Skip to main content

Precision Nitrogen Management for Sustainable Corn Production

  • Chapter
Sustainable Agriculture Reviews

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 16))

Abstract

Nitrogen (N) management in corn (Zea mays L.) production is a challenge for economic, agronomic and environmental reasons. Recovery of N by crops grown under most cropping systems is low. The inefficient use of N fertilizer represents approximately $680 million to $1 billion of direct economic losses annually for Canadian farmers alone. In humid environments such as northeast USA and eastern Canada, corn yield response to N amendments is poorly correlated with soil mineral N content before planting because of great spatial and temporal variability. Therefore it is important to develop new technologies for precision N management. In this chapter we have reviewed the major achievements in N dynamics in a soil-crop-atmosphere continuum, with emphasis on technologies developed for precision N management for sustainable corn production.

Adoption of improved N management practices in corn production can increase both grain yield and N use efficiency (NUE) as well as minimizing N loading of the environment. Corn growth and development is driven by heat, which can be expressed as growing degree days or crop heat units. It takes about 6 weeks for a corn crop to reach quick growth stage. Excess N in the soil after preplant fertilizer application is subjected to leaching, run-off or emission losses, as N uptake during this part of the corn crop life cycle accounts for less than 15 % of plant total N. Up to date research indicates that it is of critical importance to understand the physiological mechanisms of crop NUE. This includes N uptake, translocation, remobilization and its relationship with grain yield which will maximize productivity and profitability as well as minimize N loading of the environment. An optimization between grain yield and NUE through precision N management is physiologically possible and practically achievable for sustainable corn production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CHU:

Crop heat units

NRF:

Grain N removal factor

EORN:

Economically optimum rate of nitrogen

FIE:

Fertilizer-induced emission

GDD:

Growing degree days

GTI:

Generalized thermal units

LAI:

Leaf area index

MRMR:

Minnesota relative maturity rating (days)

NDVI:

Normalized difference vegetation index

NHI:

Nitrogen harvest index

NIE:

Nitrogen internal efficiency

NRE:

Nitrogen recovery efficiency

NUE:

Nitrogen use efficiency

SI:

Saturation index

TAN:

Total ammoniacal nitrogen

VRA:

Variable rate application

References

  • Adviento-Borbe MAA, Haddix ML, Binder DL et al (2007) Soil greenhouse gas fluxes and global warming potential in four high-yielding maize systems. Glob Change Biol 13:1972–1988

    Article  Google Scholar 

  • Akmal M, Janssens MJJ (2004) Productivity and light use efficiency of perennial rye grass with contrasting water and nitrogen supplies. Field Crops Res 88:143–155

    Article  Google Scholar 

  • Andraski TW, Bundy LG (2002) Using the pre-sidedress soil nitrate test and organic nitrogen crediting to improve corn nitrogen recommendations. Agron J 94:1411–1418

    Article  Google Scholar 

  • Andraski TW, Bundy LG, Brye KR (2000) Crop management and corn nitrogen rate effects on nitrate leaching. J Environ Qual 29:1095–1103

    Article  CAS  Google Scholar 

  • Bandel VA, Dzienia S, Stanford G (1980) Comparison of N fertilizers for no-till corn. Agron J 72:337–341

    Article  CAS  Google Scholar 

  • Bausch WC, Duke HR (1996) Remote sensing of plant nitrogen status in corn. Am Soc Agric Eng 39:1869–1875

    Article  Google Scholar 

  • Beauchamp EG, Kay BD, Pararajasingham R (2004) Soil tests for predicting the N requirement of corn. Can J Soil Sci 84:103–113

    Article  Google Scholar 

  • Benedict HM, Swidler R (1961) Nondestructive method for estimating chlorophyll content of leaves. Science 133:2015–2016

    Article  CAS  PubMed  Google Scholar 

  • Binder DL, Sander DH, Walters DT (2000) Maize response to time of nitrogen application as affected by level of nitrogen deficiency. Agron J 92:1228–1236

