Skip to main content

Spectral Representations of One-Homogeneous Functionals

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9087))

Abstract

This paper discusses a generalization of spectral representations related to convex one-homogeneous regularization functionals, e.g. total variation or \(\ell ^1\)-norms. Those functionals serve as a substitute for a Hilbert space structure (and the related norm) in classical linear spectral transforms, e.g. Fourier and wavelet analysis. We discuss three meaningful definitions of spectral representations by scale space and variational methods and prove that (nonlinear) eigenfunctions of the regularization functionals are indeed atoms in the spectral representation. Moreover, we verify further useful properties related to orthogonality of the decomposition and the Parseval identity.

The spectral transform is motivated by total variation and further developed to higher order variants. Moreover, we show that the approach can recover Fourier analysis as a special case using an appropriate \(\ell ^1\)-type functional and discuss a coupled sparsity example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreu, F., Ballester, C., Caselles, V., Mazón, J.M.: Minimizing total variation flow. Differential and Integral Equations 14(3), 321–360 (2001)

    MATH  MathSciNet  Google Scholar 

  2. Andreu, F., Caselles, V., Dıaz, J., Mazón, J.: Some qualitative properties for the total variation flow. Journal of Functional Analysis 188(2), 516–547 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aujol, J., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition - modeling, algorithms, and parameter selection. Int. J. Comp. Vision 67, 111–136 (2006)

    Article  MATH  Google Scholar 

  4. Bartels, S., Nochetto, R., Abner, J., Salgado, A.: Discrete total variation flows without regularization. arXiv preprint arXiv:1212.1137 (2012)

  5. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  6. Bellettini, G., Caselles, V., Novaga, M.: The total variation flow in \(R^N\). Journal of Differential Equations 184(2), 475–525 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Benning, M., Brune, C., Burger, M., Müller, J.: Higher-order tv methods: enhancement via bregman iteration. J. Sci. Comput. 54, 269–310 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Benning, M., Burger, M.: Ground states and singular vectors of convex variational regularization methods. Meth. Appl. Analysis 20(4), 295–334 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sciences 3(3), 492–526 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Burger, M., Frick, K., Osher, S., Scherzer, O.: Inverse total variation flow. Multiscale Modeling & Simulation 6(2), 366–395 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Burger, M., Gilboa, G., Osher, S., Xu, J.: Nonlinear inverse scale space methods. Comm. in Math. Sci. 4(1), 179–212 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chan, T.F., Osher, S., Shen, J.: The digital TV filter and nonlinear denoising. IEEE Trans. Image Process. 10(2), 231–241 (2001)

    Article  MATH  Google Scholar 

  13. Eckardt, L.: Spektralzerlegung von Bildern mit TV-methoden, bachelor thesis, University of Münster (2014)

    Google Scholar 

  14. Giga, Y., Kohn, R.: Scale-invariant extinction time estimates for some singular diffusion equations. Hokkaido University Preprint Series in Mathematics (963) (2010)

    Google Scholar 

  15. Gilboa, G.: A spectral approach to total variation. In: Kuijper, A., Bredies, K., Pock, T., Bischof, H. (eds.) SSVM 2013. LNCS, vol. 7893, pp. 36–47. Springer, Heidelberg (2013)

    Google Scholar 

  16. Gilboa, G.: A total variation spectral framework for scale and texture analysis. SIAM J. Imaging Sciences 7(4), 1937–1961 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  17. Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(1), 171–184 (2013)

    Article  Google Scholar 

  18. Meyer, Y.: Oscillating patterns in image processing and in some nonlinear evolution equations (2001)

    Google Scholar 

  19. Müller, J.: Advanced image reconstruction and denoising: Bregmanized (higher order) total variation and application in pet, Ph.D. Thesis, Univ. Münster (2013)

    Google Scholar 

  20. Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: Analysis and an algorithm. Advances in Neural Information Processing Systems 2, 849–856 (2002)

    Google Scholar 

  21. Osher, S., Sole, A., Vese, L.: Image decomposition and restoration using total variation minimization and the H\(^{-1}\) norm. SIAM Multiscale Model. Simul. 1, 349–370 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  23. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)

    Article  Google Scholar 

  24. Steidl, G., Weickert, J., Brox, T., Mrzek, P., Welk, M.: On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and SIDEs. SIAM Journal on Numerical Analysis 42(2), 686–713 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Xu, J., Osher, S.: Iterative regularization and nonlinear inverse scale space applied to wavelet-based denoising. IEEE Trans. Image Processing 16(2), 534–544 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Gilboa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Burger, M., Eckardt, L., Gilboa, G., Moeller, M. (2015). Spectral Representations of One-Homogeneous Functionals. In: Aujol, JF., Nikolova, M., Papadakis, N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2015. Lecture Notes in Computer Science(), vol 9087. Springer, Cham. https://doi.org/10.1007/978-3-319-18461-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18461-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18460-9

  • Online ISBN: 978-3-319-18461-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics