Skip to main content

Cell Cycle Proteins and Retinal Degeneration: Evidences of New Potential Therapeutic Targets

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 854))

Abstract

During different forms of neurodegenerative diseases, including the retinal degeneration, several cell cycle proteins are expressed in the dying neurons from Drosophila to human revealing that these proteins are a hallmark of neuronal degeneration. This is true for animal models of Alzheimer’s, and Parkinson’s diseases, Amyotrophic Lateral Sclerosis and for Retinitis Pigmentosa as well as for acute injuries such as stroke and light damage. Longitudinal investigation and loss-of-function studies attest that cell cycle proteins participate to the process of cell death although with different impacts, depending on the disease. In the retina, inhibition of cell cycle protein action can result to massive protection. Nonetheless, the dissection of the molecular mechanisms of neuronal cell death is necessary to develop adapted therapeutic tools to efficiently protect photoreceptors as well as other neuron types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berta AI, Boesze-Battaglia K, Genini S et al (2011) Photoreceptor cell death, proliferation and formation of hybrid rod/S-cone photoreceptors in the degenerating STK38L mutant retina. PloS ONE 6:e24074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatoo W, Abdouh M, David J et al (2009) The polycomb group gene Bmi1 regulates antioxidant defenses in neurons by repressing p53 pro-oxidant activity. J Neurosci 29:529–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrup K, Yang Y (2007) Cell cycle regulation in the postmitotic neuron: oxymoron or new biology? Nat Rev Neurosci 8:368–378

    Article  CAS  PubMed  Google Scholar 

  • Hindley C, Philpott A (2012) Co-ordination of cell cycle and differentiation in the developing nervous system. Biochem J 444:375–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoglinger GU, Breunig JJ, Depboylu C et al (2007) The pRb/E2F cell-cycle pathway mediates cell death in Parkinson’s disease. Proc Natl Acad Sci U S A 104:3585–3590

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacobs JJ, Kieboom K, Marino S et al (1999) The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397:164–168

    Article  CAS  PubMed  Google Scholar 

  • Khurana V, Lu Y, Steinhilb ML et al (2006) TOR-mediated cell-cycle activation causes neurodegeneration in a drosophila tauopathy model. Curr Biol 16:230–241

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Cao L, Chen J et al (2009) Bmi1 regulates mitochondrial function and the DNA damage response pathway. Nature 459:387–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng S, Luo M, Sun H et al (2010) Identification and characterization of Bmi-1-responding element within the human p16 promoter. J Biol Chemistry 285:33219–33229

    Article  CAS  Google Scholar 

  • Menu dit Huart L, Lorentz O, Goureau O et al (2004) DNA repair in the degenerating mouse retina. Mol Cell Neurosci 26:441–449

    Article  CAS  PubMed  Google Scholar 

  • Moldovan GL, Pfander B, Jentsch S (2007) PCNA, the maestro of the replication fork. Cell 129:665–679

    Article  CAS  PubMed  Google Scholar 

  • Nguyen MD, Boudreau M, Kriz J et al (2003) Cell cycle regulators in the neuronal death pathway of amyotrophic lateral sclerosis caused by mutant superoxide dismutase 1. J Neurosci 23:2131–2140

    CAS  PubMed  Google Scholar 

  • Osuga H, Osuga S, Wang F et al (2000) Cyclin-dependent kinases as a therapeutic target for stroke. Proc Natl Acad Sci U S A 97:10254–10259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu D, Rashidian J, Mount MP et al (2007) Role of Cdk5-mediated phosphorylation of Prx2 in MPTP toxicity and Parkinson’s disease. Neuron 55:37–52

    Article  CAS  PubMed  Google Scholar 

  • Rashidian J, Iyirhiaro G, Aleyasin H et al (2005) Multiple cyclin-dependent kinases signals are critical mediators of ischemia/hypoxic neuronal death in vitro and in vivo. Proc Natl Acad Sci U S A 102:14080–14085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahaboglu A, Paquet-Durand O, Dietter J et al (2013) Retinitis pigmentosa: rapid neurodegeneration is governed by slow cell death mechanisms. Cell Death Dis 4:e488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sancho-Pelluz J, Arango-Gonzalez B, Kustermann S et al (2008) Photoreceptor cell death mechanisms in inherited retinal degeneration. Mol Neurobiol 38:253–269

    Article  CAS  PubMed  Google Scholar 

  • Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J Cell Physiol 182:311–322

    Article  CAS  PubMed  Google Scholar 

  • Vincent I, Jicha G,Rosado M et al (1997) Aberrant expression of mitotic cdc2/cyclin B1 kinase in degenerating neurons of Alzheimer’s disease brain. J Neurosci 17:3588–3598

    CAS  PubMed  Google Scholar 

  • Yefimova MG, Messaddeq N, Karam A et al (2010) Polyglutamine toxicity induces rod photoreceptor division, morphological transformation or death in spinocerebellar ataxia 7 mouse retina. Neurobiol Dis 40:311–324

    Article  CAS  PubMed  Google Scholar 

  • Zencak D, Schouwey K, Chen D et al (2013) Retinal degeneration depends on Bmi1 function and reactivation of cell cycle proteins. Proc Natl Acad Sci U S A 110:E593–E601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Li H, Herrup K (2010) Cdk5 nuclear localization is p27-dependent in nerve cells: implications for cell cycle suppression and caspase-3 activation. J Biol Chem 285:14052–14061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Ackowledgements

I thank Martial K. Mbefo for fruitful discussions. This work was supported by the Swiss National Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvan Arsenijevic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Arsenijevic, Y. (2016). Cell Cycle Proteins and Retinal Degeneration: Evidences of New Potential Therapeutic Targets. In: Bowes Rickman, C., LaVail, M., Anderson, R., Grimm, C., Hollyfield, J., Ash, J. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 854. Springer, Cham. https://doi.org/10.1007/978-3-319-17121-0_49

Download citation

Publish with us

Policies and ethics