Skip to main content

Sensitivity and Uncertainty Analysis of Precipitation-Runoff Models for the Middle Vistula Basin

  • Chapter
  • First Online:
Stochastic Flood Forecasting System

Part of the book series: GeoPlanet: Earth and Planetary Sciences ((GEPS))

Abstract

In this chapter the identifiability of a conceptual rainfall-runoff HBV model parameters in several tributaries of the Middle River Vistula is addressed. For this purpose, two approaches have been used. In the first, the application of a global sensitivity analysis by Sobol resulted in estimates of the influence of HBV model parameters on the goodness of fit of the model output. An alternative approach is based on an analysis of the posterior distribution of model parameters estimated with the help of an SCEM-UA algorithm. The results of the two approaches are similar. In both cases the parameters of the soil moisture store from the HBV model are better defined than the rest of parameters, as their influence is the highest and the relative standard deviation of parameter posterior distribution is the smallest. Small differences in the results are probably due to interactions between the parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abebe NA, Ogden FL, Pradhan NR (2010) Sensitivity and uncertainty analysis of the conceptual HBV rainfall-runoff model: implications for parameter estimation. J Hydrol 389:301–310

    Article  Google Scholar 

  • Andréassian V, Le Moine N, Perrin C, Ramos M-H, Oudin L, Mathevet T, Lerat J, Berthet L (2012) All that glitters is not gold: the case of calibrating hydrological models. Hydrol Process 26(14):2206–2210. doi:10.1002/hyp.9264

    Article  Google Scholar 

  • Archer G, Saltelli A, Sobol I (1997) Sensitivity measures, ANOVA-like techniques and the use of bootstrap. J Stat Comput Simul 58:99–120

    Article  Google Scholar 

  • Bergström S (1995) The HBV model. In: Singh VP (ed) Computer models of watershed hydrology. Water Resources Publications, Highlands Ranch, pp 443–476

    Google Scholar 

  • Bergström S, Forsman A (1973a) Development of a conceptual deterministic rainfall–runoff model. Nord Hydrol 4:147–170

    Google Scholar 

  • Bergström S, Forsman A (1973b) Development of a conceptual deterministic rainfall-runoff model. Nord Hydrol 4(3):147–170

    Google Scholar 

  • Booij MJ (2005) Impact of climate change on river flooding assessed with different spatial model resolutions. J Hydrol 303:176–198

    Article  Google Scholar 

  • Booij MJ, Krol MS (2010) Balance between calibration objectives in a conceptual hydrological model. Hydrol Sci J 55:1017–1032

    Article  Google Scholar 

  • Box GEP, Cox DR (1964) An analysis of transformations. J Roy Stat Soc B 26:211–252

    Google Scholar 

  • Cannavó F (2012) Sensitivity analysis for volcanic source modeling quality assessment and model selection. Comp Geosci 44:52–59

    Article  Google Scholar 

  • Deckers DLEH, Booij MJ, Rientjes THM, Krol MS (2010) Catchment variability and parameter estimation in multi-objective regionalisation of a rainfall-runoff model. Water Resour Manage 24:3961–3985

    Article  Google Scholar 

  • Hamon WR (1961) Estimation potential evapotranspiration. J Hydraul Div Proc Amer Soc Civil Eng 107–120

    Google Scholar 

  • Herman JD, Kollat JB, Reed PM, Wagener T (2013) Technical note: method of Morris effectively reduces the computational demands of global sensitivity analysis for distributed watershed models. Hydrol Earth Syst Sci 17(7):2893–2903. doi:10.5194/hess-17-2893-2013

    Article  Google Scholar 

  • Homma T, Saltelli A (1996) Importance measures in global sensitivity analysis of nonlinear models. Reliab Eng Syst Saf 52(1):1–17

    Article  Google Scholar 

  • HWSD, 2012. FAO/IIASA/ISRIC/ISSCAS/JRC (2012) Harmonized world soil database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria

    Google Scholar 

  • Kochanek K, Karamuz E, Osuch M (2015) Distributed modelling of flow in the middle reach of the River Vistula, this issue

    Google Scholar 

  • Lindström G (1997) A simple automatic calibration routine for the HBV model. Nord Hydrol 28(3):153–168

    Google Scholar 

  • Lindström G, Johansson B, Persson M, Gardelin M, Bergström S (1997) Development and test of the distributed HBV-96 hydrological model. J Hydrol 201(1–4):272–288

    Article  Google Scholar 

  • Nita J, Małolepszy Z, Chybiorz R (2007) A digital terrain model in visualization and interpretation of geological and geomorphological settings. Prz Geol 55:511–520

    Google Scholar 

  • Osuch M, Romanowicz RJ, Booij M (2015) The influence of parametric uncertainty on the relationships between HBV model parameters and climatic characteristics. Hydrol Sci J. doi:10.1080/02626667.2014.967694

  • Piotrowski AP, Napiorkowski MJ, Napiorkowski JJ, Osuch M, Kundzewicz ZW (2015) Are so called modern metaheuristics successful in calibrating simple conceptual rainfall-runoff models?. Hydrol Sci J, submitted

    Google Scholar 

  • Romanowicz RJ, Osuch M (2015) Semi-distributed flood forecasting system for the River Vistula reach, Chapter 9, this book

    Google Scholar 

  • Romanowicz RJ, Osuch M, Grabowiecka M (2013) On the choice of calibration periods and objective functions: a practical guide to model parameter identification. Acta Geophys 61(6):1477–1503

    Article  Google Scholar 

  • Saltelli A, Tarantola S, Campolongo F, Ratto M (2004) Sensitivity analysis in practice: a guide to assessing scientific models. Wiley, New York

    Google Scholar 

  • Seibert J (1997) Estimation of parameter uncertainty in the HBV model. Nord Hydrol 28(4/5):247–262

    Google Scholar 

  • Seibert J (1999) Regionalisation of parameters for a conceptual rainfall runoff model. Agric For Meteorol 98–99:279–293

    Article  Google Scholar 

  • Seibert J (2003) Reliability of model predictions outside calibration conditions. Nord Hydrol 34:477–492

    Google Scholar 

  • Shin MJ, Guillaume JHA, Croke BFW, Anthony J, Jakeman AJ (2015a) A review of foundational methods for checking the structural identifiability of models: results for rainfall-runoff. J Hydrol 520:1–16

    Article  Google Scholar 

  • Shin M-J, Guillaume JHA, Croke BFW, Jakeman AJ (2015b) A review of foundational methods for checking the structural identifiability of models: results for rainfall-runoff. J Hydrol 520:1–16

    Article  Google Scholar 

  • Sorooshian S, Duan Q, Gupta VK (1993) Calibration of rainfall-runoff models: application of global optimization to the Sacramento soil moisture accounting model. Water Resour Res 29(4):1185–1194. doi:10.1029/92WR02617

    Article  Google Scholar 

  • Tokarczyk T (2013) Classification of low flow and hydrological drought for a river basin. Acta Geophys 61(2):404–421

    Article  Google Scholar 

  • Uhlenbrook S, Seibert J, Leibundgut C, Rodhe A (1999) Prediction uncertainty of conceptual rainfall-runoff models caused by problems in identifying model parameters and structure. Hydrol Sci J 44(5):779–797

    Article  Google Scholar 

  • van Werkhoven K, Wagener T, Reed P, Tang Y (2009) Sensitivity-guided reduction of parametric dimensionality for multi-objective calibration of watershed models. Adv Water Resour 32(8):1154–1169. doi:10.1016/j.advwatres.2009.03.002

    Article  Google Scholar 

  • Vrugt JA, Gupta HV, Bouten W, Sorooshian S (2003) A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour Res 39(8):1201. doi:10.1029/2002WR001642

    Google Scholar 

  • Wagener T, Gupta HV (2005) Model identification for hydrological forecasting under uncertainty. Stoch Environ Res Risk A 19(6):378–387. doi:10.1007/s00477-005-0006-5

    Article  Google Scholar 

  • Zelelew MB, Alfredsen K (2013) Sensitivity-guided evaluation of the HBV hydrological model parametrization. J Hydroinf 15(3):967–990

    Article  Google Scholar 

  • Zhan C, Song X, Xia J, Tong C (2013) An efficient integrated approach for global sensitivity analysis of hydrological model parameters. Environ Model Softw 41:39–52

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the project “Stochastic flood forecasting system (The River Vistula reach from Zawichost to Warsaw)” carried by the Institute of Geophysics, Polish Academy of Sciences, on the order of the National Science Centre (contract No. 2011/01/B/ST10/06866). The hydro-meteorological data were provided by the Institute of Meteorology and Water Management (IMGW), Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzena Osuch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Osuch, M. (2015). Sensitivity and Uncertainty Analysis of Precipitation-Runoff Models for the Middle Vistula Basin. In: Romanowicz, R., Osuch, M. (eds) Stochastic Flood Forecasting System. GeoPlanet: Earth and Planetary Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-18854-6_5

Download citation

Publish with us

Policies and ethics