Skip to main content

Emissions and Inland Navigation

  • Chapter
Green Transportation Logistics

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 226))

Abstract

Inland navigation may seem to be an environmentally friendly while somewhat quaint mode of transport. However, it does in fact play an important role by supporting industrial development. While inland navigation does indeed have all the ingredients of a green mode of transport, its emissions to air must nonetheless be considered and reduced. This chapter examines the possibilities for reduction of greenhouse gas (GHG) and pollutant emissions while emphasizing win–win situations. This will be accomplished by first establishing the (European) policy context of inland navigation and explaining the basic facts and issues regarding emissions. The main part of this chapter is a presentation and analysis of possible measures to reduce emissions. The chapter concludes with recommendations to further the greening of inland navigation. The recommendations focus on the reduction of GHG and pollutant emissions from inland navigation, as these emissions stand in the way of inland navigation being a truly green mode of transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    With the factor A the HC limit for fully and partially gaseous fuelled engines is calculated according to the formula HC = 0.19 + (1.5 × A × GER), where GER is the average gas energy ratio over the appropriate cycle. If the calculated limit for HC exceeds the value of 0.19 + A the limit for HC shall be set to 0.19 + A.

Abbreviations

ADEME:

Agence de l’Environnement et de la Maîtrise de l’Énergie

AIS:

Automatic Identification System

BTS:

Barge Traffic System

CCNR:

Central Commission for the Navigation of the Rhine

CH4 :

Methane

CNG:

Compressed natural gas

CO:

Carbon monoxide

CO2 :

Carbon dioxide

EBU:

European Barge Union

EEDI:

Energy Efficiency Design Index

EEO:

Energy Efficiency Operational Indicator

EGR:

Exhaust gas recirculation

EN:

European Norm

EPA:

United States Environmental Protection Agency

ESO:

European Skippers Organization

EU:

European Union

Euromot:

European Association of Internal Combustion Engine Manufacturers

GHG:

Greenhouse gas

HC:

Hydrocarbons

IFEU:

Institute for Energy and Environmental Research

IMO:

International Maritime Organization

INE:

Inland Navigation Europe

IT:

Information Technology

ITF:

International Transport Forum

LNG:

Liquefied natural gas

NOX :

Nitrogen oxides

OECD:

Organization for Economic Co-operation and Development

PM:

Particulate matter

PMF:

Particulate matter filter

RIS:

River Information Services

SCR:

Selective catalytic reduction

SEEMP:

Ship Energy Efficiency Management Plan

TEN-T:

Trans-European Transport Networks

UIC:

International Union of Railways

USA:

United States of America

References

  • ADEME. (2006). Etude sur le niveau de consommation de carburant des unites fluviales francaises. ADEME, VNF, TL&A.

    Google Scholar 

  • ADEME. (2012). CO 2 information for transport services—Application of Article L. 1431-3 of the French transport code—Methodological guide. SD & Energy, Ministry of Ecology. Paris: Ministère de l’Écologie, du Développement durable et de l’Énergie.

    Google Scholar 

  • Antwerp, P. O. (2012). Annual report 2012. Antwerp, Belgium.

    Google Scholar 

  • Bonnerjee, S., Cann, A., Koethe, H., Lammie, D., Lieven, G., Muskatirovic, J., et al. (2009). Inland waterborne transport: Connecting countries (Insights). Paris: United Nations Educational, Scientific and Cultural Organization.

    Google Scholar 

  • Buhaug, Ø., Corbett, J. J., Endresen, Ø., Eyring, V., Faber, J., Hanayama, S., et al. (2009). Second IMO GHG Study 2009. London: International Maritime Organization (IMO).

    Google Scholar 

  • CBS. (2011). Air pollution, actual emissions by mobile sources. Retrieved December 14, 2011, from http://statline.cbs.nl/StatWeb/publication/?DM=SLEN&PA=80448eng&D1=a&D2=8,13,17-20&D3=l&LA=EN&HDR=T&STB=G1,G2&VW=T

  • CCNR. (2003). Resolution 2003-II-27. Strasbourg, France: Central Commission for the Navigation of the Rhine.

    Google Scholar 

  • CCNR. (2011). Guidelines and recommendations for River Information Services, Edition 3.0. Strasbourg, France: CCNR.

    Google Scholar 

  • CCNR. (2012). Possibilities for reducing fuel consumption and greenhouse gas emissions from inland navigation. Strasbourg, France: Central Commission for the Navigation of the Rhine.

    Google Scholar 

  • CCNR. (2013a). The inland navigation market in 2012. Market Observation No. 17.

    Google Scholar 

  • CCNR. (2013b). Vision 2018. Retrieved May 30, 2014, from http://www.vision-2018.org/pdf/VisionEN.pdf

  • CCNR, European Commission, & Panteia. (2014). The inland navigation market in 2013 and perspective for 2014/2015. Market Observation. Strasbourg, France.

    Google Scholar 

  • CE_Delft, Infras, & Fraunhofer ISI. (2011). External costs of transport in Europe: Update study for 2008. Delft, Netherlands: CE Delft.

    Google Scholar 

  • den Boer, E., Otten, M., & van Essen, H. (2011). STREAM International Freight 2011: Comparison of various transport modes on a EU scale with the STREAM database. Delft, Netherlands: CE Delft.

    Google Scholar 

  • EPA. (2012). Federal marine compression-ignition (CI) engines: Exhaust emission standards. Emission Standards Reference Guide, 2014. Retrieved December 18, 2013, from http://www.epa.gov/otaq/standards/nonroad/marineci.htm

  • EU. (2004). Directive 2004/ 26/EC of the European Parliament and of the Council of 21 April 2004 amending Directive 97/68/EC on the approximation of the laws of the Member States relating to measures against the emission of gaseous and particulate pollutants from internal combustion engines to be installed in non-road mobile machinery.

    Google Scholar 

  • EU. (2013). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the regions: Towards quality inland waterway transport—NAIADES II. Brussels, Belgium: European Commission.

    Google Scholar 

  • Euromot. (2013). Euromot comments on the Panteia Report of February 28th 2013.

    Google Scholar 

  • European Commission. (2013). EU launches clean fuel strategy. Brussels, Belgium.

    Google Scholar 

  • European Commission. (2014). Regulation of the European Parliament and of the Council on requirements relating to emission limits and type-approval for internal combustion engines for non-road mobile machinery. Brussels, Belgium: European Commission.

    Google Scholar 

  • Fuels. (2011). Future transport fuels: European expert group on future transport fuels.

    Google Scholar 

  • Hazeldine, T., Pridmore, A., & Nelissen, D. (2009). Technical options to reduce GHG for non-road transport modes. Paper 3 produced as part of contract ENV.C.3/SER/2008/0053 between European Commission Directorate-General Environment and AEA Technology plc. EU Transport GHG: Routes to 2050? Brussels, Belgium: European Commission.

    Google Scholar 

  • Hill, N., Branningan, C., Wynn, D., Milnes, R., Van Essen, H., Den Boer, E., et al. (2012). The role of GHG emissions from infrastructure construction, vehicle manufacturing, and ELVs in overall transport sector emissions. Brussels, Belgium: European Commission.

    Google Scholar 

  • IFEU. (2011). Ecological transport information tool for worldwide transports. IFEU Heidelberg, Öko-Institut, IVE/RMCON.

    Google Scholar 

  • IFEU, Öko-Institut, & IVE/RMCON. (2011). Ecological transport information tool for worldwide transports, methodology and data update. Retrieved October 13, 2012, from http://www.ecotransit.org/download/ecotransit_background_report.pdf

  • Knörr, W., Heidt, C., Schmiedt, M., & Notter, B. (2013). Aktualisierung der Emissionsberechnung für die Binnenschifffahrt und Übertragung der Daten in TREMOD. Heidelberg, ifeu—Institut für Energie- und Umweltforschung Heidelberg GmbH, INFRAS—Forschung und Beratung

    Google Scholar 

  • Kruse, C., Protopapas, A., Olson, L. E., & Bierling, D. H. (2009). Modal comparison of domestic freight transportation—Effects on the general public. College Station, TX: U.S. Maritime Administration and the National Waterways Foundation; Texas Transportation Institute, Center for Ports & Waterways, The Texas A&M University System.

    Google Scholar 

  • Mottschall, M., & Bergmann, T. (2013). Treibhausgas-Emissionen durch Infrastruktur und Fahrzeuge des Straßen-, Schienen- und Luftverkehrs sowie der Binnenschifffahrt in Deutschland—Arbeitspaket 4 des Projektes. Weiterentwicklung des Analyseinstrumentes Renewbility.

    Google Scholar 

  • Myhre, G., Schindell, D., BrÒon, F.-M., Collis, W., Fuglestvedt, J., Huang, J., et al. (2013). Anthropogenic and natural radiative forcing. In T. F.Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Baschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, England: Cambridge University Press.

    Google Scholar 

  • NEXTLOGIC. (2014). Towards reliable and competitive inland container shipping. H. Rotterdam.

    Google Scholar 

  • OECD/ITF. (2013). Global transport trends in perspective. Statistics brief—Trends in the Transport Sector. Paris: International Transport Forum, OECD.

    Google Scholar 

  • Panteia. (2013). Contribution to impact assessment of measures for reducing emissions of inland navigation. Retrieved from http://ec.europa.eu/transport/modes/inland/studies/doc/2013-06-03-contribution-to-impact-assessment-of-measures-for-reducing-emissions-of-inland-navigation.pdf

  • Pauli, G. (2010). Sustainable transport: A case study of Rhine navigation. Natural Resources Forum, 34, 18.

    Article  Google Scholar 

  • Pauli, G., & Schweighofer, J. (2008). Die Entwicklung der Abgasemissionen in der Binnenschifffahrt. Binnenschifffahrt—ZfB (9), 7.

    Google Scholar 

  • PLANCO. (2007). Verkehrswirtschaftlicher und ökologischer Vergleich der Verkehrsträger Straße, Bahn und Wasserstraße; Schlussbericht. Magdeburg, PLANCO Consulting GmbH, Essen, Bundesanstalt für Gewässerkunde, Koblenz.

    Google Scholar 

  • Renner, V., & Bialonski W. (2004). Technische und wirstschaftliche konzepte für flußangepaßte Binnenschiffe. Duisburg, Versuchsanstalt für Binnenschiffbau e.V.

    Google Scholar 

  • Riebe, E. (2014). Third progress report Rhine-Alpine core network corridor.

    Google Scholar 

  • Schweighofer, J. (2011). Parallel Workshop 2—Hydrodynamic measures to reduce the CO2 emissions from inland navigation. In Inland Navigation CO 2 emissions - How to measure them? How to reduce them? Strasbourg, France.

    Google Scholar 

  • TNO. (2010). Methodologies for estimating shipping emissions in the Netherlands. A documentation of currently used emission factors and related activity data (BOP Report). Netherlands Research Program on Particulate Matter.

    Google Scholar 

  • Van Essen, H., & den Boer, E. (2012). Assessment of external costs of inland waterway transport in the Marco Polo Calculator. Delft.

    Google Scholar 

  • WorldBank. (2009). Sustainable development of inland waterway transport in China (p. 105). Washington, DC: World Bank.

    Google Scholar 

  • Wurster, R., & Heidt, C. (2014). LNG als Alternativkraftstoff für den Antrieb von Schiffen und schweren Nutzfahrzeugen.

    Google Scholar 

  • Zöllner, J. (2009). Strömungstechnische Möglichkeiten zur Reduzierung des Kraftstoffverbrauchs und der CO 2 -emissionen von Binnenschiffen. Bonn, Germany: ZKR Kongress, Rheinschifffahrt und Klimawandel.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gernot Pauli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pauli, G. (2016). Emissions and Inland Navigation. In: Psaraftis, H. (eds) Green Transportation Logistics. International Series in Operations Research & Management Science, vol 226. Springer, Cham. https://doi.org/10.1007/978-3-319-17175-3_14

Download citation

Publish with us

Policies and ethics