Skip to main content

Modelling of Normal Tissue Complication Probabilities (NTCP): Review of Application of Machine Learning in Predicting NTCP

  • Chapter
Machine Learning in Radiation Oncology

Abstract

Predicting normal tissue toxicity following radiotherapy is a multidimensional challenge. The dose received by healthy tissue surrounding the tumour is described using a 3D dose distribution. In addition, patient- and treatment-related factors must also be considered in any predictive model of toxicity. Mixing these complex and disparate data types is a challenge that can be addressed with machine learning. This chapter introduces the concept of normal tissue complication probability (NTCP) and reviews literature related to the use of machine learning in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barnett GC, Coles CE, Elliott RM, Baynes C, Luccarini C, Conroy D, Wilkinson JS, Tyrer J, Misra V, Platte R, Gulliford SL, Sydes MR, Hall E, Bentzen SM, Dearnaley DP, Burnet NG, Pharoah PDP, Dunning AM, West CM. Independent validation of genes and polymorphisms reported to be associated with radiation toxicity: a prospective analysis study. Lancet Oncol. 2012;13:65–77. doi:10.1016/S1470-2045(11)70302-3.

    Article  CAS  PubMed  Google Scholar 

  2. Bauer JD, Jackson A, Skwarchuk M, Zelefsky M. Principal component, Varimax rotation and cost analysis of volume effects in rectal bleeding in patients treated with 3D-CRT for prostate cancer. Phys Med Biol. 2006;51:5105–23. doi:10.1088/0031-9155/51/20/003.

    Article  CAS  PubMed  Google Scholar 

  3. Blanco AI, Chao KS, El Naqa I, Franklin GE, Zakarian K, Vicic M, Deasy JO. Dose-volume modeling of salivary function in patients with head-and-neck cancer receiving radiotherapy. Int J Radiat Oncol Biol Phys. 2005;62:1055–69. doi:10.1016/j.ijrobp.2004.12.076.

    Article  PubMed  Google Scholar 

  4. Buettner F, Gulliford SL, Webb S, Partridge M. Using dose-surface maps to predict radiation-induced rectal bleeding: a neural network approach. Phys Med Biol. 2009;54:5139–53. doi:10.1088/0031-9155/54/17/005.

    Article  PubMed  Google Scholar 

  5. Burman C, Kutcher GJ, Emami B, Goitein M. Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys. 1991;21:123–35.

    Article  CAS  PubMed  Google Scholar 

  6. Chen S, Zhou S, Yin FF, Marks LB, Das SK. Investigation of the support vector machine algorithm to predict lung radiation-induced pneumonitis. Med Phys. 2007;34:3808–14. doi:10.1118/1.2776669.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Chen SF, Zhou SM, Yin FF, Marks LB, Das SK. Using patient data similarities to predict radiation pneumonitis via a self-organizing map. Phys Med Biol. 2008;53:203–16. doi:10.1088/0031-9155/53/1/014.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Chen SF, Zhou SM, Zhang JN, Yin FF, Marks LB, Das SK. A neural network model to predict lung radiation-induced pneumonitis. Med Phys. 2007;34:3420–7. doi:10.1118/1.2759601.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Das SK, Chen SF, Deasy JO, Zhou SM, Yin FF, Marks LB. Combining multiple models to generate consensus: application to radiation-induced pneumonitis prediction. Med Phys. 2008;35:5098–109. doi:10.1118/1.2996012.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Das SK, Chen SF, Deasy JO, Zhou SM, Yin FF, Marks LB. Decision fusion of machine learning models to predict radiotherapy-induced lung pneumonitis. In: Seventh international conference on machine learning and applications, proceedings. IEEE Computer Society, Los Alamitos, CA. 2008b. p. 545–50. doi:10.1109/Icmla.2008.122.