    Article  CAS  Google Scholar 

  • Blackmer TM, Schepers JS, Varvel GE (1994) Light reflectance compared with other nitrogen stress measurements in corn leaves. Agron J 86:934–938

    Article  Google Scholar 

  • Brown DM, Bootsma A (1993) Crop heat units for corn and other warm-season crops in Ontario. Ontario Ministry of Agriculture and Food Factsheet, Agdex 111/31, Toronto, ON, Canada

    Google Scholar 

  • Campbell CA, Jame YW, Winkleman GE (1984) Mineralization rate constants and their use for estimating nitrogen mineralization in some Canadian prairie soils. Can J Soil Sci 64:333–343

    Article  Google Scholar 

  • Cassman KG, Dobermann A, Walters DT (2002) Agroecosystems, nitrogen-use efficiency and nitrogen management. Ambio 31:132–140

    PubMed  Google Scholar 

  • Cassman KG, Dobermann A, Walters DT, Yang H (2003) Meeting cereal demand while protecting natural resources and improving environmental quality. Ann Rev Environ Resour 28:315–358

    Article  Google Scholar 

  • Chantigny MH, Prévost D, Angers DA et al (1998) Nitrous oxide production in soils cropped to corn with varying N fertilization. Can J Soil Sci 78:589–596

    Article  CAS  Google Scholar 

  • Chantigny MH, Rochette P, Angers DA et al (2004) Ammonia volatilization and selected soil characteristics following application of anaerobically digested pig slurry. Soil Sci Soc Am J 68:306–312

    Article  CAS  Google Scholar 

  • Clay DE, Malzer GL, Anderson JL (1990) Ammonia volatilization from urea as influenced by soil temperature, soil water content, and nitrification and hydrolysis inhibitors. Soil Sci Soc Am J 54:263–266

    Article  Google Scholar 

  • Cohn MD, Hummel JW, Brouer BH (1994) Spatial analysis of soil fertility for site specific crop management. Soil Sci Soc Am J 58:1240–1248

    Article  Google Scholar 

  • Cole CV, Duxbury J, Freney J et al (1997) Global estimates of potential mitigation of greenhouse gas emissions by agriculture. Nutr Cycl Agroecosys 49:221–228

    Article  CAS  Google Scholar 

  • Daughtry CST, Walthall CL, Kim MS et al (2000) Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens Environ 74:229–239

    Article  Google Scholar 

  • Davis JG, Malzer GL, Copeland PJ et al (1996) Precision agriculture. In: Proceedings of 3rd international conference, Minneapolis, 23–26 June 1996, p 513

    Google Scholar 

  • De Jong R, Yang JY, Drury CF et al (2007) The indicator of risk of water contamination by nitrate-nitrogen. Can J Soil Sci 87(Special Issue):179–188. doi:10.4141/S06-060

    Article  Google Scholar 

  • Dharmakeerthi RS, Kay BD, Beauchamp EG (2005) Factors contributing to changes in plant available nitrogen across a variable landscape. Soil Sci Soc Am J 69:453–462

    Article  CAS  Google Scholar 

  • Dinnes DL, Karlen DL, Jaynes DB et al (2002) Nitrogen management strategies to reduce nitrate leaching in tile-drained midwestern soils. Agron J 94:153–171

    Article  Google Scholar 

  • Dwyer LM, Tollenaar M, Houwing L (1991) A nondestructive method to monitor leaf greenness in corn. Can J Plant Sci 71:505–509

    Article  Google Scholar 

  • Dwyer LM, Anderson AM, Ma BL et al (1995a) Quantifying the nonlinearity in chlorophyll meter response to corn leaf nitrogen concentration. Can J Plant Sci 75:179–182

    Article  Google Scholar 

  • Dwyer LM, Anderson AM, Stewart DW et al (1995b) Changes in maize hybrid photosynthetic response to leaf nitrogen pre-anthesis to grain fill. Agron J 87:1221–1225

    Article  Google Scholar 

  • Dwyer LM, Stewart DW, Carrigan L et al (1999a) A general thermal index for maize. Agron J 91:940–946

    Article  Google Scholar 

  • Dwyer LM, Stewart DW, Carrigan L et al (1999b) Guidelines for comparisons among different corn maturity rating systems. Agron J 91:946–949

    Article  Google Scholar 

  • Dwyer LM, Ma BL, Ying J, Topp CG (2005) A method to identify seedbed conditions limiting maize stand establishment. Can J Plant Sci 85:343–350

    Article  Google Scholar 

  • Eghball B, Varvel GE (1997) Fractal analysis of temporal yield variability of crop sequences: implications for site-specific management. Agron J 89:851–855

    Article  Google Scholar 

  • Eghball B, Schepers JS, Negahban M, Schlemmer MR (2003) Spatial and temporal variability of soil nitrate and corn yield: multifractal analysis. Agron J 95:339–346

    Article  Google Scholar 

  • Fageria NK, Baligar VC (2005) Enhancing nitrogen use efficiency in crop plants. Adv Agron 88:97–185

    Article  CAS  Google Scholar 

  • FAO (2014) Food and Agriculture Organization of the United Nations: summary outlook for key grains and oilseeds. Downloaded from http://www.igc.int/en/downloads/gmrsummary/gmrsumme.pdf? Accessed 1 Sept 2014

  • Fenn LB, Hossner LR (1985) Ammonia volatilization from ammonium or ammonium-forming nitrogen fertilizers. Adv Soil Sci 1:123–169

    Article  CAS  Google Scholar 

  • Fenn LB, Kissel DE (1974) Ammonia volatilization from surface application of ammonium compounds on calcareous soils: II. Effects of temperature and rate of ammonium nitrogen application. Soil Sci Soc Am Proc 38:606–610

    Article  CAS  Google Scholar 

  • Ferguson RB, Shapiro CA, Hergert GW et al (1991) Nitrogen and irrigation management practices to minimize nitrate leaching from irrigated corn. J Prod Agric 4:186–192

    Article  Google Scholar 

  • Ferguson RB, Hergert GW, Schepers JS et al (2002) Site-specific nitrogen management of irrigated maize: yield and soil residual nitrate effects. Soil Sci Soc Am J 66:544–553

    Article  CAS  Google Scholar 

  • Filella I, Serrano L, Serra J, Peñuelas J (1995) Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. Crop Sci 35:1400–1405

    Article  Google Scholar 

  • Fisher WB, Parks WL (1958) Influence of soil temperature on urea hydrolysis and subsequent nitrification. Soil Sci Soc Proc 22:247–248

    Article  CAS  Google Scholar 

  • Foth HD (1977) Soil fertility, 2nd edn. Press Inc, New York, pp 115–124

    Google Scholar 

  • Fox RH, Kern JM, Piekkielek WP (1986) Nitrogen fertilizer sources, and methods and time of application effects on no-till corn yields and nitrogen uptakes. Agron J 78:741–746

    Article  Google Scholar 

  • Francis DD, Schepers JS, Vigil MF (1993) Post-anthesis nitrogen loss from corn. Agron J 85:659–663

    Article  CAS  Google Scholar 

  • Gehl RJ, Schmidt JP, Godsey CB et al (2006) Post-harvest soil nitrate in irrigated corn: variability among eight field sites and multiple nitrogen rates. Soil Sci Soc Am J 70:1922–1931

    Article  CAS  Google Scholar 

  • Giunta F, Pruneddu G, Motzu R (2009) Radiation interception and biomass and nitrogen. Field Crops Res 110:76–84

    Article  Google Scholar 

  • Grant L (1987) Diffuse and specular characteristics of leaf reflectance. Remote Sens Environ 22:309–322

    Article  Google Scholar 

  • Gregorich EG, Rochette P, VandenBygaart AJ, Angers DA (2005) Greenhouse gas contributions of agricultural soils and potential mitigation practices in Eastern Canada. Soil Till Res 83:53–72

    Article  Google Scholar 

  • Helgason BL, Janzen HH, Chantigny MH et al (2005) Toward improved coefficients for predicting direct N2O emissions from soil in Canadian agroecosystems. Nutr Cycl Agroecosys 72:87–99

    Article  CAS  Google Scholar 

  • Hillier J, Hawes C, Squire G et al (2009) The carbon footprint of food crop production. Int J Agric Sustain 7:107–118

    Article  Google Scholar 

  • Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58:2369–2387

    Article  CAS  PubMed  Google Scholar 

  • Hutchison WD, Burkness EC, Mitchell PD et al (2010) Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science 330:222–225

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2007) Intergovernmental Panel on Climate Change Climate Change 2007: synthesis report. An assessment of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, p 52

    Google Scholar 

  • IPNI (2014) International Plant Nutrition Institute – nitrogen notes. Downloaded from http://www.ipni.net/publication/nitrogen-en.nsf/book/7F7F448C4D064A5985257C13004C83A3/$FILE/NitrogenNotes-EN-04.pdf. Accessed 1 Sept 2014

  • James C (2009) Global status of commercialized biotech/GM crops: 2009. ISAAA brief no. 41. ISAAA, Ithaca

    Google Scholar 

  • Jones RJ, Gengenback BG, Cardwell VB (1981) Temperature effects on in vitro kernel development of maize. Agron J 21:761–766

    Google Scholar 

  • Keeney D (1986) Sources of nitrate to ground water. CRC Crit Rev Environ Control 16:257–304

    Article  CAS  Google Scholar 

  • Keeney DR, Nelson DW (1982) Nitrogen-inorganic forms. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. Part 2. Chemical and microbiological properties, vol 9, 2nd edn, Agronomy. Agronomy Society of America and Soil Science Society of America, Madison, pp 643–698

    Google Scholar 

  • Kitchen NR, Kanwar SR (1995) On-the-go changes in fertilizer rates to agree with claypan productivity. In: Clean water, clean environment, 21st century: team agriculture, working to protect water resources: conference proceedings, Kansas City, 5–8 Mar 1995, pp 103–106

    Google Scholar 

  • Kumar R, Silva L (1973) Light ray tracing through a leaf cross-section. Appl Optics 12:2950–2954

    Article  CAS  Google Scholar 

  • Lancashire PD, Bleiholder H, Boom TVD et al (1991) A uniform decimal code for growth stages of crops and weeds. Ann Appl Biol 119:561–601

    Article  Google Scholar 

  • Lauer JG, Wedberg J (1999) Grain yield of initial Bt corn hybrid introductions to farmers in the northern corn belt. J Prod Agric 12:327–376

    Article  Google Scholar 

  • Liang BL, Mackenzie AF (1994) Corn yield, nitrogen uptake and nitrogen use efficiency as influenced by nitrogen fertilization. Can J Soil Sci 74:235–240

    Article  CAS  Google Scholar 

  • Ma BL, Biswas DK (2015) Field-level comparison of nitrogen rates and application methods on maize yield, grain quality and nitrogen use efficiency in a humid environment. J Plant Nutr 38 (in press)

    Google Scholar 

  • Ma BL, Dwyer LM (1998) Nitrogen uptake and utilization of two contrasting maize hybrids differing in leaf senescence. Plant Soil 199:283–291

    Article  CAS  Google Scholar 

  • Ma BL, Dwyer LM (1999) Within plot variability in available soil mineral N in relation to leaf greenness and yield. Commun Soil Sci Plant Anal 30:1919–1928

    Article  CAS  Google Scholar 

  • Ma BL, Subedi KD (2005) Yield, grain moisture content and nitrogen use of Bt corn hybrids and their conventional near-isolines. Field Crops Res 93:199–211

    Article  Google Scholar 

  • Ma BL, Morrison MJ, Voldeng HD (1995) Leaf greenness and photosynthetic rate in soybean. Crop Sci 35:1411–1414

    Article  Google Scholar 

  • Ma BL, Morrison MJ, Dwyer LM (1996) Canopy light reflectance and field greenness to assess nitrogen fertilization and yield of maize. Agron J 88:915–920

    Article  Google Scholar 

  • Ma BL, Dwyer LM, Gregorich EG (1999a) Soil nitrogen amendment effects on seasonal nitrogen mineralization and nitrogen cycling in maize production. Agron J 91:1003–1009

    Article  Google Scholar 

  • Ma BL, Dwyer LM, Gregorich EG (1999b) Soil nitrogen amendment effects on nitrogen uptake and grain yield of maize. Agron J 91:650–656

    Article  Google Scholar 

  • Ma BL, Li M, Dwyer LM, Stewart G (2004) Effect of in-season application methods of fertilizer nitrogen on grain yield and nitrogen use efficiency in maize. Can J Soil Sci 84:169–176

    Article  CAS  Google Scholar 

  • Ma BL, Subedi KD, Costa C (2005) Comparison of crop-based indicators with soil nitrate test for corn nitrogen management. Agron J 97:462–471

    Article  CAS  Google Scholar 

  • Ma BL, Subedi KD, Liu A (2006) Variations in grain nitrogen removal associated with management practices in corn production. Nutr Cycl Agroecosyst 76:67–80

    Article  Google Scholar 

  • Ma BL, Subedi KD, Zhang TQ (2007) Pre-sidedress nitrate test and other crop-based indicators for fresh market and processing sweet corn. Agron J 99:174–183

    Article  CAS  Google Scholar 

  • Ma BL, Meloche F, Wei L (2009) Agronomic assessment of Bt trait and seed or soil-applied insecticides on the control of corn rootworm and yield. Field Crops Res 111:189–196

    Article  Google Scholar 

  • Ma BL, Wu TY, Tremblay N et al (2010a) Rate and timing effects of fertilizer nitrogen application to corn on ammonia volatilization in cool and humid regions. Agron J 102:134–144

    Article  CAS  Google Scholar 

  • Ma BL, Wu TY, Tremblay N et al (2010b) Nitrous oxide fluxes from corn fields: On-farm assessment of the amount and timing of nitrogen fertilizer. Glob Chang Biol 16:156–170

    Article  Google Scholar 

  • Ma BL, Wu TY, Shang JL (2014) On-farm comparison of variable rates of nitrogen with uniform application to maize on canopy reflectance, soil nitrate and grain yield. J Plant Nutr Soil Sci 177:216–226

    Article  CAS  Google Scholar 

  • Ma BL, Liang BC, Biswas DK, Morrison MJ, McLaughlin NB (2012) The carbon footprint of maize production as affected by nitrogen fertilizer and maize-legume rotations. Nutr Cycl Agroecosyst 94:15–31

    Article  CAS  Google Scholar 

  • MacKenzie AF, Fan MX, Cadrin F (1998) Nitrous oxide emission in three years as affected by tillage, corn-soybean-alfalfa rotations, and nitrogen fertilization. J Environ Qual 27:698–703

    Article  CAS  Google Scholar 

  • Magdoff FR, Ross D, Amadon J (1984) A soil test for nitrogen availability to corn. Soil Sci Soc Am J 48:1301–1304

    Article  Google Scholar 

  • Malhi SS, McGill WB (1982) Nitrification in three Alberta soils: effect of temperature, moisture and substrate concentration. Soil Biol Biochem 14:393–399

    Article  CAS  Google Scholar 

  • Malhi SS, Nyborg M, Solberg ED (1996) Influence of source, method of placement and simulated rainfall on the recovery of 15N-labelled fertilizers under zero tillage. Can J Soil Sci 76:93–100

    Article  CAS  Google Scholar 

  • Mamo M, Malzer GL, Mulla DL et al (2003) Spatial and temporal variation in economically optimum nitrogen rate for corn. Agron J 95:958–964

    Article  Google Scholar 

  • Markwell J, Osterman JC, Mitchell JL (1995) Calibration of the Minolta SPAD-502 leaf chlorophyll meter. Photosyn Res 46:467–472

    Article  CAS  PubMed  Google Scholar 

  • McMurtrey JE, Chappelle EW, Kim MS et al (1996) Blue-green fluorescence and visible-infrared reflectance of corn (Zea mays L.) grain for in situ field detection of nitrogen supply. J Plant Physiol 148:509–514

    Article  Google Scholar 

  • Miao YD, Mulla DJ, Hennandez JA et al (2007) Potential impact of precision N management on corn yield, protein content and test weight. Soil Sci Soc Am J 71:1490–1499

    Article  CAS  Google Scholar 

  • Moll RH, Kamprath EJ, Jackson WA (1982) Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron J 74:562–564

    Article  Google Scholar 

  • Monteith JL (1977) Climate and the efficiency of crop production in Britain. Philos Transact Royal Soc 281:277–294

    Article  Google Scholar 

  • Muchow RC (1998) Nitrogen utilization efficiency in corn and sorghum. Field Crops Res 56:209–216

    Article  Google Scholar 

  • Otegui ME, Andrade FH, Suero EE (1995) Growth, water use and kernel abortion of maize suspected to drought at silking. Field Crop Res 40:87–94

    Article  Google Scholar 

  • Pacholski A, Cai G, Nieder R et al (2006) Calibration of a simple method for determining ammonia volatilization in the field – comparative measurements in Henan Province, China. Nutr Cylc Agroecosys 74:259–273

    Article  CAS  Google Scholar 

  • Peterson RH, Hicks DR (1973) Minnesota relative maturity rating of corn hybrids. Agron J. no. 27. University of Minnesota Agricultural Extension Service, St. Paul

    Google Scholar 

  • Peterson TA, Blackmer TM, Francis DD, Schepers JS (1993) Using a chlorophyll meter to improve N management. A web-guide in soil resource management: D-13, fertility. Cooperative Extension, Institute of Agriculture and Natural Resources, University of Nebriska, Lincokn

    Google Scholar 

  • Piekkielek WP, Fox RH (1992) Use of a chlorophyll meter to predict sidedress nitrogen. Agron J 84:59–65

    Article  Google Scholar 

  • Power JF, Wiese R, Flowerday D (2001) Managing farming systems for nitrate control: a research review from management systems evaluation areas. J Environ Qual 30:1866–1880

    Article  CAS  PubMed  Google Scholar 

  • Rambo L, Ma BL, Xiong Y, da Silvia PRF (2010) Leaf and canopy optical characteristics as crop-need based indicators for field nitrogen management in corn. J Plant Nutr Soil Sci 173:434–443

    Article  CAS  Google Scholar 

  • Raun W, Johnson GV (1999) Improving nitrogen use efficiency for cereal production. Agron J 91:357–363

    Article  Google Scholar 

  • Raun WR, Solie JB, Johnson GV et al (2002) Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agron J 94:815–820

    Article  Google Scholar 

  • Ritchie SW, Hanway JJ, Benson GO (1993) How a corn plant develops. Iowa Cooperative Extension Service report. Iowa State University of Science and Technology, and the United States Department of Agriculture, Ames, Iowa, p 48

    Google Scholar 

  • Robertson GP, Paul EA, Harwood RR (2000) Greenhouse gases in intensive agriculture: contribution of individual gases to the radiative forcing of the atmosphere. Science 289:1922–1925

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez D, Fitzgerald GJ, Belford R, Christensen LK (2006) Detection of nitrogen deficiency in wheat from spectral reflectance indices and basic crop eco-physiological concepts. Aust J Agric Res 57:781–789

    Article  CAS  Google Scholar 

  • Roth GW, Beegle DB, Bohn PJ (1992) Field evaluation of a pre-sidedress soil nitrate test and quick test for corn in Pennsylvania. J Prod Agric 5:476–481

    Article  Google Scholar 

  • Russell WA (1991) Genetic improvement in maize yields. Adv Agron 46:245–298

    Article  Google Scholar 

  • Scharf PC, Lory JA (2009) Calibrating reflectance measurements to predict optimal sidedress nitrogen rate for corn. Agron J 101:615–625

    Article  CAS  Google Scholar 

  • Scharf PC, Wiebold WJ, Lory JA (2002) Corn yield response to nitrogen fertilizer timing and deficiency level. Agron J 94:435–441

    Article  Google Scholar 

  • Scharf PC, Shannon DK, Palm HL et al (2011) Sensor-based nitrogen applications out-performed producer-chosen rates for corn in on-farm demonstrations. Agron J 103:1683–1691

    Article  Google Scholar 

  • Schlegel AJ, Havlin JL (1995) Corn response to long term nitrogen and phosphorus fertilization. J Prod Agric 8:181–185

    Article  Google Scholar 

  • Schmidt JP, DeJoia AJ, Ferguson RB et al (2002) Crop yield response to nitrogen at multiple in-field locations. Agron J 94:798–806

    Article  Google Scholar 

  • Seydou BT, Carlson RE, Pilcher CD, Rice ME (2000) Bt and non-Bt maize growth and development as affected by temperature and drought stress. Agron J 92:1027–1035

    Article  Google Scholar 

  • Shahandeh H, Wright AL, Hons FM, Lascano RJ (2005) Spatial and temporal variation of soil nitrogen parameters related to soil texture and corn yield. Agron J 97:772–782

    Article  Google Scholar 

  • Shanahan JF, Schepers JS, Francis DD et al (2001) Use of remote sensing imagery to estimate corn grain yield. Agron J 93:583–589

    Article  Google Scholar 

  • Shanahan JF, Kitchen NR, Raun WR, Schepers JS (2008) Responsive in-season nitrogen management for cereals. Comput Electron Agric 61:51–62

    Article  Google Scholar 

  • Sinclair TR, Muchow RC (1999) Radiation use efficiency. Adv Agron 65:215–265

    Article  Google Scholar 

  • Smith KA, McTaggart IP, Dobbie KE, Conen F (1998) Emissions of N2O from Scottish agricultural soils as a function of fertilizer N. Nutr Cycl Agroecosys 52:123–130

    Article  CAS  Google Scholar 

  • Solari F, Shanahan JF, Ferguson RB et al (2008) Active sensor reflectance measurements of corn nitrogen status and yield potential. Agron J 100:571–579

    Article  CAS  Google Scholar 

  • Solari F, Shanahan JF, Ferguson RB, Adamchuk VI (2010) An active sensor algorithm for corn nitrogen recommendations based on a chlorophyll meter algorithm. Agron J 102:1090–1098

    Article  Google Scholar 

  • Solie JB, Raun WR, Stone M (1999) Submeter spatial variability of selected soil and bermudagrass production variables. Soil Sci Soc Am J 63:1724–1733

    Article  CAS  Google Scholar 

  • Sommer SG, Schjoerring JK, Denmead OT (2004) Ammonia emission from mineral fertilizers and fertilized crops. Adv Agron 82:557–621

    Article  CAS  Google Scholar 

  • Sripada RP, Schmidt JP, Dellinger AE, Beegle DB (2008) Evaluating multiple indices from a canopy reflectance sensor to estimate corn N requirements. Agron J 100:1553–1561

    Article  CAS  Google Scholar 

  • Stanger TF, Lauer JG (2006) Optimum plant population of Bt and non-Bt corn in Wisconsin. Agron J 98:921–931

    Article  Google Scholar 

  • Statistics Canada (2014) Corn: Canada’s third most valuable crop. Downloaded from http://www.statcan.gc.ca/pub/96-325-x/2014001/article/11913-eng.htm. Accessed 1 Sept 2014

  • Subedi KD, Ma BL (2007) Dry matter and nitrogen partitioning patterns in Bt and non-Bt near-isoline maize hybrids. Crops Sci 47:1186–1192

    Article  CAS  Google Scholar 

  • Subedi KD, Ma BL (2009) Assessment of the major yield limiting factors of maize production in a humid temperate environment. Field Crops Res 110:21–26

    Article  Google Scholar 

  • Subedi KD, Ma BL, Smith DL (2006) Response of a leafy and non-leafy maize hybrids to population densities and fertilizer nitrogen levels. Crop Sci 46:1860–1869

    Article  Google Scholar 

  • Thomas JR, Gausman HW (1977) Leaf reflectance vs. leaf chlorophyll and carotenoid concentrations for eight crops. Agron J 69:799–802

    Article  CAS  Google Scholar 

  • Thomas JR, Oerther GF (1972) Estimating nitrogen content of sweet pepper leaves by reflectance measurements. Agron J 64:11–13

    Article  Google Scholar 

  • Thomas JR, Namken LN, Oerther GF, Brown RG (1971) Estimating leaf water content by reflectance measurements. Agron J 63:845–847

    Article  Google Scholar 

  • Tilling AK, O’Leary GJ, Ferwerda JG et al (2007) Remote sensing of nitrogen and water stress in wheat. Field Crop Res 104:77–85

    Article  Google Scholar 

  • Tollenaar M, Lee EA (2002) Yield potential, yield stability and stress tolerance in maize. Field Crop Res 75:161–170

    Article  Google Scholar 

  • Tollenaar M, Wu J (1999) Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Sci 39:1597–1604

    Article  Google Scholar 

  • Touchton JT, Hargrove WL (1982) Nitrogen sources and methods of application for no-tillage corn production. Agron J 74:823–826

    Article  Google Scholar 

  • USDA (2014) National Agricultural Statistics Services – USDA forecasts record-high corn and soybean production in 2014 cotton production also up from 2013. Download from http://www.nass.usda.gov/Newsroom/2014/08_12_2014.asp. Accessed 1 Sept 2014

  • Vlek PLG, Carter MF (1983) The effect of soil environment and fertilizer modifications on the rate of urea hydrolysis. Soil Sci 136:56–63

    Article  CAS  Google Scholar 

  • Vyn TJ, Janovicek KJ, Miller MH, Beauchamp EG (1999) Soil nitrate and crop response to proceeding small grain fertilization and cover crops. Agron J 91:17–24

    Article  Google Scholar 

  • Wang JY (1960) A critique of the heat unit approach to plant response studies. Ecology 4:785–790

    Article  Google Scholar 

  • Wang Z, Gao R, Ma BL (2014) Concurrent improvement in maize yield and nitrogen use efficiency with integrated agronomic management strategies. Agron J 106:1243–1250

    Article  CAS  Google Scholar 

  • Wang Z, Ma BL, Gao R, Sun J (2015) Effects of different management systems on root distribution of maize. Can J Plant Sci 95:21–28

    Article  Google Scholar 

  • Wiatrak PJ, Wright DL, Marois JJ, Wilson D (2005) Influence of planting date on aflatoxin accumulation in Bt, non-Bt, and tropical non-Bt hybrids. Agron J 97:440–445

    Article  CAS  Google Scholar 

  • Wu TY, Ma BL, Liang BC (2008) Quantification of seasonal soil nitrogen mineralization for corn production in eastern Canada. Nutr Cycl Agroecosyst 81:279–290

    Article  Google Scholar 

  • Yanni S, Whalen JK, Ma BL (2011) Field-grown Bt and non-Bt corn: yield, chemical composition, and decomposability. Agron J 103:486–493

    Article  CAS  Google Scholar 

  • Ying J, Lee EA, Tollenaar M (2000) Response of maize leaf photosynthesis to low temperature during the grain-filling period. Field Crops Res 68:87–96

    Article  Google Scholar 

  • Ying J, Lee EA, Tollenaar M (2002) Response of leaf photosynthesis during the grain-filling period of maize to duration of cold exposure, acclimation and incident PPFD. Crop Sci 42:1164–1172

    Article  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

  • Zebarth BJ, Rochette P, Burton DL, Price M (2008) Effect of fertilizer nitrogen management on N2O emissions in commercial corn fields. Can J Soil Sci 88:189–195

    Article  CAS  Google Scholar 

  • Zhu B, Ma BL (2011) Genetically-modified crop production in Canada: agronomic, ecological and environmental considerations. Am J Plant Sci Biotechnol 5:90–97

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-Luo Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Her Majesty the Queen in Right of Canada 2015

About this chapter

Cite this chapter

Ma, BL., Biswas, D.K. (2015). Precision Nitrogen Management for Sustainable Corn Production. In: Lichtfouse, E., Goyal, A. (eds) Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-16988-0_2

Download citation

Publish with us

Policies and ethics