Skip to main content

Extending Construction X for Quantum Error-Correcting Codes

  • Conference paper
Coding Theory and Applications

Part of the book series: CIM Series in Mathematical Sciences ((CIMSMS,volume 3))

Abstract

In this paper we extend the work of Lisonek and Singh on construction X for quantum error-correcting codes to finite fields of order p 2 where p is prime. Further, we give some new results on the Hermitian dual of repeated root cyclic codes. These results are used to construct new quantum error-correcting codes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guenda, K.: Sur l’équivalence des codes. Ph.D. thesis, Faculty of Mathematics, USTHB, Algiers (2010)

    Google Scholar 

  2. Guenda, K., Gulliver, T.A.: Symmetric and asymmetric quantum codes. Int. J. Quantum Inf. 11(5) 1350047 [10 pages] DOI:10.1142/S0219749913500470 (2013)

  3. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, New York (2003)

    Book  MATH  Google Scholar 

  4. Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52(11), 4892–4914 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lisonek, P., Singh, V.K.: Quantum codes from nearly self-orthogonal quaternary linear codes. Des. Codes Cryptogr. 73(2), 417–424 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Rotman, J.J.: Advanced Modern Algebra, 2nd edn. Prentice Hall, Upper Saddle River (2003)

    Google Scholar 

  7. Shor, P.W.: Scheme for reducing decoherence in quantum memory. Phys. Rev. A 52(4), 2493–2493 (1995)

    Article  Google Scholar 

  8. Steane, A.: Multiple particle interference and quantum error correction. Proc. R. Soc. A 452(1954), 2551–2577 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kenza Guenda or T. Aaron Gulliver .

Editor information

Editors and Affiliations

Appendix: Code Construction Examples

Appendix: Code Construction Examples

In this appendix, comprehensive tables of codes generated using the results in the paper are presented. Table 1 presents quantum codes obtained using Theorem 4. Many of these codes have parameters better than the best known binary quantum codes. Table 2 presents the parameters of quantum codes obtained from repeated root cyclic codes using Theorem 9. These are codes of length 3p s over fields of size p 2.

Table 1 Codes obtained using Theorem 4 and the best known binary QECCs
Table 2 Parameters of the quantum codes obtained from repeated root cyclic codes using Theorem 9

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Degwekar, A., Guenda, K., Gulliver, T.A. (2015). Extending Construction X for Quantum Error-Correcting Codes. In: Pinto, R., Rocha Malonek, P., Vettori, P. (eds) Coding Theory and Applications. CIM Series in Mathematical Sciences, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-17296-5_14

Download citation

Publish with us

Policies and ethics