Skip to main content

Role of Syndecans in Lipid Metabolism and Human Diseases

  • Chapter
Lipids in Protein Misfolding

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 855))

Abstract

Syndecans are transmembrane heparan sulfate proteoglycans involved in the regulation of cell growth, differentiation, adhesion, neuronal development, and lipid metabolism. Syndecans are expressed in a tissue-specific manner to facilitate diverse cellular processes. As receptors and co-receptors, syndecans provide promising therapeutic targets that bind to a variety of physiologically important ligands. Negatively charged glycosaminoglycan chains of syndecans, located in the extracellular compartment, are critical for such binding. Functions of syndecans are as diverse as their ligands. For example, hepatic syndecan-1 mediates clearance of triglyceride-rich lipoproteins. Syndecan-2 promotes localization of Alzheimer’s amyloid Aβ peptide to the cell surface, which is proposed to contribute to amyloid plaque formation. Syndecan-3 helps co-localize the appetite-regulating melanocortin-4 receptor with its agonist, leading to an increased appetite. Finally, syndecan-4 initiates the capture of modified low-density lipoproteins by macrophages and thereby promotes the atheroma formation. We hypothesize that syndecan modifications such as desulfation of glycosaminoglycan chains may contribute to a wide range of diseases, from atherosclerosis to type 2 diabetes. At the same time, desulfated syndecans may have beneficial effects, as they can inhibit amyloid plaque formation or decrease the appetite. Despite considerable progress in understanding diverse functions of syndecans, the complex physiological roles of this intriguing family of proteoglycans are far from clear. Additional studies of syndecans may potentially help develop novel therapeutic approaches and diagnostic tools to alleviate complex human diseases such as cardiovascular and Alzheimer’s diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

AgRP:

Agouti-related protein

apo:

Apolipoprotein

APP:

Amyloid-β precursor protein

Aβ:

Amyloid-β peptide

DPAB:

Dense peripheral actin bands

EG:

Endothelial glycocalyx

HDL:

High-density lipoproteins

HSPG:

Heparan sulfate proteoglycan

IDL:

Intermediate-density lipoproteins

LDL:

Low-density lipoproteins

MAP:

mitogen-activated protein kinase

MC4R:

Melanocortin-4 receptor

MMP:

Matrix metalloproteinase

PTK:

Protein tyrosine kinase

SULF2:

Heparan sulfate glucosamine-6-O-endosulfatase-2

TG:

Triacylglycerols

VLDL:

Very low-density lipoproteins

α-MSH:

α-melanocyte-stimulating anorexigenic hormone

References

  • Aguilera JJ, Zhang F, Beaudet JM, Linhardt RJ, Colón W (2014) Divergent effect of glycosaminoglycans on the in vitro aggregation of serum amyloid A. Biochimie 104:70–80

    Article  CAS  PubMed  Google Scholar 

  • Asplund A, Ostergren-Lundén G, Camejo G, Stillemark-Billton P, Bondjers G (2009) Hypoxia increases macrophage motility, possibly by decreasing the heparan sulfate proteoglycan biosynthesis. J Leukoc Biol 86(2):381–388

    Article  CAS  PubMed  Google Scholar 

  • Barrett PJ, Song Y, Van Horn WD, Hustedt EJ, Schafer JM, Hadziselimovic A, Beel AJ, Sanders CR (2012) The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol. Science 336(6085):1168–1171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beauvais DM, Rapraeger AC (2004) Syndecans in tumor cell adhesion and signaling. Reprod Biol Endocrinol RBE 2:3

    Article  Google Scholar 

  • Biere AL, Ostaszewski B, Stimson ER, Hyman BT, Maggio JE, Selkoe DJ (1996) Amyloid beta-peptide is transported on lipoproteins and albumin in human plasma. J Biol Chem 271(51):32916–32922

    Article  CAS  PubMed  Google Scholar 

  • Bishop JR, Schuksz M, Esko JD (2007) Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446(7139):1030–1037

    Article  CAS  PubMed  Google Scholar 

  • Boyanovsky BB, Shridas P, Simons M, van der Westhuyzen DR, Webb NR (2009) Syndecan-4 mediates macrophage uptake of group V secretory phospholipase A2-modified LDL. J Lipid Res 50(4):641–650

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brown NH (2011) Extracellular matrix in development: insights from mechanisms conserved between invertebrates and vertebrates. Cold Spring Harb Perspect Biol 3(12):a005082

    Article  PubMed Central  PubMed  Google Scholar 

  • Castellano JM, Kim J, Stewart FR, Jiang H, DeMattos RB, Patterson BW, Fagan AM, Morris JC, Mawuenyega KG, Cruchaga C, Goate AM, Bales KR, Paul SM, Bateman RJ, Holtzman DM (2011) Human apoE isoforms differentially regulate brain amyloid- peptide clearance. Sci Transl Med 3(89):89ra57–ra89ra57

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Castillo GM, Lukito W, Wight TN, Snow AD (1999) The sulfate moieties of glycosaminoglycans are critical for the enhancement of beta-amyloid protein fibril formation. J Neurochem 72(4):1681–1687

    Article  CAS  PubMed  Google Scholar 

  • Chakravarti R, Adams JC (2006) Comparative genomics of the syndecans defines an ancestral genomic context associated with matrilins in vertebrates. BMC Genomics 7:83

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen K, Williams KJ (2013) Molecular mediators for raft-dependent endocytosis of syndecan-1, a highly conserved, multifunctional receptor. J Biol Chem 288(20):13988–13999

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen L, Couchman JR, Smith J, Woods A (2002) Molecular characterization of chicken syndecan-2 proteoglycan. Biochem J 366(Pt 2):481–490

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen K, Liu M-L, Schaffer L, Li M, Boden G, Wu X, Williams KJ (2010) Type 2 diabetes in mice induces hepatic overexpression of sulfatase 2, a novel factor that suppresses uptake of remnant lipoproteins. Hepatology 52(6):1957–1967

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choi S, Kim J-Y, Park JH, Lee S-T, Han I-O, Oh E-S (2012) The matrix metalloproteinase-7 regulates the extracellular shedding of syndecan-2 from colon cancer cells. Biochem Biophys Res Commun 417(4):1260–1264

    Article  CAS  PubMed  Google Scholar 

  • Cornelison DDW, Wilcox-Adelman SA, Goetinck PF, Rauvala H, Rapraeger AC, Olwin BB (2004) Essential and separable roles for syndecan-3 and syndecan-4 in skeletal muscle development and regeneration. Genes Dev 18(18):2231–2236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Couchman JR, Chen L, Woods A (2001) Syndecans and cell adhesion. Int Rev Cytol 207:113–150

    Article  CAS  PubMed  Google Scholar 

  • Daousi C, Casson IF, Gill GV, MacFarlane IA, Wilding JPH, Pinkney JH (2006) Prevalence of obesity in type 2 diabetes in secondary care: association with cardiovascular risk factors. Postgrad Med J 82(966):280–284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davignon J, Gregg RE, Sing CF (1988) Apolipoprotein E polymorphism and atherosclerosis. Arterioscler Dallas Tex 8(1):1–21

    Article  CAS  Google Scholar 

  • Dawson GR, Seabrook GR, Zheng H, Smith DW, Graham S, O’Dowd G, Bowery BJ, Boyce S, Trumbauer ME, Chen HY, Van der Ploeg LH, Sirinathsinghji DJ (1999) Age-related cognitive deficits, impaired long-term potentiation and reduction in synaptic marker density in mice lacking the beta-amyloid precursor protein. Neuroscience 90(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • De Rossi G, Evans AR, Kay E, Woodfin A, McKay TR, Nourshargh S, Whiteford JR (2014) Shed syndecan-2 inhibits angiogenesis. J Cell Sci 127(21):4788–4799

    Google Scholar 

  • Deane R, Sagare A, Hamm K, Parisi M, Lane S, Finn MB, Holtzman DM, Zlokovic BV (2008) ApoE isoform–specific disruption of amyloid β peptide clearance from mouse brain. J Clin Invest 118(12):4002–4013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Denhez F, Wilcox-Adelman SA, Baciu PC, Saoncella S, Lee S, French B, Neveu W, Goetinck PF (2002) Syndesmos, a syndecan-4 cytoplasmic domain interactor, binds to the focal adhesion adaptor proteins paxillin and Hic-5. J Biol Chem 277(14):12270–12274

    Article  CAS  PubMed  Google Scholar 

  • Dews IC, Mackenzie KR (2007) Transmembrane domains of the syndecan family of growth factor coreceptors display a hierarchy of homotypic and heterotypic interactions. Proc Natl Acad Sci U S A 104(52):20782–20787

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fransson L-A, Belting M, Cheng F, Jönsson M, Mani K, Sandgren S (2004) Novel aspects of glypican glycobiology. Cell Mol Life Sci CMLS 61(9):1016–1024

    Article  CAS  Google Scholar 

  • Gantz I, Fong TM (2003) The melanocortin system. Am J Physiol Endocrinol Metab 284(3):E468–E474

    Article  CAS  PubMed  Google Scholar 

  • Getz GS, Reardon CA (2008) Apoprotein E as a lipid transport and signaling protein in the blood, liver, and artery wall. J Lipid Res 50(Supplement):S156–S161

    Article  PubMed  Google Scholar 

  • Giulian D, Haverkamp LJ, Yu J, Karshin W, Tom D, Li J, Kazanskaia A, Kirkpatrick J, Roher AE (1998) The HHQK domain of beta-amyloid provides a structural basis for the immunopathology of Alzheimer’s disease. J Biol Chem 273(45):29719–29726

    Google Scholar 

  • Goldstein JL, Brown MS, Anderson RG, Russell DW, Schneider WJ (1985) Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annu Rev Cell Biol 1:1–39

    Article  CAS  PubMed  Google Scholar 

  • Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256(5054):184–185

    Article  CAS  PubMed  Google Scholar 

  • Hassing HC, Mooij H, Guo S, Monia BP, Chen K, Kulik W, Dallinga-Thie GM, Nieuwdorp M, Stroes ES, Williams KJ (2012) Inhibition of hepatic sulfatase-2 in vivo: a novel strategy to correct diabetic dyslipidemia. Hepatology 55(6):1746–1753

    Google Scholar 

  • Kaksonen M, Pavlov I, Võikar V, Lauri SE, Hienola A, Riekki R, Lakso M, Taira T, Rauvala H (2002) Syndecan-3-deficient mice exhibit enhanced LTP and impaired hippocampus-dependent memory. Mol Cell Neurosci 21(1):158–172

    Article  CAS  PubMed  Google Scholar 

  • Karlsson-Lindahl L, Schmidt L, Haage D, Hansson C, Taube M, Egeciouglu E, Tan Y, Admyre T, Jansson J-O, Vlodavsky I, Li J-P, Lindahl U, Dickson SL (2012) Heparanase affects food intake and regulates energy balance in mice. PLoS One 7(3):e34313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Khandekar MJ, Cohen P, Spiegelman BM (2011) Molecular mechanisms of cancer development in obesity. Nat Rev Cancer 11(12):886–895

    Article  CAS  PubMed  Google Scholar 

  • Kim JM, Lee JA, Cho IS, Ihm CH (2010) Soluble syndecan-1 at diagnosis and during follow up of multiple myeloma: a single institution study. Korean J Hematol 45(2):115–119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kokenyesi R, Bernfield M (1994) Core protein structure and sequence determine the site and presence of heparan sulfate and chondroitin sulfate on syndecan-1. J Biol Chem 269(16):12304–12309

    CAS  PubMed  Google Scholar 

  • Koudinov AR, Berezov TT (2004) Alzheimer’s amyloid-beta (A beta) is an essential synaptic protein, not neurotoxic junk. Acta Neurobiol Exp (Wars) 64(1):71–79

    Google Scholar 

  • Koudinov A, Matsubara E, Frangione B, Ghiso J (1994) The soluble form of Alzheimer’s amyloid beta protein is complexed to high density lipoprotein 3 and very high density lipoprotein in normal human plasma. Biochem Biophys Res Commun 205(2):1164–1171

    Article  CAS  PubMed  Google Scholar 

  • Koudinov AR, Berezov TT, Koudinova NV (2001) The levels of soluble amyloid beta in different high density lipoprotein subfractions distinguish Alzheimer’s and normal aging cerebrospinal fluid: implication for brain cholesterol pathology? Neurosci Lett 314(3):115–118

    Article  CAS  PubMed  Google Scholar 

  • Kreuger J, Spillmann D, Li J, Lindahl U (2006) Interactions between heparan sulfate and proteins: the concept of specificity. J Cell Biol 174(3):323–327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • LaDu MJ, Lukens JR, Reardon CA, Getz GS (1997) Association of human, rat, and rabbit apolipoprotein E with beta-amyloid. J Neurosci Res 49(1):9–18

    Article  CAS  PubMed  Google Scholar 

  • Laird FM, Cai H, Savonenko AV, Farah MH, He K, Melnikova T, Wen H, Chiang H-C, Xu G, Koliatsos VE, Borchelt DR, Price DL, Lee H-K, Wong PC (2005) BACE1, a major determinant of selective vulnerability of the brain to amyloid-beta amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. J Neurosci Off J Soc Neurosci 25(50):11693–11709

    Article  CAS  Google Scholar 

  • Laurent TC, Fraser JR (1992) Hyaluronan. FASEB J 6(7):2397–2404

    CAS  PubMed  Google Scholar 

  • Leonova EI, Galzitskaya OV (2013) Structure and functions of syndecans in vertebrates. Biochemistry (Mosc) 78(10):1071–1085

    Article  CAS  Google Scholar 

  • Leonova EI, Galzitskaya OV (2015) Cell communication using intrinsically disordered proteins: what can syndecans say? J Biomol Struct Dyn 33(5):1037–1050

    Google Scholar 

  • Li J-P, Galvis MLE, Gong F, Zhang X, Zcharia E, Metzger S, Vlodavsky I, Kisilevsky R, Lindahl U (2005) In vivo fragmentation of heparan sulfate by heparanase overexpression renders mice resistant to amyloid protein A amyloidosis. Proc Natl Acad Sci U S A 102(18):6473–6477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin Y-L, Lei Y-T, Hong C-J, Hsueh Y-P (2007) Syndecan-2 induces filopodia and dendritic spine formation via the neurofibromin-PKA-Ena/VASP pathway. J Cell Biol 177(5):829–841

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu C-C, Kanekiyo T, Xu H, Bu G (2013) Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 9(2):106–118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lubrano-Berthelier C, Cavazos M, Dubern B, Shapiro A, Stunff CLE, Zhang S, Picart F, Govaerts C, Froguel P, Bougneres P, Clement K, Vaisse C (2003) Molecular genetics of human obesity-associated MC4R mutations. Ann N Y Acad Sci 994:49–57

    Article  CAS  PubMed  Google Scholar 

  • MacArthur JM, Bishop JR, Stanford KI, Wang L, Bensadoun A, Witztum JL, Esko JD (2007) Liver heparan sulfate proteoglycans mediate clearance of triglyceride-rich lipoproteins independently of LDL receptor family members. J Clin Invest 117(1):153–164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Madonna ME, Schurdak J, Yang Y, Benoit S, Millhauser GL (2012) Agouti-related protein segments outside of the receptor binding core are required for enhanced short- and long-term feeding stimulation. ACS Chem Biol 7(2):395–402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mahley RW, Hui DY, Innerarity TL, Weisgraber KH (1981) Two independent lipoprotein receptors on hepatic membranes of dog, swine, and man. Apo-B, E and apo-E receptors. J Clin Invest 68(5):1197–1206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Manich G, Mercader C, del Valle J, Duran-Vilaregut J, Camins A, Pallàs M, Vilaplana J, Pelegrí C (2011) Characterization of amyloid-β granules in the hippocampus of SAMP8 mice. J Alzheimers Dis JAD 25(3):535–546

    CAS  Google Scholar 

  • Manon-Jensen T, Itoh Y, Couchman JR (2010) Proteoglycans in health and disease: the multiple roles of syndecan shedding. FEBS J 277(19):3876–3889

    Article  CAS  PubMed  Google Scholar 

  • Mergen M, Mergen H, Ozata M, Oner R, Oner C (2001) A novel melanocortin 4 receptor (MC4R) gene mutation associated with morbid obesity. J Clin Endocrinol Metab 86(7):3448

    Article  CAS  PubMed  Google Scholar 

  • Narindrasorasak S, Lowery D, Gonzalez-DeWhitt P, Poorman RA, Greenberg B, Kisilevsky R (1991) High affinity interactions between the Alzheimer’s beta-amyloid precursor proteins and the basement membrane form of heparan sulfate proteoglycan. J Biol Chem 266(20):12878–12883

    CAS  PubMed  Google Scholar 

  • Noguer O, Villena J, Lorita J, Vilaró S, Reina M (2009) Syndecan-2 downregulation impairs angiogenesis in human microvascular endothelial cells. Exp Cell Res 315(5):795–808

    Article  CAS  PubMed  Google Scholar 

  • Pentikäinen MO, Oksjoki R, Oörni K, Kovanen PT (2002) Lipoprotein lipase in the arterial wall: linking LDL to the arterial extracellular matrix and much more. Arterioscler Thromb Vasc Biol 22(2):211–217

    Article  PubMed  Google Scholar 

  • Pirttilä T, Kim KS, Mehta PD, Frey H, Wisniewski HM (1994) Soluble amyloid beta-protein in the cerebrospinal fluid from patients with Alzheimer’s disease, vascular dementia and controls. J Neurol Sci 127(1):90–95

    Article  PubMed  Google Scholar 

  • Poirier J (2000) Apolipoprotein E and Alzheimer’s disease. A role in amyloid catabolism. Ann N Y Acad Sci 924:81–90

    Article  CAS  PubMed  Google Scholar 

  • Prasansuklab A, Tencomnao T (2013) Amyloidosis in Alzheimer’s disease: the toxicity of amyloid beta (Aβ), mechanisms of its accumulation and implications of medicinal plants for therapy. Evid Based Complement Alternat Med 2013:1–10

    Article  Google Scholar 

  • Pries AR, Secomb TW, Gaehtgens P (2000) The endothelial surface layer. Pflügers Arch Eur J Physiol 440(5):653–666

    Article  CAS  Google Scholar 

  • Puglielli L, Tanzi RE, Kovacs DM (2003) Alzheimer’s disease: the cholesterol connection. Nat Neurosci 6(4):345–351

    Article  CAS  PubMed  Google Scholar 

  • Puzzo D, Privitera L, Leznik E, Fà M, Staniszewski A, Palmeri A, Arancio O (2008) Picomolar amyloid-beta positively modulates synaptic plasticity and memory in hippocampus. J Neurosci 28(53):14537–14545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ramani VC, Pruett PS, Thompson CA, DeLucas LD, Sanderson RD (2012) Heparan sulfate chains of syndecan-1 regulate ectodomain shedding. J Biol Chem 287(13):9952–9961

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reizes O, Lincecum J, Wang Z, Goldberger O, Huang L, Kaksonen M, Ahima R, Hinkes MT, Barsh GS, Rauvala H, Bernfield M (2001) Transgenic expression of syndecan-1 uncovers a physiological control of feeding behavior by syndecan-3. Cell 106(1):105–116

    Article  CAS  PubMed  Google Scholar 

  • Reizes O, Benoit SC, Strader AD, Clegg DJ, Akunuru S, Seeley RJ (2003) Syndecan-3 modulates food intake by interacting with the melanocortin/AgRP pathway. Ann N Y Acad Sci 994:66–73

    Article  CAS  PubMed  Google Scholar 

  • Sarrazin S, Lamanna WC, Esko JD (2011) Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol 3(7):a004952–a004952

    Article  PubMed Central  PubMed  Google Scholar 

  • Saunders S, Jalkanen M, O’Farrell S, Bernfield M (1989) Molecular cloning of syndecan, an integral membrane proteoglycan. J Cell Biol 108(4):1547–1556

    Article  CAS  PubMed  Google Scholar 

  • Savery MD, Jiang JX, Park PW, Damiano ER (2013) The endothelial glycocalyx in syndecan-1 deficient mice. Microvasc Res 87:83–91

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schuster DP (2010) Obesity and the development of type 2 diabetes: the effects of fatty tissue inflammation. Diabetes Metab Syndr Obes 3:253–262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singleton PA, Bourguignon LYW (2004) CD44 interaction with ankyrin and IP3 receptor in lipid rafts promotes hyaluronan-mediated Ca2+ signaling leading to nitric oxide production and endothelial cell adhesion and proliferation. Exp Cell Res 295(1):102–118

    Article  CAS  PubMed  Google Scholar 

  • Snow AD, Wight TN (1989) Proteoglycans in the pathogenesis of Alzheimer’s disease and other amyloidoses. Neurobiol Aging 10(5):481–497

    Article  CAS  PubMed  Google Scholar 

  • Snow AD, Willmer J, Kisilevsky R (1987) A close ultrastructural relationship between sulfated proteoglycans and AA amyloid fibrils. Lab Investig 57(6):687–698

    CAS  PubMed  Google Scholar 

  • Snow AD, Mar H, Nochlin D, Kimata K, Kato M, Suzuki S, Hassell J, Wight TN (1988) The presence of heparan sulfate proteoglycans in the neuritic plaques and congophilic angiopathy in Alzheimer’s disease. Am J Pathol 133(3):456–463

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stanford KI, Bishop JR, Foley EM, Gonzales JC, Niesman IR, Witztum JL, Esko JD (2009) Syndecan-1 is the primary heparan sulfate proteoglycan mediating hepatic clearance of triglyceride-rich lipoproteins in mice. J Clin Invest 119(11):3236–3245

    CAS  PubMed Central  PubMed  Google Scholar 

  • Subramanian SV, Fitzgerald ML, Bernfield M (1997) Regulated shedding of syndecan-1 and -4 ectodomains by thrombin and growth factor receptor activation. J Biol Chem 272(23):14713–14720

    Article  CAS  PubMed  Google Scholar 

  • Thi MM, Tarbell JM, Weinbaum S, Spray DC (2004) The role of the glycocalyx in reorganization of the actin cytoskeleton under fluid shear stress: a “bumper-car” model. Proc Natl Acad Sci 101(47):16483–16488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van Barlingen HH, de Jong H, Erkelens DW, de Bruin TW (1996) Lipoprotein lipase-enhanced binding of human triglyceride-rich lipoproteins to heparan sulfate: modulation by apolipoprotein E and apolipoprotein C. J Lipid Res 37(4):754–763

    PubMed  Google Scholar 

  • Van den Berg BM, Spaan JAE, Rolf TM, Vink H (2006) Atherogenic region and diet diminish glycocalyx dimension and increase intima-to-media ratios at murine carotid artery bifurcation. Am J Physiol Heart Circ Physiol 290(2):H915–H920

    Article  PubMed  Google Scholar 

  • Van Deurs B, Roepstorff K, Hommelgaard AM, Sandvig K (2003) Caveolae: anchored, multifunctional platforms in the lipid ocean. Trends Cell Biol 13(2):92–100

    Article  PubMed  Google Scholar 

  • Vanhoutte D, Schellings MWM, Götte M, Swinnen M, Herias V, Wild MK, Vestweber D, Chorianopoulos E, Cortés V, Rigotti A, Stepp M-A, Van de Werf F, Carmeliet P, Pinto YM, Heymans S (2007) Increased expression of syndecan-1 protects against cardiac dilatation and dysfunction after myocardial infarction. Circulation 115(4):475–482

    Article  CAS  PubMed  Google Scholar 

  • Verghese PB, Castellano JM, Garai K, Wang Y, Jiang H, Shah A, Bu G, Frieden C, Holtzman DM (2013) ApoE influences amyloid- (A) clearance despite minimal apoE/A association in physiological conditions. Proc Natl Acad Sci 110(19):E1807–E1816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watanabe N, Araki W, Chui D-H, Makifuchi T, Ihara Y, Tabira T (2004) Glypican-1 as an Abeta binding HSPG in the human brain: its localization in DIG domains and possible roles in the pathogenesis of Alzheimer’s disease. FASEB J 18(9):1013–1015

    CAS  PubMed  Google Scholar 

  • Weinbaum S, Tarbell JM, Damiano ER (2007) The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng 9:121–167

    Article  CAS  PubMed  Google Scholar 

  • Williams KJ, Chen K (2010) Recent insights into factors affecting remnant lipoprotein uptake. Curr Opin Lipidol 21(3):218–228

    Article  CAS  PubMed  Google Scholar 

  • Wilsie LC, Gonzales AM, Orlando RA (2006) Syndecan-1 mediates internalization of apoE-VLDL through a low density lipoprotein receptor-related protein (LRP)-independent, non-clathrin-mediated pathway. Lipids Health Dis 5:23

    Article  PubMed Central  PubMed  Google Scholar 

  • Yao Y, Rabodzey A, Dewey CF Jr (2007) Glycocalyx modulates the motility and proliferative response of vascular endothelium to fluid shear stress. Am J Physiol Heart Circ Physiol 293(2):H1023–H1030

    Article  CAS  PubMed  Google Scholar 

  • Zhang G-L, Zhang X, Wang X-M, Li J-P (2014) Towards understanding the roles of heparan sulfate proteoglycans in Alzheimer’s disease. BioMed Res Int 2014:516028

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgement

We are grateful Olga Gursky for her expert assistance and valuable comments. This study was supported by the Russian Science Foundation grant №14-14-00536 to O. V. G. and by the Russian Academy of Sciences (Molecular and Cell Biology program (grant 01201353567) to E. I. L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oxana V. Galzitskaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Leonova, E.I., Galzitskaya, O.V. (2015). Role of Syndecans in Lipid Metabolism and Human Diseases. In: Gursky, O. (eds) Lipids in Protein Misfolding. Advances in Experimental Medicine and Biology, vol 855. Springer, Cham. https://doi.org/10.1007/978-3-319-17344-3_10

Download citation

Publish with us

Policies and ethics