Skip to main content

Src Family Kinases in Brain Edema After Acute Brain Injury

  • Chapter
Brain Edema XVI

Part of the book series: Acta Neurochirurgica Supplement ((NEUROCHIRURGICA,volume 121))

Abstract

Brain edema, the first stage of intracranial hypertension, has been associated with poor prognosis and increased mortality after acute brain injury such as ischemic stroke, intracranial hemorrhage (ICH), and traumatic brain injury (TBI). Acute brain injury often initiates release of many molecules, including glutamate, adenosine, thrombin, oxyhemoglobin, cytokines, reactive oxygen species (ROS), damage-associated molecular pattern molecules (DAMPs), and others. Most of these molecules activate Src family kinases (SFKs), a family of proto-oncogenic non-receptor tyrosine kinases, resulting in blood-brain barrier (BBB) disruption and brain edema at the acute stage after brain injury. However, SFKs also contribute to BBB self-repair and brain edema resolution in the chronic stage that follows brain injury. In this review, we summarize possible pathways through which SFKs are implicated in both brain edema formation and its eventual resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marmarou A (2003) Pathophysiology of traumatic brain edema: current concepts. Acta Neurochir Suppl 86:7–10

    CAS  PubMed  Google Scholar 

  2. Thiex R, Tsirka SE (2007) Brain edema after intracerebral hemorrhage: mechanisms, treatment options, management strategies, and operative indications. Neurosurg Focus 22, E6

    Article  PubMed  Google Scholar 

  3. Kasner SE, Demchuk AM, Berrouschot J, Schmutzhard E, Harms L et al (2001) Predictors of fatal brain edema in massive hemispheric ischemic stroke. Stroke 32:2117–2123

    Article  CAS  PubMed  Google Scholar 

  4. Donkin JJ, Vink R (2010) Mechanisms of cerebral edema in traumatic brain injury: therapeutic developments. Curr Opin Neurol 23:293–299

    Article  CAS  PubMed  Google Scholar 

  5. Rosenberg GA (1999) Ischemic brain edema. Prog Cardiovasc Dis 42:209–216

    Article  CAS  PubMed  Google Scholar 

  6. Iencean SM (2003) Brain edema – a new classification. Med Hypotheses 61:106–109

    Article  CAS  PubMed  Google Scholar 

  7. Sadaka F, Veremakis C (2012) Therapeutic hypothermia for the management of intracranial hypertension in severe traumatic brain injury: a systematic review. Brain Inj 26:899–908

    Article  PubMed  Google Scholar 

  8. Pitfield AF, Carroll AB, Kissoon N (2012) Emergency management of increased intracranial pressure. Pediatr Emerg Care 28:200–204; quiz 205–207

    PubMed  Google Scholar 

  9. Sandsmark DK, Sheth KN (2014) Management of increased intracranial pressure. Curr Treat Options Neurol 16:272

    Article  PubMed  Google Scholar 

  10. Prins M, Greco T, Alexander D, Giza CC (2013) The pathophysiology of traumatic brain injury at a glance. Dis Model Mech 6:1307–1315

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Namjoshi DR, Good C, Cheng WH, Panenka W, Richards D et al (2013) Towards clinical management of traumatic brain injury: a review of models and mechanisms from a biomechanical perspective. Dis Model Mech 6:1325–1338

    Article  PubMed Central  PubMed  Google Scholar 

  12. Gaetz M (2004) The neurophysiology of brain injury. Clin Neurophysiol 115:4–18

    Article  CAS  PubMed  Google Scholar 

  13. Perel P, Roberts I, Bouamra O, Woodford M, Mooney J et al (2009) Intracranial bleeding in patients with traumatic brain injury: a prognostic study. BMC Emerg Med 9:15

    Article  PubMed Central  PubMed  Google Scholar 

  14. Liu D, Sharp FR, Van KC, Ander BP, Ghiasvand R et al (2014) Inhibition of Src family kinases protects hippocampal neurons and improves cognitive function after traumatic brain injury. J Neurotrauma 31:1268–1276

    Article  PubMed Central  Google Scholar 

  15. NINDS (2013) Traumatic brain injury: hope through research. http://www.nindsnihgov/disorders/tbi/detail_tbihtm

  16. Ray SK, Dixon CE, Banik NL (2002) Molecular mechanisms in the pathogenesis of traumatic brain injury. Histol Histopathol 17:1137–1152

    CAS  PubMed  Google Scholar 

  17. Xi G, Reiser G, Keep RF (2003) The role of thrombin and thrombin receptors in ischemic, hemorrhagic and traumatic brain injury: deleterious or protective? J Neurochem 84:3–9

    Article  CAS  PubMed  Google Scholar 

  18. Sharp F, Liu DZ, Zhan X, Ander BP (2008) Intracerebral hemorrhage injury mechanisms: glutamate neurotoxicity, thrombin, and Src. Acta Neurochir Suppl 105:43–46

    Article  CAS  PubMed  Google Scholar 

  19. Liu DZ, Cheng XY, Ander BP, Xu H, Davis RR et al (2008) Src kinase inhibition decreases thrombin-induced injury and cell cycle re-entry in striatal neurons. Neurobiol Dis 30:201–211

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Liu DZ, Ander BP, Xu H, Shen Y, Kaur P et al (2010) Blood-brain barrier breakdown and repair by Src after thrombin-induced injury. Ann Neurol 67:526–533

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Keep RF, Hua Y, Xi G (2012) Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol 11:720–731

    Article  CAS  PubMed  Google Scholar 

  22. Yao X, Balamurugan P, Arvey A, Leslie C, Zhang L (2010) Heme controls the regulation of protein tyrosine kinases Jak2 and Src. Biochem Biophys Res Commun 403:30–35

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Corcoran A, Cotter TG (2013) Redox regulation of protein kinases. FEBS J 280:1944–1965

    Article  CAS  PubMed  Google Scholar 

  24. Giannoni E, Chiarugi P (2014) Redox circuitries driving Src regulation. Antioxid Redox Signal 20(13):2011–2025

    Article  CAS  PubMed  Google Scholar 

  25. Johnson P, Cross JL (2009) Tyrosine phosphorylation in immune cells: direct and indirect effects on toll-like receptor-induced proinflammatory cytokine production. Crit Rev Immunol 29:347–367

    Article  PubMed  Google Scholar 

  26. Cabodi S, Di Stefano P, Leal Mdel P, Tinnirello A, Bisaro B et al (2010) Integrins and signal transduction. Adv Exp Med Biol 674:43–54

    Article  CAS  PubMed  Google Scholar 

  27. Page TH, Smolinska M, Gillespie J, Urbaniak AM, Foxwell BM (2009) Tyrosine kinases and inflammatory signalling. Curr Mol Med 9:69–85

    Article  CAS  PubMed  Google Scholar 

  28. Hou CH, Fong YC, Tang CH (2011) HMGB-1 induces IL-6 production in human synovial fibroblasts through c-Src, Akt and NF-kappaB pathways. J Cell Physiol 226:2006–2015

    Article  CAS  PubMed  Google Scholar 

  29. Banerjee S, de Freitas A, Friggeri A, Zmijewski JW, Liu G et al (2011) Intracellular HMGB1 negatively regulates efferocytosis. J Immunol 187:4686–4694

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Musumeci D, Roviello GN, Montesarchio D (2014) An overview on HMGB1 inhibitors as potential therapeutic agents in HMGB1-related pathologies. Pharmacol Ther 141:347–357

    Article  CAS  PubMed  Google Scholar 

  31. Ibrahim ZA, Armour CL, Phipps S, Sukkar MB (2013) RAGE and TLRs: relatives, friends or neighbours? Mol Immunol 56:739–744

    Article  CAS  PubMed  Google Scholar 

  32. Zhong C, Zhao X, Van KC, Bzdega T, Smyth A et al (2006) NAAG peptidase inhibitor increases dialysate NAAG and reduces glutamate, aspartate and GABA levels in the dorsal hippocampus following fluid percussion injury in the rat. J Neurochem 97:1015–1025

    Article  CAS  PubMed  Google Scholar 

  33. Hua Y, Keep RF, Hoff JT, Xi G (2007) Brain injury after intracerebral hemorrhage: the role of thrombin and iron. Stroke 38:759–762

    Article  CAS  PubMed  Google Scholar 

  34. Matz PG, Fujimura M, Lewen A, Morita-Fujimura Y, Chan PH (2001) Increased cytochrome c-mediated DNA fragmentation and cell death in manganese-superoxide dismutase-deficient mice after exposure to subarachnoid hemolysate. Stroke 32:506–515

    Article  CAS  PubMed  Google Scholar 

  35. Wu J, Hua Y, Keep RF, Schallert T, Hoff JT et al (2002) Oxidative brain injury from extravasated erythrocytes after intracerebral hemorrhage. Brain Res 953:45–52

    Article  CAS  PubMed  Google Scholar 

  36. Jung KH, Chu K, Jeong SW, Han SY, Lee ST et al (2004) HMG-CoA reductase inhibitor, atorvastatin, promotes sensorimotor recovery, suppressing acute inflammatory reaction after experimental intracerebral hemorrhage. Stroke 35:1744–1749

    Article  CAS  PubMed  Google Scholar 

  37. Dziedzic T, Bartus S, Klimkowicz A, Motyl M, Slowik A et al (2002) Intracerebral hemorrhage triggers interleukin-6 and interleukin-10 release in blood. Stroke 33:2334–2335

    Article  CAS  PubMed  Google Scholar 

  38. Rincon F, Mayer SA (2004) Novel therapies for intracerebral hemorrhage. Curr Opin Crit Care 10:94–100

    Article  PubMed  Google Scholar 

  39. Castillo J, Davalos A, Alvarez-Sabin J, Pumar JM, Leira R et al (2002) Molecular signatures of brain injury after intracerebral hemorrhage. Neurology 58:624–629

    Article  CAS  PubMed  Google Scholar 

  40. Mayne M, Ni W, Yan HJ, Xue M, Johnston JB et al (2001) Antisense oligodeoxynucleotide inhibition of tumor necrosis factor-alpha expression is neuroprotective after intracerebral hemorrhage. Stroke 32:240–248

    Article  CAS  PubMed  Google Scholar 

  41. Oda H, Kumar S, Howley PM (1999) Regulation of the Src family tyrosine kinase Blk through E6AP-mediated ubiquitination. Proc Natl Acad Sci U S A 96:9557–9562

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Biscardi JS, Ishizawar RC, Silva CM, Parsons SJ (2000) Tyrosine kinase signalling in breast cancer: epidermal growth factor receptor and c-Src interactions in breast cancer. Breast Cancer Res 2:203–210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Boggon TJ, Eck MJ (2004) Structure and regulation of Src family kinases. Oncogene 23:7918–7927

    Article  CAS  PubMed  Google Scholar 

  44. Tatosyan AG, Mizenina OA (2000) Kinases of the Src family: structure and functions. Biochemistry (Mosc) 65:49–58

    CAS  Google Scholar 

  45. Groveman BR, Feng S, Fang XQ, Pflueger M, Lin SX et al (2012) The regulation of N-methyl-D-aspartate receptors by Src kinase. FEBS J 279:20–28

    Article  CAS  PubMed  Google Scholar 

  46. Yu XM, Askalan R, Keil GJ 2nd, Salter MW (1997) NMDA channel regulation by channel-associated protein tyrosine kinase Src. Science 275:674–678

    Article  CAS  PubMed  Google Scholar 

  47. Salter MW, Kalia LV (2004) Src kinases: a hub for NMDA receptor regulation. Nat Rev Neurosci 5:317–328

    Article  CAS  PubMed  Google Scholar 

  48. Trepanier CH, Jackson MF, MacDonald JF (2012) Regulation of NMDA receptors by the tyrosine kinase Fyn. FEBS J 279:12–19

    Article  CAS  PubMed  Google Scholar 

  49. Choi UB, Xiao S, Wollmuth LP, Bowen ME (2011) Effect of Src kinase phosphorylation on disordered C-terminal domain of N-methyl-D-aspartic acid (NMDA) receptor subunit GluN2B protein. J Biol Chem 286:29904–29912

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Liu Y, Wong TP, Aarts M, Rooyakkers A, Liu L et al (2007) NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J Neurosci 27:2846–2857

    Article  CAS  PubMed  Google Scholar 

  51. Liu DZ, Ander BP (2011) Cell cycle phase transitions: signposts for aberrant cell cycle reentry in dying mature neurons. J Cytol Histol 2:5

    Google Scholar 

  52. Liu DZ, Sharp FR (2011) The dual role of SRC kinases in intracerebral hemorrhage. Acta Neurochir Suppl 111:77–81

    Article  PubMed  Google Scholar 

  53. Ardizzone TD, Lu A, Wagner KR, Tang Y, Ran R et al (2004) Glutamate receptor blockade attenuates glucose hypermetabolism in perihematomal brain after experimental intracerebral hemorrhage in rat. Stroke 35:2587–2591

    Article  CAS  PubMed  Google Scholar 

  54. Copani A, Nicoletti F (2005) Cell-cycle mechanisms and neuronal cell death. Kluwer Academic/Plenum, New York

    Book  Google Scholar 

  55. Liu DZ, Ander BP (2012) Cell cycle inhibition without disruption of neurogenesis is a strategy for treatment of aberrant cell cycle diseases: an update. ScientificWorldJournal 2012:491737

    PubMed Central  PubMed  Google Scholar 

  56. Liu DZ, Ander BP, Sharp FR (2010) Cell cycle inhibition without disruption of neurogenesis is a strategy for treatment of central nervous system diseases. Neurobiol Dis 37:549–557

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Rodriguez PL, Sahay S, Olabisi OO, Whitehead IP (2007) ROCK I-mediated activation of NF-kappaB by RhoB. Cell Signal 19:2361–2369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Grimmler M, Wang Y, Mund T, Cilensek Z, Keidel EM et al (2007) Cdk-inhibitory activity and stability of p27Kip1 are directly regulated by oncogenic tyrosine kinases. Cell 128:269–280

    Article  CAS  PubMed  Google Scholar 

  59. Kasahara K, Nakayama Y, Nakazato Y, Ikeda K, Kuga T et al (2007) Src signaling regulates completion of abscission in cytokinesis through ERK/MAPK activation at the midbody. J Biol Chem 282:5327–5339

    Article  CAS  PubMed  Google Scholar 

  60. Liu Z, Falola J, Zhu X, Gu Y, Kim LT et al (2004) Antiproliferative effects of Src inhibition on medullary thyroid cancer. J Clin Endocrinol Metab 89:3503–3509

    Article  CAS  PubMed  Google Scholar 

  61. Mishra R, Wang Y, Simonson MS (2005) Cell cycle signaling by endothelin-1 requires Src nonreceptor protein tyrosine kinase. Mol Pharmacol 67:2049–2056

    Article  CAS  PubMed  Google Scholar 

  62. Taylor SJ, Shalloway D (1993) The cell cycle and c-Src. Curr Opin Genet Dev 3:26–34

    Article  CAS  PubMed  Google Scholar 

  63. Ardizzone TD, Zhan X, Ander BP, Sharp FR (2007) SRC kinase inhibition improves acute outcomes after experimental intracerebral hemorrhage. Stroke 38:1621–1625

    Article  CAS  PubMed  Google Scholar 

  64. Park Y, Luo T, Zhang F, Liu C, Bramlett HM et al (2013) Downregulation of Src-kinase and glutamate-receptor phosphorylation after traumatic brain injury. J Cereb Blood Flow Metab 33:1642–1649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Bai Y, Xu G, Xu M, Li Q, Qin X (2014) Inhibition of Src phosphorylation reduces damage to the blood-brain barrier following transient focal cerebral ischemia in rats. Int J Mol Med 34:1473–1482

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Kusaka G, Ishikawa M, Nanda A, Granger DN, Zhang JH (2004) Signaling pathways for early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab 24:916–925

    Article  CAS  PubMed  Google Scholar 

  67. Morse WR, Whitesides JG 3rd, LaMantia AS, Maness PF (1998) p59fyn and pp60c-src modulate axonal guidance in the developing mouse olfactory pathway. J Neurobiol 36:53–63

    Article  CAS  PubMed  Google Scholar 

  68. Encinas M, Tansey MG, Tsui-Pierchala BA, Comella JX, Milbrandt J et al (2001) c-Src is required for glial cell line-derived neurotrophic factor (GDNF) family ligand-mediated neuronal survival via a phosphatidylinositol-3 kinase (PI-3K)-dependent pathway. J Neurosci 21:1464–1472

    CAS  PubMed  Google Scholar 

  69. Sperber BR, Boyle-Walsh EA, Engleka MJ, Gadue P, Peterson AC et al (2001) A unique role for Fyn in CNS myelination. J Neurosci 21:2039–2047

    CAS  PubMed  Google Scholar 

  70. Heidinger V, Manzerra P, Wang XQ, Strasser U, Yu SP et al (2002) Metabotropic glutamate receptor 1-induced upregulation of NMDA receptor current: mediation through the Pyk2/Src-family kinase pathway in cortical neurons. J Neurosci 22:5452–5461

    CAS  PubMed  Google Scholar 

  71. Rouer E (2010) Neuronal isoforms of Src, Fyn and Lck tyrosine kinases: a specific role for p56lckN in neuron protection. C R Biol 333:1–10

    Article  CAS  PubMed  Google Scholar 

  72. Parsons SJ, Parsons JT (2004) Src family kinases, key regulators of signal transduction. Oncogene 23:7906–7909

    Article  CAS  PubMed  Google Scholar 

  73. Umemori H, Wanaka A, Kato H, Takeuchi M, Tohyama M et al (1992) Specific expressions of Fyn and Lyn, lymphocyte antigen receptor-associated tyrosine kinases, in the central nervous system. Brain Res Mol Brain Res 16:303–310

    Article  CAS  PubMed  Google Scholar 

  74. Ross CA, Wright GE, Resh MD, Pearson RC, Snyder SH (1988) Brain-specific src oncogene mRNA mapped in rat brain by in situ hybridization. Proc Natl Acad Sci U S A 85:9831–9835

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Stein PL, Vogel H, Soriano P (1994) Combined deficiencies of Src, Fyn, and Yes tyrosine kinases in mutant mice. Genes Dev 8:1999–2007

    Article  CAS  PubMed  Google Scholar 

  76. Hunter T (1987) A tail of two src’s: mutatis mutandis. Cell 49:1–4

    Article  CAS  PubMed  Google Scholar 

  77. Okutani D, Lodyga M, Han B, Liu M (2006) Src protein tyrosine kinase family and acute inflammatory responses. Am J Physiol Lung Cell Mol Physiol 291:L129–L141

    Article  CAS  PubMed  Google Scholar 

  78. Salmond RJ, Filby A, Qureshi I, Caserta S, Zamoyska R (2009) T-cell receptor proximal signaling via the Src-family kinases, Lck and Fyn, influences T-cell activation, differentiation, and tolerance. Immunol Rev 228:9–22

    Article  CAS  PubMed  Google Scholar 

  79. Palacios EH, Weiss A (2004) Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene 23:7990–8000

    Article  CAS  PubMed  Google Scholar 

  80. Place AT, Chen Z, Bakhshi FR, Liu G, O’Bryan JP et al (2011) Cooperative role of caveolin-1 and C-terminal Src kinase binding protein in C-terminal Src kinase-mediated negative regulation of c-Src. Mol Pharmacol 80:665–672

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Kaimachnikov NP, Kholodenko BN (2009) Toggle switches, pulses and oscillations are intrinsic properties of the Src activation/deactivation cycle. FEBS J 276:4102–4118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Zhang S, Yu D (2012) Targeting Src family kinases in anti-cancer therapies: turning promise into triumph. Trends Pharmacol Sci 33:122–128

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  83. Huveldt D, Lewis-Tuffin LJ, Carlson BL, Schroeder MA, Rodriguez F et al (2013) Targeting Src family kinases inhibits bevacizumab-induced glioma cell invasion. PLoS One 8, e56505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Park SI, Zhang J, Phillips KA, Araujo JC, Najjar AM et al (2008) Targeting SRC family kinases inhibits growth and lymph node metastases of prostate cancer in an orthotopic nude mouse model. Cancer Res 68:3323–3333

    Article  CAS  PubMed  Google Scholar 

  85. Herold CI, Chadaram V, Peterson BL, Marcom PK, Hopkins J et al (2011) Phase II trial of dasatinib in patients with metastatic breast cancer using real-time pharmacodynamic tissue biomarkers of Src inhibition to escalate dosing. Clin Cancer Res 17:6061–6070

    Article  CAS  PubMed  Google Scholar 

  86. Gucalp A, Sparano JA, Caravelli J, Santamauro J, Patil S et al (2011) Phase II trial of saracatinib (AZD0530), an oral SRC-inhibitor for the treatment of patients with hormone receptor-negative metastatic breast cancer. Clin Breast Cancer 11(5):306–311