  11. Das SK, Zhou S, Zhang J, Yin FF, Dewhirst MW, Marks LB. Predicting lung radiotherapy-induced pneumonitis using a model combining parametric Lyman probit with nonparametric decision trees. Int J Radiat Oncol Biol Phys. 2007;68:1212–21. doi:10.1016/j.ijrobp.2007.03.064.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Dawson LA, Biersack M, Lockwood G, Eisbruch A, Lawrence TS, Ten Haken RK. Use of principal component analysis to evaluate the partial organ tolerance of normal tissues to radiation. Int J Radiat Oncol Biol Phys. 2005;62:829–37. doi:10.1016/j.ijrobp.2004.11.013.

    Article  PubMed  Google Scholar 

  13. Dawson LA, Kavanagh BD, Paulino AC, Das SK, Miften M, Li XA, Pan C, Ten Haken RK, Schultheiss TE. Radiation-associated kidney injury. Int J Radiat Oncol Biol Phys. 2010;76:S108–15. doi:10.1016/j.ijrobp.2009.02.089.

    Article  PubMed  Google Scholar 

  14. Deasy JO, Moiseenko V, Marks L, Chao KS, Nam J, Eisbruch A. Radiotherapy dose-volume effects on salivary gland function. Int J Radiat Oncol Biol Phys. 2010;76:S58–63. doi:10.1016/j.ijrobp.2009.06.090.

    Article  PubMed Central  PubMed  Google Scholar 

  15. El Naqa I, Bradley J, Blanco AI, Lindsay PE, Vicic M, Hope A, Deasy JO. Multivariable modeling of radiotherapy outcomes, including dose-volume and clinical factors. Int J Radiat Oncol Biol Phys. 2006;64:1275–86. doi:10.1016/j.ijrobp.2005.11.022.

    Article  PubMed  Google Scholar 

  16. El Naqa I, Bradley JD, Deasy J. Nonlinear Kernel-based approaches for predicting normal tissue toxicities. In: Seventh international conference on machine learning and applications, Proceedings. IEEE Computer Society, Los Alamitos, CA. 2008. p. 539–44. doi:10.1109/Icmla.2008.126.

  17. El Naqa I, Bradley JD, Lindsay PE, Hope AJ, Deasy JO. Predicting radiotherapy outcomes using statistical learning techniques. Phys Med Biol. 2009;54:S9–30. doi:10.1088/0031-9155/54/18/S02.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, Shank B, Solin LJ, Wesson M. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21:109–22.

    Article  CAS  PubMed  Google Scholar 

  19. Fellin G, Rancati T, Fiorino C, Vavassori V, Antognoni P, Baccolini M, Bianchi C, Cagna E, Borca VC, Girelli G, Iacopino B, Maliverni G, Mauro FA, Menegotti L, Monti AF, Romani F, Stasi M, Valdagni R. Long term rectal function after high-dose prostate cancer radiotherapy: results from a prospective cohort study. Radiother Oncol. 2014;110:272–7. doi:10.1016/j.radonc.2013.09.028.

    Article  PubMed  Google Scholar 

  20. Groom N, Wilson E, Lyn E, Faivre-Finn C. Is pre-trial quality assurance necessary? Experiences of the CONVERT Phase III randomized trial for good performance status patients with limited-stage small-cell lung cancer. Br J Radiol. 2014;87:20130653. doi:10.1259/bjr.20130653.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Gulliford SL, Foo K, Morgan RC, Aird EG, Bidmead AM, Critchley H, Evans PM, Gianolini S, Mayles WP, Moore AR, Sanchez-Nieto B, Partridge M, Sydes MR, Webb S, Dearnaley DP. Dose-volume constraints to reduce rectal side effects from prostate radiotherapy: evidence from MRC RT01 Trial ISRCTN 47772397. Int J Radiat Oncol Biol Phys. 2010;76:747–54. doi:10.1016/j.ijrobp.2009.02.025.

    Article  PubMed  Google Scholar 

  22. Hastie TT, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference and prediction. New York: Springer; 2002.

    Google Scholar 

  23. Heckerman D, Geiger D, Chickering DM. Learning Bayesian Networks – the combination of knowledge and statistical-data. Machine Learning. 1995;20:197–243. doi:10.1007/Bf00994016.

    Google Scholar 

  24. Hosmer Jr DW, Lemeshow S, Sturdivant RX. Applied logistic regression. New York: Wiley; 2013.

    Book  Google Scholar 

  25. Jackson A, Ten Haken RK, Robertson JM, Kessler ML, Kutcher GJ, Lawrence TS. Analysis of clinical complication data for radiation hepatitis using a parallel architecture model. Int J Radiat Oncol Biol Phys. 1995;31:883–91. doi:10.1016/0360-3016(94)00471-4.

    Article  CAS  PubMed  Google Scholar 

  26. Jaffray DA, Lindsay PE, Brock KK, Deasy JO, Tome WA. Accurate accumulation of dose for improved understanding of radiation effects in normal tissue. Int J Radiat Oncol Biol Phys. 2010;76:S135–9. doi:10.1016/j.ijrobp.2009.06.093.

    Article  PubMed Central  PubMed  Google Scholar 

  27. James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical learning. New York: Springer; 2013.

    Book  Google Scholar 

  28. Kallman P, Agren A, Brahme A. Tumor and normal tissue responses to fractionated nonuniform dose delivery. Int J Radiat Biol. 1992;62:249–62. doi:10.1080/09553009214552071.

    Article  CAS  PubMed  Google Scholar 

  29. Kasibhatla M, Kirkpatrick JP, Brizel DM. How much radiation is the chemotherapy worth in advanced head and neck cancer? Int J Radiat Oncol Biol Phys. 2007;68:1491–5. doi:10.1016/j.ijrobp.2007.03.025.

    Article  PubMed  Google Scholar 

  30. Klement RJ, Allgauer M, Appold S, Dieckmann K, Ernst I, Ganswindt U, Holy R, Nestle U, Nevinny-Stickel M, Semrau S, Sterzing F, Wittig A, Andratschke N, Guckenberger M. Support vector machine-based prediction of local tumor control after stereotactic body radiation therapy for early-stage non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2014;88:732–8. doi:10.1016/j.ijrobp.2013.11.216.

    Article  PubMed  Google Scholar 

  31. Kohonen T. Essentials of the self-organizing map. Neural Netw. 2013;37:52–65. doi:10.1016/j.neunet.2012.09.018.

    Article  PubMed  Google Scholar 

  32. Kutcher GJ, Burman C, Brewster L, Goitein M, Mohan R. Histogram reduction method for calculating complication probabilities for three-dimensional treatment planning evaluations. Int J Radiat Oncol Biol Phys. 1991;21:137–46.

    Article  CAS  PubMed  Google Scholar 

  33. Liang Y, Messer K, Rose BS, Lewis JH, Jiang SB, Yashar CM, Mundt AJ, Mell LK. Impact of bone marrow radiation dose on acute hematologic toxicity in cervical cancer: principal component analysis on high dimensional data. Int J Radiat Oncol Biol Phys. 2010;78:912–9. doi:10.1016/j.ijrobp.2009.11.062.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Lind PA, Wennberg B, Gagliardi G, Rosfors S, Blom-Goldman U, Lidestahl A, Svane G. ROC curves and evaluation of radiation-induced pulmonary toxicity in breast cancer. Int J Radiat Oncol Biol Phys. 2006;64:765–70. doi:10.1016/j.ijrobp.2005.08.011.

    Article  PubMed  Google Scholar 

  35. Lyman JT. Complication probability as assessed from dose-volume histograms. Radiat Res Suppl. 1985;8:S13–9.

    Article  CAS  PubMed  Google Scholar 

  36. Lyman JT, Wolbarst AB. Optimization of radiation therapy, III: a method of assessing complication probabilities from dose-volume histograms. Int J Radiat Oncol Biol Phys. 1987;13:103–9.

    Article  CAS  PubMed  Google Scholar 

  37. Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta. 1975;405:442–51.

    Article  CAS  PubMed  Google Scholar 

  38. Marks LB, Ten Haken RK, Martel MK. Guest editor’s introduction to QUANTEC: a users guide. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S1–S2.

    Google Scholar 

  39. McCullough WS, Pitts W. A logical calculus of the ideas imminent in nervous activity. Bull Math Biol. 1943;52:99–115.

    Article  Google Scholar 

  40. Mcdonald S, Rubin P, Phillips TL, Marks LB. Injury to the lung from cancer-therapy – clinical syndromes, measurable end-points, and potential scoring systems. Int J Radiat Oncol Biol Phys. 1995;31:1187–203. doi:10.1016/0360-3016(94)00429-O.

    Article  CAS  PubMed  Google Scholar 

  41. Miah AB, Schick U, Bhide SA, Guerrero-Urbano MT, Clark CH, Bidmead AM, Bodla S, Del Rosario L, Thway K, Wilson P, Newbold KL, Harrington KJ, Nutting CM. A phase II trial of induction chemotherapy and chemo-IMRT for head and neck squamous cell cancers at risk of bilateral nodal spread: the application of a bilateral superficial lobe parotid-sparing IMRT technique and treatment outcomes. Br J Cancer. 2015;112:32–8. doi:10.1038/bjc.2014.553.

    Article  CAS  PubMed  Google Scholar 

  42. Michalski JM, Gay H, Jackson A, Tucker SL, Deasy JO. Radiation dose-volume effects in radiation-induced rectal injury. Int J Radiat Oncol Biol Phys. 2010;76:S123–9. doi:10.1016/j.ijrobp.2009.03.078.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Mitchell M. An introduction to genetic algorithms. Cambridge, MA: MIT; 1998.

    Google Scholar 

  44. Munley MT, Lo JY, Sibley GS, Bentel GC, Anscher MS, Marks LB. A neural network to predict symptomatic lung injury. Phys Med Biol. 1999;44:2241–9.

    Article  CAS  PubMed  Google Scholar 

  45. Nalbantov G, Oberije C, Lambin P, De Ruysscher D, Dekker A. Combining the predictions for radiation-induced dysphagia in lung cancer patients from multiple models improves the prognostic accuracy of each individual model. J Thorac Oncol. 2011;6:S549.

    Google Scholar 

  46. Niemierko A. Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med Phys. 1997;24:103–10. doi:10.1118/1.598063.

    Article  CAS  PubMed  Google Scholar 

  47. Niemierko A. A generalized concept of equivalent uniform dose (EUD). Med Phys. 1999;26:1100.

    Google Scholar 

  48. Niemierko A, Goitein M. Modeling of normal tissue-response to radiation - the critical volume model. Int J Radiat Oncol Biol Phys. 1993;25:135–45.

    Article  CAS  PubMed  Google Scholar 

  49. Oh JH, Al-Lozi R, El Naqa I. Application of machine learning techniques for prediction of radiation pneumonitis in lung cancer patients. In: Eighth international conference on machine learning and applications, proceedings. IEEE Computer Society, Los Alamitos, CA. 2009. p. 478–83. doi:10.1109/Icmla.2009.118.

  50. Oh JH, El Naqa I. Bayesian network learning for detecting reliable interactions of dose-volume related parameters in radiation pneumonitis. In: Eighth International Conference on Machine Learning and Applications, Proceedings. IEEE Computer Society, Los Alamitos, CA. 2009. p. 484–8.

    Google Scholar 

  51. Palma DA, Senan S, Tsujino K, Barriger RB, Rengan R, Moreno M, Bradley JD, Kim TH, Ramella S, Marks LB, De Petris L, Stitt L, Rodrigues G. Predicting radiation pneumonitis after chemoradiation therapy for lung cancer: an international individual patient data meta-analysis. Int J Radiat Oncol Biol Phys. 2013;85:444–50. doi:10.1016/j.ijrobp.2012.04.043.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Pella A, Cambria R, Riboldi M, Jereczek-Fossa BA, Fodor C, Zerini D, Torshabi AE, Cattani F, Garibaldi C, Pedroli G, Baroni G, Orecchia R. Use of machine learning methods for prediction of acute toxicity in organs at risk following prostate radiotherapy. Med Phys. 2011;38:2859–67.

    Article  PubMed  Google Scholar 

  53. Rancati T, Fiorino C, Fellin G, Vavassori V, Cagna E, Casanova Borca V, Girelli G, Menegotti L, Monti AF, Tortoreto F, Delle Canne S, Valdagni R. Inclusion of clinical risk factors into NTCP modelling of late rectal toxicity after high dose radiotherapy for prostate cancer. Radiother Oncol. 2011;100:124–30. doi:10.1016/j.radonc.2011.06.032.

    Article  PubMed  Google Scholar 

  54. Schiller TW, Chen YX, El Naqa I, Deasy JO. Improving clinical relevance in ensemble support vector machine models of radiation pneumonitis risk. Eighth international conference on machine learning and applications, proceedings. IEEE Computer Society, Los Alamitos, CA. 2009. p. 498–503. doi:10.1109/Icmla.2009.74.

  55. Skala M, Rosewall T, Dawson L, Divanbeigi L, Lockwood G, Thomas C, Crook J, Chung P, Warde P, Catton C. Patient-assessed late toxicity rates and principal component analysis after image-guided radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2007;68:690–8. doi:10.1016/j.ijrobp.2006.12.064.

    Article  PubMed  Google Scholar 

  56. Sohn M, Alber M, Yan D. Principal component analysis-based pattern analysis of dose-volume histograms and influence on rectal toxicity. Int J Radiat Oncol Biol Phys. 2007;69:230–9. doi:10.1016/j.ijrobp.2007.04.066.

    Article  PubMed  Google Scholar 

  57. Streiner DL, Cairney J. What's under the ROC? An introduction to receiver operating characteristics curves. Can J Psychiatry. 2007;52:121–8.

    PubMed  Google Scholar 

  58. Su M, Miften M, Whiddon C, Sun X, Light K, Marks L. An artificial neural network for predicting the incidence of radiation pneumonitis. Med Phys. 2005;32:318–25.

    Article  PubMed  Google Scholar 

  59. Tomatis S, Rancati T, Fiorino C, Vavassori V, Fellin G, Cagna E, Mauro FA, Girelli G, Monti A, Baccolini M, Naldi G, Bianchi C, Menegotti L, Pasquino M, Stasi M, Valdagni R. Late rectal bleeding after 3D-CRT for prostate cancer: development of a neural-network-based predictive model. Phys Med Biol. 2012;57:1399–412. doi:10.1088/0031-9155/57/5/1399.

    Article  CAS  PubMed  Google Scholar 

  60. Trotti A, Colevas AD, Setser A, Rusch V, Jaques D, Budach V, Langer C, Murphy B, Cumberlin R, Coleman CN, Rubin P. CTCAE v3.0: development of a comprehensive grading system for the adverse effects of cancer treatment. Semin Radiat Oncol. 2003;13:176–81. doi:10.1016/S1053-4296(03)00031-6.

    Article  PubMed  Google Scholar 

  61. Vesprini D, Sia M, Lockwood G, Moseley D, Rosewall T, Bayley A, Bristow R, Chung P, Menard C, Milosevic M, Warde P, Catton C. Role of principal component analysis in predicting toxicity in prostate cancer patients treated with hypofractionated intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2011;81:e415–21. doi:10.1016/j.ijrobp.2011.01.024.

    Article  PubMed  Google Scholar 

  62. Viswanathan AN, Yorke ED, Marks LB, Eifel PJ, Shipley WU. Radiation dose-volume effects of the urinary bladder. Int J Radiat Oncol Biol Phys. 2010;76:S116–22. doi:10.1016/j.ijrobp.2009.02.090.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Withers HR, Taylor JM, Maciejewski B. Treatment volume and tissue tolerance. Int J Radiat Oncol Biol Phys. 1988;14(4):751–759.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Gulliford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gulliford, S. (2015). Modelling of Normal Tissue Complication Probabilities (NTCP): Review of Application of Machine Learning in Predicting NTCP. In: El Naqa, I., Li, R., Murphy, M. (eds) Machine Learning in Radiation Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-18305-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18305-3_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18304-6

  • Online ISBN: 978-3-319-18305-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics