Skip to main content

Drought and Salt Stress in Cereals

  • Chapter
Sustainable Agriculture Reviews

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 16))

Abstract

Abiotic stresses, such as salinity, drought, extreme temperatures, chemical toxicity and oxidative stress represent a grave threat to agriculture dramatically affecting the crop production around the world. Climate changes are projected to have a significant impact on temperature and precipitation profiles increasing the incidence and severity of climate changes-related stresses and reducing in particular the productivity of rain-fed crops. In fact, drought and salinity stresses determine the primary cause of worldwide crop loss. Plant adaptation to environmental stresses is based on the activation of molecular networks involved in stress perception, signal transduction, and expression of specific stress-related genes and metabolites. Plants respond to the stresses in part by modulating gene expression in order to restore cellular homeostasis, detoxifying the toxins present into the cells and through the recovery of growth.

In present chapter the physiological and biochemical aspects of plant response to water stresses are reviewed together with the new frontiers studies on the genetic tools on stress tolerance. The recent exploitation of next generation resources applied to the functional genomics combined with a gradual increasing in transformation frequencies for many grasses, is supporting the study and the manipulation of abiotic stresses in grasses, notably increasing the plant tolerance. Mutational analysis and microarrays have led to the identification of numerous candidate genes involved in a series of stresses comprising drought, salt, freezing, and heat. The variability found in the genetic traits related with abiotic stress tolerance has permitted to identify and mapping several candidate genes and has confirmed the importance of wild relatives to identify the traits that domestication has canceled in the selected lines. The recent knowledge on candidate genes organization has led to the identification of promising allelic variants that, through Marker Assisted Selection (MAS), can be easily transferred into the susceptible commercial lines. Thence, the advent and development of molecular markers in quantitative genetics have greatly facilitated the study of complex quantitatively inherited traits by the construction of high density genome linkage maps for crops such as wheat. The identification of Quantitative Trait Loci (QTLs) ruling the genetic variability of the traits controlling such tolerance and the consequent manipulation to use in MAS is of crucial importance. The knowledge of the number and effects of QTLs can help breeders to understand the genetic control of these traits and to design more efficient selection strategies for improvement. To date, the modern commercial cultivars, able to survive to severe abiotic stresses regimes performing a good level of productivity, are the result of this activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

Abscisic acid

ALDH:

Aldehyde Dehydrogenase

HSPs:

Heat Shock proteins

LEA:

Late Embryogenesis Abundant

MAS:

Marker Assisted Selection

NILs:

Near Isogenic Lines

NSCs:

Non Selective Cation Channels

QTLs:

Quantitative Traits Loci

RILs:

Recombinant Inbred Lines

ROS:

Reactive Oxygen Species

TFBSs:

Transcription Factors Binding Sites.

TFs:

Transcription Factors

References

  • Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9:1859–1868

    CAS  PubMed Central  PubMed  Google Scholar 

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    CAS  PubMed Central  PubMed  Google Scholar 

  • Agrama HAS, Moussa ME (1996) Mapping QTLs in breeding for drought tolerance in maize (Zea mays L). Euphytica 91:89–97

    CAS  Google Scholar 

  • Amtmann A, Fischer M, Marsh EL, Stefanovic A, Sanders D, Schachtman DP (2001) The wheat cDNA LCT1 generates hypersensitivity to sodium in a salt-sensitive yeast strain. Plant Physiol 126(3):1061–1071

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460–3479

    CAS  PubMed Central  PubMed  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    CAS  PubMed  Google Scholar 

  • Barnabas B, Jager K, Feher A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11–38

    CAS  PubMed  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    CAS  Google Scholar 

  • Blum A (1988) Breeding for stress environments. CRC Press, Boca Raton

    Google Scholar 

  • Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochim Biophys Acta 1465:140–151

    CAS  PubMed  Google Scholar 

  • Bohnert HJ, Shen B (1999) Transformation and compatible solutes. Sci Hortic 78:237–260

    CAS  Google Scholar 

  • Bolaños J, Edmeades GO (1993) Eight cycles of selection for drought tolerance in lowland tropical maize I responses in grain yield, biomass, and radiation utilization. Fields Crop Res 31:233–252

    Google Scholar 

  • Bolaños J, Edmeades GO (1997) The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. In: Edmeades GO, Bänziger M, Mickelson HR, Peña Valdivia CB (eds) Developing drought- and low N-tolerant maize, proceedings of a symposium. CIMMYT, El Batan, pp 355–368

    Google Scholar 

  • Bowler C, Fluhr R (2000) The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends Plant Sci 5:241–246

    CAS  PubMed  Google Scholar 

  • Bowler C, Van Montagu M, Inze D (1992) Superoxide dismutases and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116

    CAS  Google Scholar 

  • Broman KW, Speed TP (1999) A review for methods for identifying QTLs in experimental crosses statistics in molecular biology and genetics. IMS Lect Notes 33:114–142

    Google Scholar 

  • Cardinale F, Jonak J, Ligterink W, Niehaus K, Boller T, Hirt H (2002) Convergence and divergence of stress-induced mitogen-activated protein kinase signaling pathways at the level of two distinct mitogen-activated protein kinase kinases. Plant Cell 14:703–711

    CAS  PubMed Central  PubMed  Google Scholar 

  • Casal JJ (2002) Environmental cues affecting development. Curr Opin Plant Biol 5:37–42

    PubMed  Google Scholar 

  • Champoux MC, Wang G, Sarkarung S, Mackill DJ, O'Toole JC, Huang N, McCouch SR (1995) Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor Appl Genet 90:969–981

    CAS  PubMed  Google Scholar 

  • Chao S, Sharp PJ, Worland AJ, Koebner RMD, Gale MD (1989) RFLP-based genetic maps of homoeologous group 7 chromosomes. Theor Appl Genet 78:495–504

    CAS  PubMed  Google Scholar 

  • Chapman SC, Edmeades GO (1999) Selection improves drought tolerance in tropical maize populations: II direct and correlated responses among secondary traits. Crop Sci 39:1315–1324

    Google Scholar 

  • Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA, Budworth PR, Tao Y, Xie Z, Chen X, Lam S, Kreps JA, Harper JF, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangl JL, Wang X, Zhu T (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14:559–574

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choi HI, Park HJ, Park JH, Kim S, Im MY, Seo HH, Kim YW, Hwang I, Kim SY (2005) Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol 139:1750–1761

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ciechanover A, Orian A, Schwartz AL (2000) Ubiquitin-mediated proteolysis: biological regulation via destruction. Bioessay 22:442–451

    CAS  Google Scholar 

  • Crowe JH, Oliver AE, Hoekstra FA, Crowe LM (1997) Stabilization of dry membranes by mixtures of hydroxyethyl starch and glucose: the role of vitrification. Cryobiology 35:20–30

    CAS  PubMed  Google Scholar 

  • Cushman JC, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3:117–124

    CAS  PubMed  Google Scholar 

  • Delauney A, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    CAS  Google Scholar 

  • Devos KM (2003) Updating the “crop circle”. Curr Opin Plant Biol 6:121–127

    Google Scholar 

  • Devos KM, Gale MD (1997) Comparative genetics in the grasses. Plant Mol Biol 35:3–15

    CAS  PubMed  Google Scholar 

  • Devos KM, Millan T, Gale MD (1993) Comparative RFLP maps of homoeologous group 2 chromosomes of wheat, rye, and barley. Theor Appl Genet 85:784–792

    CAS  PubMed  Google Scholar 

  • Dunford P, Kuratad N, Laurie A, Moneyy TA, Minobe A (1995) Conservation of fine-scale marker order in the genomes of rice and the Triticeae. Nucleic Acids Res 23:2724–2728

    CAS  PubMed Central  PubMed  Google Scholar 

  • Egawa C, Kobayashi F, Ishibashi M, Nakamura T, Nakamura C, Takumi S (2006) Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Gen Genet Sys 81:77–91

    CAS  Google Scholar 

  • Ehdaie B, Waines JG (1994) Genetic analysis of carbon isotope discrimination and agronomic characters in a bread wheat cross. Theor Appl Genet 88:1023–1028

    CAS  PubMed  Google Scholar 

  • Ellis C, Karafyllidis I, Wasternack C, Turner JG (2002) The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell 14:1557–1566

    CAS  PubMed Central  PubMed  Google Scholar 

  • Finkelstein R, Gampala SS, Lynch TJ, Thomas TL, Rock CD (2005) Redundant and distinct functions of the ABA response loci ABA-insensitive(ABI)5 and ABRE-binding factor (ABF)3. Plant Mol Biol 59:253–267

    CAS  PubMed  Google Scholar 

  • Foote T, Roberts M, Kurata N, Sasakit T, Moore G (1997) Detailed Comparative Mapping of Cereal Chromosome Regions Corresponding to the Phl Locus in Wheat. Genetics 147:801–807

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fujii H, Verslues PE, Zhu JK (2007) Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19:485–494

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fujita Y, Nakashima K, Yoshida T, Katagiri T, Kidokoro S, Kanamori N, Umezawa T, Fujita M, Maruyama K, Ishiyama K, Kobayashi M, Nakasone S, Yamada K, Ito T, Shinozaki K, Yamaguchi-Shinozaki K (2009) Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol 50:2123–2132

    CAS  PubMed  Google Scholar 

  • Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442

    CAS  PubMed  Google Scholar 

  • Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388(1):151–157

    CAS  PubMed Central  PubMed  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in non-halophytes. Annu Rev Plant Physiol 31:149–190

    CAS  Google Scholar 

  • Gupta P, Balyan H, Edwards K, Isaac P, Korzun V, Röder M, Gautier M-F, Joudrier P, Schlatter A, Dubcovsky J, De la Pena R, Khairallah M, Penner G, Hayden M, Sharp P, Keller B, Wang R, Hardouin J, Jack P, Leroy P (2002) Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet 105:413–422

    CAS  PubMed  Google Scholar 

  • Hasegawa PM, Bressan AB, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    CAS  PubMed  Google Scholar 

  • Himmelbach A, Hoffmann T, Leube M, Höhener B, Grill E (2002) Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in Arabidopsis. EMBO J 21:3029–3038

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438

    CAS  PubMed  Google Scholar 

  • Holmström KO, Mäntylä E, Welin B, Mandel A, Palva ET, Tunnela OE, Londesborough J (1996) Drought tolerance in tobacco. Nature 379:683–684

    Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z, Verma DPS (2000) Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Biol 47:377–403

    CAS  Google Scholar 

  • Ishitani M, Xiong L, Stevenson B, Zhu JK (1997) Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. Plant Cell 9:1935–1949

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson RR, Wagner RL, Verhey SD, Walker-Simmons MK (2002) The abscisic acid-responsive kinase PKABA1 interacts with a seed-specific abscisic acid response element-binding factor, TaABF, and phosphorylates TaABF peptide sequences. Plant Physiol 130:837–846

    PubMed Central  PubMed  Google Scholar 

  • Jones RJ, Setter TL (2000) Hormonal regulation of early kernel development. In: Westgate ME, Boote KJ (eds) Physiology and modelling kernel set in maize. Crop Science Society of America, Madison, pp 25–42

    Google Scholar 

  • Kang JY, Choi HI, Im MY, Kim SY (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14:343–357

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotech 17:287–291

    CAS  Google Scholar 

  • Katsuhara M (1997) Apoptosis-like cell death in barley roots under salt stress. Plant Cell Physiol 38:1091–1093

    CAS  Google Scholar 

  • Kirch HH, Bartels D, Wei Y, Schnable P, Wood A (2004) The aldehyde dehydrogenase gene superfamily of Arabidopsis thaliana. Trends Plant Sci 9:371–377

    CAS  PubMed  Google Scholar 

  • Kizis D, Pagès M (2002) Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway. Plant J 30:679–689

    CAS  PubMed  Google Scholar 

  • Knight H, Knight MR (2001) Abiotic stress signaling pathways: specificity and cross-talk. Trends Plant Sci 6:262–267

    CAS  PubMed  Google Scholar 

  • Knight H, Veale EL, Warren GJ, Knight MR (1999) The sfr 6 mutation in Arabidopsis suppresses low-temperature induction of genes dependent on the CRT/DRE sequence motif. Plant Cell 11:875–886

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf KD (2007) Complexity of the heatstress response in plants. Curr Opin Plant Biol 10(3):310–316

    CAS  PubMed  Google Scholar 

  • Koyama ML, Levesley A, Koebner RMD, Flowers TJ, Yeo AR (2001) Quantitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiol 125:406–422

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kramer PJ, Boyer S (1995) Water relations of plants and soils. Academic, San Diego

    Google Scholar 

  • Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lafitte HR, Courtois B, Arraudeau M (2002) Genetic improvement of rice in aerobic systems: progress from yield to genes. Field Crop Res 75:171–190

    Google Scholar 

  • Latchman DS (1998) Eukaryotic transcription factors. Academic, San Diego

    Google Scholar 

  • Lebreton C, Lazic-Jancic V, Steed A, Pekic S, Quarrie SA (1995) Identification of QTL for drought responses in maize and their use in testing causal relationships between traits. J Exp Bot 46:853–865

    CAS  Google Scholar 

  • Lee TI, Young RA (2000) Transcription of eukaryotic protein-coding genes. Annu Rev Genet 34:77–137

    CAS  PubMed  Google Scholar 

  • Lee H, Xiong L, Gong Z, Ishitani M, Stevenson B, Zhu JK (2001) The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning. Genes Dev 15:912–924

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lilley JM, Ludlow MM, McCouch SR, O'Toole JC (1996) Locating QTL for osmotic adjustment and dehydration tolerance in rice. J Exp Bot 47:1427–1436

    CAS  Google Scholar 

  • Liu J, Zhu J-K (1998) A calcium sensor homolog required for plant salt tolerance. Science 280:1943–1945

    CAS  PubMed  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcriptase factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene expression, respectively, in Arabidospsis. Plant Cell 10:1391–1406

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu WH, Schachtman DP, Zhang W (2000) Partial deletion of a loop region in the high affinity K+ transporter HKT1 changes ionic permeability leading to increased salt tolerance. J Biol Chem 275:27924–27932

    CAS  PubMed  Google Scholar 

  • Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14(5):836–843

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maccaferri M, Sanguineti MC, Corneti S, Araus Ortega JL, Ben Salern M, Bort J, DeAmbrogio E, del Moral L, Demontis A, El-Ahmed A, Maalouf F, Machlab H, Martos V, Moragues M, Motawaj J, Nachit M, Nserallah N, Ouabbou H, Royo C, Slama A, Tuberosa R (2008) Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf) across a wide range of water availability. Genetics 178:489–511

    PubMed Central  PubMed  Google Scholar 

  • Mano Y, Takeda K (1997) Mapping quantitative trait loci for salt tolerance at germination and at the seedling stage of barley (Hordeum vulgare L). Euphytica 94:263–272

    Google Scholar 

  • Manschadi AM, Christopher J, Devoil P, Hammer GL (2006) The role of root architectural traits in adaptation of wheat to water-limited environments. Funct Plant Biol 33:823–837

    CAS  Google Scholar 

  • Mathews KL, Malosetti M, Chapman S, McIntyre L, Reynolds M, Shorter R, van Eeuwijk F (2008) Multi-environment QTL mixed models for drought stress adaptation in wheat. Theor Appl Genet 117:1077–1091

    PubMed  Google Scholar 

  • McIntyre CL, Mathews KL, Rattey A, Chapman SC, Drenth J, Ghaderi M, Reynolds M, Shorter R (2009) Molecular detection of genomic regions associated with grain yield and yield-related components in an elite bread wheat cross evaluated under irrigated and rainfed conditions. Theor Appl Genet 120:527–541

    PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) The reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    CAS  PubMed  Google Scholar 

  • Miura K, Lee J, Jin JB, Yoo CY, Miura T, Hasegawa PM (2009) Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling. Proc Natl Acad Sci U S A 106:5418–5423

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mondini L, Nachit MM, Porceddu E, Pagnotta MA (2011) HRM technology for the identification and characterization of INDEL and SNPs mutations in genes involved in drought and salt tolerance of durum wheat. Plant Genetic Resour 9:166–169

    CAS  Google Scholar 

  • Mondini L, Nachit MM, Porceddu E, Pagnotta MA (2012) Identification of SNP mutations in DREB1, HKT1 and WRKY1 genes involved in drought and salt stress tolerance in durum wheat (Triticum turgidum L, var durum). OMICS J Integr Biol 16(4):178–187

    CAS  Google Scholar 

  • Moore G, Foote T, Helentjaris T, Devos K, Kurata N, Gale M (1995) Was there a single ancestral grass chromosome? Trends Genet 11:81–82

    CAS  PubMed  Google Scholar 

  • Morgan JM (1984) Osmoregulation and water stress in higher plants. Annu Rev Plant Physiol 35:299–319

    Google Scholar 

  • Morgan JM (1991) A gene controlling differences in osmoregulation in wheat. Aust J Plant Physiol 18:249–257

    Google Scholar 

  • Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A, Eliby S, Shirley N, Langridge P, Lopato S (2011) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Bio J 9(2):230–249

    CAS  Google Scholar 

  • Nachit MM, Elouafi I, El Saleh A, Iacono E, Labhilili M, Asbati A, Azrak M, Hazzam H, Benscher D, Khairallah M, Ribaut JM, Tanzarella OA, Porceddu E, Sorrells ME (2001) Molecular linkage map for an intraspecific recombinant inbred population of durum wheat (Triticum turgidum L. var. durum). Theor Appl Genet 102:177–186

    CAS  Google Scholar 

  • Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173–182

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ohta M, Guo Y, Halfter U, Zhu JK (2003) A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2. Proc Natl Acad Sci U S A 100:11771–11776

    CAS  PubMed Central  PubMed  Google Scholar 

  • Olive MJ, Tuba Z, Mishler BD (2000) The evolution of vegetative desiccation tolerance in land plants. Plant Ecol 151:85–100

    Google Scholar 

  • Passioura J (2007) The drought environment: physical, biological and agricultural perspectives. J Exp Bot 58:113–117

    CAS  PubMed  Google Scholar 

  • Pestsova E, Ganal MW, Röder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697

    CAS  PubMed  Google Scholar 

  • Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusić D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti MC, Hollington PA, Aragués R, Royo A, Dodig D (2005) A genetic map of hexaploid wheat (Triticum aestivum L) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110(5):865–880

    CAS  PubMed  Google Scholar 

  • Quarrie SA, Pekic-Quarrie S, Radosevic R, Rancic D, Kaminska A, Barnes JD, Leverington M, Ceoloni C, Dodig D (2006) Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. J Exp Bot 57:2627–2637

    CAS  PubMed  Google Scholar 

  • Ramanjulu S, Bartels D (2002) Drought- and desiccation-induced modulation of gene expression in plants. Plant Cell Environ 25:141–151

    CAS  PubMed  Google Scholar 

  • Reynolds M, Manes Y, Izanloo A, Langridge P (2009) Phenotyping approaches for physiological breeding and gene discovery in wheat. Ann Appl Biol 155:309–320

    Google Scholar 

  • Richards RA (1996) Defining selection criteria to improve yield under drought. Plant Growth Regul 20:57–166

    Google Scholar 

  • Richards R, Dennet C, Qualset C, Epstein E, Norlyn J, Winslow M (1987) Variation in yield of grain and biomass in wheat, barley, and triticale in a salt-affected field. Fields Crop Res 15:277–287

    Google Scholar 

  • Richards RA, Rebetzke GJ, Watt M, Condon AG, Spielmeyer W, Dolferus R (2010) Breeding for improved water productivity in temperate cereals: phenotyping, quantitative trait loci, markers and the selection environment. Funct Plant Biol 37:85–97

    Google Scholar 

  • Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646

    CAS  PubMed  Google Scholar 

  • Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110

    CAS  PubMed  Google Scholar 

  • Röder MS, Korzun V, Wandehake K, Planschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed Central  PubMed  Google Scholar 

  • Ronde JAD, Spreeth MH, Cress WA (2000) Effect of antisense L-Δ-pyrroline-5–5 carboxylate reductase transgenic soybean plants subjected to osmotic and drought stress. Plant Growth Regul 32:13–26

    Google Scholar 

  • Saini HS, Westgate ME (2000) Reproductive development in grain crops during drought. Adv Agron 68:59–96

    Google Scholar 

  • Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanguineti MC, Tuberosa R, Landi P, Salvi S, Maccaferri M, Casarini E, Conti S (1999) QTL analysis of drought-related traits and grain yield in relation to genetic variation for leaf abscisic acid concentration in field-grown maize. J Exp Bot 50:1289–1297

    CAS  Google Scholar 

  • Schachtman D, Liu W (1999) Molecular pieces to the puzzle of the interaction between potassium and sodium uptake in plants. Trends Plant Sci 4:281–287

    PubMed  Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1,300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shen L, Courtois B, McNally KL, Robin S, Li Z (2001) Evaluation of near-isogenic lines of rice introgressed with QTLs for root depth through marker-aided selection. Theor Appl Genet 103:75–83

    CAS  Google Scholar 

  • Shen YG, Zhang WK, He SJ, Zhang JS, Liu Q, Chen SY (2003) An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor Appl Genet 106:923–930

    CAS  PubMed  Google Scholar 

  • Shi H, Ishitani M, Kim CS, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci U S A 97:6896–6901

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shi HZ, Xiong L, Stevenson B, Lu TG, Zhu JK (2002) The Arabidopsis salt overly sensitive 4 mutants uncover a critical role for vitamin B6 in plant salt tolerance. Plant Cell 14:575–588

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shi H, Lee BH, Wu SJ, Zhu JK (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotech 21:81–85

    CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1997) Gene expression and signal transduction in water-stress response. Plant Physiol 115:327–334

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    CAS  PubMed  Google Scholar 

  • Slavich PG, Read BJ, Cullis BR (1990) Yield response of barley germplasm to field variation in salinity quantified using the EM-38. Aust J Exp Agri 30:551–556

    Google Scholar 

  • Smirnoff N (1998) Plant resistance to environmental stress. Curr Opin Biotech 9:214–219

    CAS  PubMed  Google Scholar 

  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28:1057–1060

    CAS  Google Scholar 

  • Soderman E, Hjellstrom M, Engstrom P (2000) High level expression of ATHB7 in transgenic Arabidopsis causes a suppression of elongation growth consistent with a role of ATHB7 in the drought stress response. Abstract 237, 11th international conference on Arabidopsis research, Madison

    Google Scholar 

  • Sun W, Van Montagu M, Verbruggen N (2002) Small heat shock proteins and stress tolerance in plants. Biochim Biophys Acta 1577:1–9

    CAS  PubMed  Google Scholar 

  • Sung DY, Guy CL (2003) Physiological and molecular assessment of altered expression of Hsc70-1 in Arabidopsis Evidence for pleiotropic consequences. Plant Physiol 132:979–987

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sunkar R, Bartels D, Kirch HH (2003) Overexpression of a stress-inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance. Plant J 35:452–464

    CAS  PubMed  Google Scholar 

  • Suzuki I, Simon WJ, Slabas AR (2006) The heat shock response of Synechocystis sp. PCC 6803 analysed by transcriptomics and proteomics. J Exp Bot 57:1573–1578

    CAS  PubMed  Google Scholar 

  • Talamè V, Sanguineti MC, Chiapparino E, Bahri H, Ben Salem M, Forster BP, Ellis RP, Rhouma S, Zoumarou W, Waugh R, Tuberosa R (2004) Identification of Hordeum spontaneum QTL alleles improving field performance of barley grown under rainfed conditions. Ann Appl Biol 144:309–319

    Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    CAS  PubMed  Google Scholar 

  • Teulat B, Monneveux P, Wery J, Borries C, Souyris I, Charrier A, This D (1997) Relationships between relative water content and growth parameters under water stress in barley: a QTL study. New Phytol 137:99–107

    Google Scholar 

  • Teulat B, This D, Khairallah M, Borries C, Ragot C, Sourdille P, Leroy P, Monneveux P, Charrier A (1998) Several QTLs involved in osmotic-adjustment trait variation in barley (Hordeum vulgare L). Theor Appl Genet 96:688–698

    CAS  Google Scholar 

  • Teulat B, Borries C, This D (2001) New QTLs identified for plant water status, water-soluble carbohydrate and osmotic adjustment in a barley population grown in a growth chamber under two water regimes. TheorAppl Genet 103:161–170

    CAS  Google Scholar 

  • Teulat B, Merah O, Sirault X, Borries C, Waugh R, Thiset D (2002) QTLs for grain carbon isotope discrimination in field-grown barley. Theor Appl Genet 106:118–126

    CAS  PubMed  Google Scholar 

  • Teulat B, Zoumarou-Wallis N, Rotter B, Ben Salem M, Bahri H, This D (2003) QTL for relative water content in field-grown barley and their stability across Mediterranean environments. Theor Appl Genet 108:181–188

    CAS  PubMed  Google Scholar 

  • Thomashow MF, Gilmour SJ, Stockinger EJ, Jaglo-Ottosen KR, Zarka DG (2001) Role of the Arabidopsis CBF transcriptional activators in cold acclimation. Physiol Plant 112:171–175