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Anbalagan M, Carrier L, Glodowski S, Hangauer D, Shan B et al (2011) KX-01, a novel Src kinase inhibitor directed toward the peptide substrate site, synergizes with tamoxifen in estrogen receptor alpha positive breast cancer. Breast Cancer Res Treat 132(2):391–409

    Article  PubMed  CAS  Google Scholar 

  88. Fujisaka Y, Onozawa Y, Kurata T, Yasui H, Goto I et al (2013) First report of the safety, tolerability, and pharmacokinetics of the Src kinase inhibitor saracatinib (AZD0530) in Japanese patients with advanced solid tumours. Invest New Drugs 31:108–114

    Article  CAS  PubMed  Google Scholar 

  89. Jiang XB, Ohno K, Qian L, Tominaga B, Kuroiwa T et al (2000) Changes in local cerebral blood flow, glucose utilization, and mitochondrial function following traumatic brain injury in rats. Neurol Med Chir (Tokyo) 40:16–28; discussion 28–19

    Article  CAS  Google Scholar 

  90. Simon R, Shiraishi K (1990) N-methyl-D-aspartate antagonist reduces stroke size and regional glucose metabolism. Ann Neurol 27:606–611

    Article  CAS  PubMed  Google Scholar 

  91. Ohab JJ, Fleming S, Blesch A, Carmichael ST (2006) A neurovascular niche for neurogenesis after stroke. J Neurosci 26:13007–13016

    Article  CAS  PubMed  Google Scholar 

  92. Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425:479–494

    Article  CAS  PubMed  Google Scholar 

  93. Bernabeu R, Sharp FR (2000) NMDA and AMPA/kainate glutamate receptors modulate dentate neurogenesis and CA3 synapsin-I in normal and ischemic hippocampus. J Cereb Blood Flow Metab 20:1669–1680

    Article  CAS  PubMed  Google Scholar 

  94. Liu J, Solway K, Messing RO, Sharp FR (1998) Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J Neurosci 18:7768–7778

    CAS  PubMed  Google Scholar 

  95. Higashida T, Kreipke CW, Rafols JA, Peng C, Schafer S et al (2011) The role of hypoxia-inducible factor-1alpha, aquaporin-4, and matrix metalloproteinase-9 in blood-brain barrier disruption and brain edema after traumatic brain injury. J Neurosurg 114:92–101

    Article  CAS  PubMed  Google Scholar 

  96. Karni R, Dor Y, Keshet E, Meyuhas O, Levitzki A (2002) Activated pp60c-Src leads to elevated hypoxia-inducible factor (HIF)-1alpha expression under normoxia. J Biol Chem 277:42919–42925

    Article  CAS  PubMed  Google Scholar 

  97. Madri JA (2009) Modeling the neurovascular niche: implications for recovery from CNS injury. J Physiol Pharmacol 60(Suppl 4):95–104

    PubMed  Google Scholar 

  98. Hannon GJ (2002) RNA interference. Nature 418:244–251

    Article  CAS  PubMed  Google Scholar 

  99. Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS et al (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22:326–330

    Article  CAS  PubMed  Google Scholar 

  100. de Fougerolles A, Vornlocher HP, Maraganore J, Lieberman J (2007) Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov 6:443–453

    Article  PubMed  CAS  Google Scholar 

  101. Eifler AC, Thaxton CS (2011) Nanoparticle therapeutics: FDA approval, clinical trials, regulatory pathways, and case study. Methods Mol Biol 726:325–338

    Article  CAS  PubMed  Google Scholar 

  102. Davis ME (2009) The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm 6:659–668

    Article  CAS  PubMed  Google Scholar 

  103. Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A et al (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464:1067–1070

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Disclosure

The authors acknowledge the support of AHA Beginning Grant-in-Aid 12BGIA12060381 (DZL) and National Institutes of Health grant RO1NS089901 (DZL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DaZhi Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liu, D., Zhang, X., Hu, B., Ander, B.P. (2016). Src Family Kinases in Brain Edema After Acute Brain Injury. In: Applegate, R., Chen, G., Feng, H., Zhang, J. (eds) Brain Edema XVI. Acta Neurochirurgica Supplement, vol 121. Springer, Cham. https://doi.org/10.1007/978-3-319-18497-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18497-5_33

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18496-8

  • Online ISBN: 978-3-319-18497-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics