scholar 

  38. Chatterjee S, Chatterjee T, Lim SR, Woo SH (2011) Effect of the addition mode of carbon nanotubes for the production of chitosan hydrogel core–shell beads on adsorption of Congo red from aqueous solution. Bioresour Technol 102:4402–4409

    Article  Google Scholar 

  39. Mishra AK, Arockiadoss T, Ramaprabhu S (2010) Study of removal of azo dye by functionalized multi walled carbon nanotubes. Chem Eng J 162:1026–1034

    Article  Google Scholar 

  40. Wang S, Ng CW, Wang W, Li Q, Hao Z (2012) Synergistic and competitive adsorption of organic dyes on multiwalled carbon nanotubes. Chem Eng J 197:34–40

    Article  Google Scholar 

  41. Kuo CY, Wu CH, Wuc JY (2008) Adsorption of direct dyes from aqueous solutions by carbon nanotubes: determination of equilibrium, kinetics and thermodynamics parameters. J Colloid Interface Sci 327:308–315

    Article  Google Scholar 

  42. Yao Y, Xu F, Chen M, Xu Z, Zhu Z (2010) Adsorption behavior of methylene blue on carbon nanotubes. Bioresour Technol 101:3040–3046

    Article  Google Scholar 

  43. Wu CH (2007) Adsorption of reactive dye onto carbon nanotubes: equilibrium, kinetics and thermodynamics. J Hazard Mater 144:93–100

    Article  Google Scholar 

  44. Prola LDT, Machado FM, Bergmann CP et al (2013) Adsorption of Direct Blue 53 dye from aqueous solutions by multi-walled carbon nanotubes and activated carbon. J Environ Manage 130:166–175

    Article  Google Scholar 

  45. Zhao D, Zhang W, Chen C, Wang X (2013) Adsorption of methyl orange dye onto multiwalled carbon nanotubes. Procedia Environ Sci 18:890–895

    Article  Google Scholar 

  46. Wang S, Ng CW, Wang W, Li Q, Li L (2012) A comparative study on the adsorption of acid and reactive dyes on multiwall carbon nanotubes in single and binary dye systems. J Chem Eng Data 57:1563–1569

    Article  Google Scholar 

  47. Wu T, Cai C, Tan S, Li H, Liu J, Yang W (2011) Adsorption characteristics of acrylonitrile, p-toluenesulfonic acid, 1-naphthalenesulfonic acid and methyl blue on graphene in aqueous solutions. Chem Eng J 173:144–149

    Article  Google Scholar 

  48. Yu J-G, Zhao X-H, Yang H et al (2014) Aqueous adsorption and removal of organic contaminants by carbon nanotubes. Sci Total Environ 482–483:241–251

    Article  Google Scholar 

  49. Gebhardt W, Schröder HF (2007) Liquid chromatography-(tandem) mass spectrometry for the follow-up of the elimination of persistent pharmaceuticals during wastewater treatment applying biological wastewater treatment and advanced oxidation. J Chromatogr A 1160:34–43

    Article  Google Scholar 

  50. Cho H-H, Huang H, Schwab K (2011) Effects of solution chemistry on the adsorption of ibuprofen and triclosan onto carbon nanotubes. Langmuir 27:12960–12967

    Article  Google Scholar 

  51. Kim H, Hwang YS, Sharma VK (2014) Adsorption of antibiotics and iopromide onto single-walled and multi-walled carbon nanotubes. Chem Eng J 255:23–27

    Article  Google Scholar 

  52. Wang Y, Yang S-T, Wang Y, Liu Y, Wang H (2012) Adsorption and desorption of doxorubicin on oxidized carbon nanotubes. Colloids Surf B 97:62–69

    Article  Google Scholar 

  53. Joseph L, Zaib Q, Khan IA et al (2011) Removal of bisphenol A and 17alpha-ethinyl estradiol from landfill leachate using single-walled carbon nanotubes. Water Res 45:4056–4068

    Article  Google Scholar 

  54. Xu J, Wang L, Zhu Y (2012) Decontamination of bisphenol A from aqueous solution by graphene adsorption. Langmuir 28:8418–8425

    Article  Google Scholar 

  55. Zaib Q, Khan IA, Saleh NB, Flora JRV, Park Y-G, Yoon Y (2012) Removal of bisphenol A and 17β-estradiol by single-walled carbon nanotubes in aqueous solution: adsorption and molecular modeling. Water Air Soil Pollut 223:3281–3293

    Article  Google Scholar 

  56. Zhang MH, Zhao QL, Bai X, Ye ZF (2010) Adsorption of organic pollutants from coking wastewater by activated coke. Colloids Surf A 362:140–146

    Article  Google Scholar 

  57. Al-khalid T, El-naas MH (2012) Aerobic biodegradation of phenols: a comprehensive review. Crit Rev Env Sci Technol 42:1631–1690

    Article  Google Scholar 

  58. Delval F, Crini G, Vebrel J (2006) Removal of organic pollutants from aqueous solutions by adsorbents prepared from an agroalimentary by-product. Bioresour Technol 97:2173–2181

    Article  Google Scholar 

  59. Pei Z, Li L, Sun L et al (2013) Adsorption characteristics of 1,2,4-trichlorobenzene, 2,4,6-trichlorophenol, 2-naphthol and naphthalene on graphene and graphene oxide. Carbon 51:156–163

    Article  Google Scholar 

  60. Smith EA, Oehme FW (1992) The biological activity of glyphosate to plants and animals: a literature review. Vet Hum Toxicol 34:531–543

    Google Scholar 

  61. Samsel A, Seneff S (2013) Glyphosate’s suppression of cytochrome P450 enzymes and amino acid biosynthesis by the gut microbiome: pathways to modern diseases. Entropy 34:1416–1463

    Article  Google Scholar 

  62. Pyrzynska K (2011) Carbon nanotubes as sorbents in the analysis of pesticides. Chemosphere 83:1407–1413

    Article  Google Scholar 

  63. Deng J, Shao Y, Gao N et al (2012) Multiwalled carbon nanotubes as adsorbents for removal of herbicide diuron from aqueous solution. Chem Eng J 193–194:339–347

    Article  Google Scholar 

  64. Maliyekkal SM, Sreeprasad TS, Krishnan D et al (2013) Graphene: a reusable substrate for unprecedented adsorption of pesticides. Small 9(2):273–283

    Article  Google Scholar 

  65. Fakhri A (2013) Adsorption characteristics of graphene oxide as a solid adsorbent for aniline removal from aqueous solutions: kinetics, thermodynamics and mechanism studies. J Saudi Chem Soc. doi:10.1016/j.jscs.2013.10.002

    Google Scholar 

  66. Mkhoyan KA, Contryman AW, Silcox J et al (2009) Atomic and electronic structure of graphene-oxide. Nano Lett 9(3):1058–1063

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding from Brazilian agencies CNPq and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Machado Machado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Machado, F.M., Lima, É.C., Jauris, I.M., Adebayo, M.A. (2015). Carbon Nanomaterials for Environmental Applications. In: Bergmann, C., Machado, F. (eds) Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications. Carbon Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-18875-1_5

Download citation

Publish with us

Policies and ethics