    CAS  Google Scholar 

  • Tuberosa R, Sanguineti MC, Landi P, Salvi S, Casarini E, Conti S (1998) RFLP mapping of quantitative trait loci controlling abscisic acid concentration in leaves of drought stressed maize (Zea mays L). Theor Appl Genet 97:744–755

    CAS  Google Scholar 

  • Ueguchi C, Koizumi H, Suzuki T, Mizuno T (2001) Novel family of sensor histidine kinase genes in Arabidopsis thaliana. Plant Cell Physiol 42:231–235

    CAS  PubMed  Google Scholar 

  • Umezawa T, Yoshida R, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K (2004) SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proc Natl Acad Sci U S A 101:17306–17311

    CAS  PubMed Central  PubMed  Google Scholar 

  • Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M, Hirayama T, Shinozaki K (1999) A transmembrane hybrid type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11:1743–1754

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vicré M, Farrant JM, Driouich A (2004) Insights into the cellular mechanisms of desiccation tolerance among angiosperm resurrection plant species. Plant Cell Environ 27:1329–1340

    Google Scholar 

  • Vierling E, Kimpel JA (1992) Plant responses to environmental stress. Curr Opin Biotech 3:164–170

    CAS  PubMed  Google Scholar 

  • von Korff M, Grando S, Del Greco A, This D, Baum M, Ceccarelli S (2008) Quantitative trait loci associated with adaptation to Mediterranean dryland conditions in barley. Theor Appl Genet 117:653–669

    Google Scholar 

  • Wang D, Luthe DS (2003) Heat sensitivity in a bentgrass variant. Failure to accumulate a chloroplast heat shock protein isoform implicated in heat tolerance. Plant Physiol 133:319–327

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang YB, Holroyd G, Hetherington AM, Ng CKY (2004) Seeing ‘cool’ and ‘hot’-infrared thermography as a tool for noninvasive, high-throughput screening of Arabidopsis guard cell signalling mutants. J Exp Bot 55:1187–1193

    CAS  PubMed  Google Scholar 

  • Westgate ME, Boyer JS (1985) Osmotic adjustment and the inhibition of leaf, root, stem and silk growth at low water potentials in maize. Planta 164:540–549

    CAS  PubMed  Google Scholar 

  • Wohlbach DJ, Quirino BF, Sussman MR (2008) Analysis of the Arabidopsis histidine kinase ATHK1 reveals a connection between vegetative osmotic stress sensing and seed maturation. Plant Cell 20:1101–1117

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xiao J, Li J, Grandillo S, Ahn S, Yuan L, McCouch SR, Tanksley SD (1996) Genes from wild rice improve yield. Nature 384:223–224

    CAS  Google Scholar 

  • Xin Z, Browse J (1998) Eskimo1 mutants of Arabidopsis are constitutively freezing-tolerant. Proc Natl Acad Sci U S A 95:7799–7804

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 15:745–759

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low temperature, or high-salt stress. Plant Cell 6:251–264

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    CAS  PubMed  Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222

    CAS  PubMed  Google Scholar 

  • Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 61:672–685

    CAS  PubMed  Google Scholar 

  • Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotech 19:765–768

    CAS  Google Scholar 

  • Zhang J, Nguyen HT, Blum A (1999) Genetic analysis of osmotic adjustment in crop plants. J Exp Bot 50:292–302

    Google Scholar 

  • Zhang HX, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci U S A 98:12832–12836

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang YJ, Yang JS, Guo SJ, Meng JJ, Zhang YL, Wan SB, He QW, Li XG (2011) Over-expression of the Arabidopsis CBF1 gene improves resistance of tomato leaves to low temperature under low irradiance. Plant Biol 13(2):362–367

    CAS  PubMed  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu SY, Yu XC, Wang XJ, Zhao R, Li Y, Fan RC, Shang Y, Du SY, Wang XF, Wu FQ, Xu YH, Zhang XY, Zhang DP (2007) Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell 19:3019–3036

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhuang J, Chen JM, Yao QH, Xiong F, Sun CC, Zhou XR, Zhang J, Xiong AS (2011) Discovery and expression profile analysis of AP2/ERF family genes from Triticum aestivum. Mol Biol Rep 38(2):745–753

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Mondini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mondini, L., Pagnotta, M.A. (2015). Drought and Salt Stress in Cereals. In: Lichtfouse, E., Goyal, A. (eds) Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-16988-0_1

Download citation

Publish with us

Policies and ethics