Skip to main content

Genetic Engineering for Microalgae Strain Improvement in Relation to Biocrude Production Systems

  • Chapter
  • First Online:
Biomass and Biofuels from Microalgae

Part of the book series: Biofuel and Biorefinery Technologies ((BBT,volume 2))

Abstract

An advanced understanding of the genetics of microalgae and the availability of molecular biology tools are both critical to the development of advanced strains, which offer efficiency advantages for primary production, and more specifically in the context of production for biocrude and renewable energy. Consequently, we outline the current state of the art in microalgal molecular biology including the available genome sequences, molecular techniques and toolkits, amenable strains for transformation of nuclear and plastid genomes, and the control of transgenes at both transcriptional and translational levels. We also examine some strategies for improvement of expression and regulation. We suggest the primary strategies in strain improvement that are most relevant to biocrude applications; briefly illustrate the process of photosynthesis to enable identification of targets for improvement of net photosynthetic conversion efficiency in mass cultivation; and further discuss how improvement of metabolic systems may also be achieved and benefit production models. Finally, we acknowledge the aspects of prudent risk assessment and consequent regulation that are developing and how our knowledge of natural algae in existing ecosystems, and GM work in conventional agriculture both contribute lessons to these discussions. We conclude that if properly managed, these developments provide significant potential for increasing global capacity for renewable fuel production from microalgae and that these developments could also have benefits for other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Administration USFaD (2003) GRAS Notice Inventory Spirulina, the dried biomass of Arthrospira platensis. http://www.accessdata.fda.gov/scripts/fcn/fcnDetailNavigation.cfm?rpt=grasListing&id=127

  • Administration USFaD (2004) GRAS Notice Inventory Algal oil (Schizochytrium sp.). http://www.accessdata.fda.gov/scripts/fcn/fcnDetailNavigation.cfm?rpt=grasListing&id=137

  • Administration USFaD (2010a) GRAS Notice Inventory Haematococcus pluvialis extract containing astaxanthin esters. http://www.accessdata.fda.gov/scripts/fcn/fcnDetailNavigation.cfm?rpt=grasListing&id=294

  • Administration USFaD (2010b) GRAS Notice Inventory Micro-algal oil Ulkenia sp. SAM2179

    Google Scholar 

  • Administration USFaD (2011) GRAS Notice Inventory Dunaliella bardawil. http://www.accessdata.fda.gov/scripts/fcn/fcnDetailNavigation.cfm?rpt=grasListing&id=351

  • Administration USFaD (2012) GRAS Notice Inventory Algal oil derived from Chlorella protothecoides strain S106 (Cp algal oil). http://www.accessdata.fda.gov/scripts/fcn/fcnDetailNavigation.cfm?rpt=grasListing&id=384

  • Aldrich J, Cherney B, Merlin E, Williams C, Mets L (1985) Recombination within the inverted repeat sequences of the chlamydomonas reinhardtii chloroplast genome produces 2 orientation isomers. Curr Genet 9(3):233–238

    Google Scholar 

  • Allen MD, del Campo JA, Kropat J, Merchant SS (2007) FEA1, FEA2, and FRE1, encoding two homologous secreted proteins and a candidate ferrireductase, are expressed coordinately with FOX1 and FTR1 in iron-deficient Chlamydomonas reinhardtii. Eukaryot Cell 6(10):1841–1852

    Google Scholar 

  • Amundsen SK, Taylor AF, Reddy M, Smith GR (2007) Intersubunit signaling in RecBCD enzyme, a complex protein machine regulated by Chi Hot Spots. Genes Dev 21(24):3296–3307

    Google Scholar 

  • Anderson DM (2009) Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean Coast Manag 52:342–347

    Google Scholar 

  • Anderson DM, Glibert PM, Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25:704–726

    Google Scholar 

  • Anthonisen IL, Kasai S, Kato K, Salvador ML, Klein U (2002) Structural and functional characterization of a transcription-enhancing sequence element in the rbcL gene of the chlamydomonas chloroplast genome. Curr Genet 41(5):349–356

    Google Scholar 

  • Apt KE, KrothPancic PG, Grossman AR (1996) Stable nuclear transformation of the diatom phaeodactylum tricornutum. Mol Gen Genet 252(5):572–579

    Google Scholar 

  • Armbrust EV et al (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306(5693):79–86

    Google Scholar 

  • Bai L-L et al (2013) A new strategy to produce a defensin: stable production of mutated NP-1 in nitrate reductase-deficient Chlorella ellipsoidea. PLoS One 8(1):e54966

    Google Scholar 

  • Bailey S (2013) Global regulators of photosynthetic acclimation to irradiance. In: Paper presented at the 7th Algae Biomass Summit, Orlando, Florida, 1 Oct 2013

    Google Scholar 

  • Baird TD, DeLorenzo ME (2010) Descriptive and mechanistic toxicity of conazole fungicides using the model test alga Dunaliella tertiolecta (chlorophyceae). Environ Toxicol 25(3):213–220

    Google Scholar 

  • Barnes D, Franklin S, Schultz J, Henry R, Brown E, Coragliotti A, Mayfield SP (2005) Contribution of 5′- and 3′-untranslated regions of plastid mRNAs to the expression of Chlamydomonas reinhardtii chloroplast genes. Mol Genet Genomics 274(6):625–636

    Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Google Scholar 

  • Bateman JM, Purton S (2000) Tools for chloroplast transformation in chlamydomonas: expression vectors and a new dominant selectable marker. Mol Gen Genet 263(3):404–410

    Google Scholar 

  • Beckmann J, Lehr F, Finazzi G, Hankamer B, Posten C, Wobbe L, Kruse O (2009) Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii. J Biotech 142(1):70–77

    Google Scholar 

  • Beisson F et al (2003) Arabidopsis genes involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiol 132(2):681–697

    Google Scholar 

  • Ben-Amotz A, Avron M (1973) Role of glycerol in osmotic regulation of halophilic alga Dunaliella parva. Plant Physiol 51(5):875–878

    Google Scholar 

  • Ben-Amotz A, Tornabene TG, Thomas WH (1985) Chemical profile of selected species of microalgae with emphasis on lipids. J Phycol 21(1):72–81

    Google Scholar 

  • Berberoglu H, Pilon L, Melis A (2008) Radiation characteristics of Chlamydomonas reinhardtii CC125 and its truncated chlorophyll antenna transformants tla1, tlaX and tla1-CW +. Int J Hydrogen Energy 33(22):6467–6483

    Google Scholar 

  • Berges JA, Charlebois DO, Mauzerall DC, Falkowski PG (1996) Differential effects of nitrogen limitation on photosynthetic efficiency of photosystems I and II in microalgae. Plant Physiol 110(2):689–696

    Google Scholar 

  • Berthold P, Schmitt R, Mages W (2002) An engineered Streptomyces hygroscopicus aph 7” gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii. Protist 153(4):401–412

    Google Scholar 

  • Bhattacharya D et al (2013) Genome of the red alga Porphyridium purpureum. Nat Commun 4:1941

    Google Scholar 

  • Blanc G et al (2010) The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell 22(9):2943–2955

    Google Scholar 

  • Blanc G et al (2012) The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation. Genome Biol 13(5):R39

    Google Scholar 

  • Blankenship RE, Chen M (2013) Spectral expansion and antenna reduction can enhance photosynthesis for energy production. Curr Opin Chem Biol 17(3):457–461

    Google Scholar 

  • Bock R (2001) Transgenic plastids in basic research and plant biotechnology. J Mol Biol 312(3):425–438

    MathSciNet  Google Scholar 

  • Bogen C et al (2013) Reconstruction of the lipid metabolism for the microalga Monoraphidium neglectum from its genome sequence reveals characteristics suitable for biofuel production. BMC Genom 14:18

    Google Scholar 

  • Borowitzka LJ, Brown AD (1974) Salt relations of marine and halophilic species of unicellular green-alga, Dunaliella—role of glycerol as a compatible solute. Arch Microbiol 96(1):37–52

    Google Scholar 

  • Bowler C et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456(7219):239–244

    Google Scholar 

  • Boyle NR et al (2012) Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in chlamydomonas. J Biol Chem 287(19):15811–15825

    Google Scholar 

  • Boynton JE et al (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240(4858):1534–1538

    Google Scholar 

  • BP (2014) Statistical review of world energy 2014 London, UK. http://www.bp.com/content/dam/bp/pdf/Energy-economics/statistical-review-2014/BP-statistical-review-of-world-energy-2014-full-report.pdf. Retrieved 1 Sept 2014

  • Brown MR, Jeffrey SW, Volkman JK, Dunstan GA (1997) Nutritional properties of microalgae for mariculture. Aquaculture 151(1–4):315–331

    Google Scholar 

  • Casas-Mollano JA, Rohr J, Kim EJ, Balassa E, van Dijk K, Cerutti H (2008) Diversification of the core RNA interference machinery in Chlamydomonas reinhardtii and the role of DCL1 in transposon silencing. Genetics 179(1):69–81

    Google Scholar 

  • Cerutti H, Casas-Mollano JA (2006) On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet 50(2):81–99

    Google Scholar 

  • Cerutti H, Osman M, Grandoni P, Jagendorf AT (1992) A homolog of Escherichia coli RecA protein in plastids of higher-plants. Proc Natl Acad Sci USA 89(17):8068–8072

    Google Scholar 

  • Cerutti H, Johnson AM, Boynton JE, Gillham NW (1995) Inhibition of chloroplast DNA recombination and repair by dominant-negative mutants of Escherichia coli RecA. Mol Cell Biol 15(6):3003–3011

    Google Scholar 

  • Cerutti H, Johnson AM, Gillham NW, Boynton JE (1997a) Epigenetic silencing of a foreign gene in nuclear transformants of Chlamydomonas. Plant Cell 9(6):925–945

    Google Scholar 

  • Cerutti H, Johnson AM, Gillham NW, Boynton JE (1997b) A eubacterial gene conferring spectinomycin resistance on Chlamydomonas reinhardtii: integration into the nuclear genome and gene expression. Genetics 145(1):97–110

    Google Scholar 

  • Cerutti H, Ma X, Msanne J, Repas T (2011) RNA-mediated silencing in algae: biological roles and tools for analysis of gene function. Eukaryot Cell 10(9):1164–1172

    Google Scholar 

  • Cha T-S, Chen C-F, Yee W, Aziz A, Loh S-H (2011) Cinnamic acid, coumarin and vanillin: alternative phenolic compounds for efficient agrobacterium-mediated transformation of the unicellular green alga. Nannochloropsis sp. J Microbiol Methods 84(3):430–434

    Google Scholar 

  • Chen M, Blankenship RE (2011) Expanding the solar spectrum used by photosynthesis. Trends Plant Sci 16(8):427–431

    Google Scholar 

  • Chen JE, Smith AG (2012) A look at diacylglycerol acyltransferases (DGATs) in algae. J Biotechnol 162(1):28–39

    Google Scholar 

  • Chen HL, Li SS, Huang R, Tsai H-J (2008) Conditional production of a functional fish growth hormone in the transgenic line of Nannochloropsis oculata (Eustigmatophyceae). J Phycol 44(3):768–776

    Google Scholar 

  • Chen M, Schliep M, Willows RD, Cai ZL, Neilan BA, Scheer H (2010) A Red-Shifted Chlorophyll. Science 329(5997):1318–1319

    Google Scholar 

  • Chen M, Tang H, Ma H, Holland TC, Ng KYS, Salley SO (2011) Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresour Technol 102(2):1649–1655

    Google Scholar 

  • Cheney DP, Metz B, Stiller J (2001) Agrobacterium-mediated genetic transformation in the macroscopic red alga Porphyra yezoensis. J Phycol 37:11

    Google Scholar 

  • Cho SW, Kim S, Kim JM, Kim J-S (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotech 31(3):230–232

    Google Scholar 

  • Cock JM et al (2010) The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465(7298):617–621

    Google Scholar 

  • Collen J et al (2013) Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proc Natl Acad Sci USA 110(13):5247–5252

    Google Scholar 

  • Craigie JS, McLachlan J (1964) Glycerol as a photo-synthetic product in Dunaliella tertiolecta Butcher. Canadian J Bot 42(6):777–778

    Google Scholar 

  • Croft MT, Moulin M, Webb ME, Smith AG (2007) Thiamine biosynthesis in algae is regulated by riboswitches. Proc Natl Acad Sci USA 104(52):20770–20775

    Google Scholar 

  • Cui Y, Qin S, Jiang P (2014) Chloroplast transformation of platymonas (Tetraselmis) subcordiformis with the bar gene as selectable marker. PLoS One 9(6):e98607

    Google Scholar 

  • Curtis BA et al (2012) Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature 492(7427):59–65

    Google Scholar 

  • Dal’Molin CGD, Quek LE, Palfreyman RW, Nielsen LK (2011) AlgaGEM—a genome-scale metabolic reconstruction of algae based on the Chlamydomonas reinhardtii genome. BMC Genom 12:10

    Google Scholar 

  • Davies JP, Yildiz FH, Grossman A (1996) Sac1, a putative regulator that is critical for survival of Chlamydomonas reinhardtii during sulfur deprivation. EMBO J 15(9):2150–2159

    Google Scholar 

  • Dawson HN, Burlingame R, Cannons AC (1997) Stable transformation of Chlorella: Rescue of nitrate reductase-deficient mutants with the nitrate reductase gene. Curr Microbiol 35(6):356–362

    Google Scholar 

  • Day A, Goldschmidt-Clermont M (2011) The chloroplast transformation toolbox: selectable markers and marker removal. Plant Biotechnol J 9(5):540–553

    Google Scholar 

  • de Cambiaire JC, Otis C, Turmel M, Lemieux C (2007) The chloroplast genome sequence of the green alga Leptosira terrestris: multiple losses of the inverted repeat and extensive genome rearrangements within the Trebouxiophyceae. BMC Genom 8:213

    Google Scholar 

  • De Riso V, Raniello R, Maumus F, Rogato A, Bowler C, Falciatore A (2009) Gene silencing in the marine diatom Phaeodactylum tricornutum. Nucleic Acids Res 37(14):e96

    Google Scholar 

  • Debuchy R, Purton S, Rochaix JD (1989) The argininosuccinate lyase gene of Chlamydomonas reinhartii—an important tool for nuclear transformation and for correlating the genetic and molecular maps of the Arg7 locus. EMBO J 8(10):2803–2809

    Google Scholar 

  • Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol 137(2):545–556

    Google Scholar 

  • Derelle E et al (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci USA 103(31):11647–11652

    Google Scholar 

  • Diener DR, Curry AM, Johnson KA, Williams BD, Lefebvre PA, Kindle KL, Rosenbaum JL (1990) Rescue of a paralyzed-flagella mutant of Chlamydomonas by transformation. Proc Natl Acad Sci USA 87(15):5739–5743

    Google Scholar 

  • Dittami SM, Michel G, Collen J, Boyen C, Tonon T (2010) Chlorophyll-binding proteins revisited—a multigenic family of light-harvesting and stress proteins from a brown algal perspective. BMC Evolut Biol 10:365

    Google Scholar 

  • Doetsch NA, Favreau MR, Kuscuoglu N, Thompson MD, Hallick RB (2001) Chloroplast transformation in Euglena gracilis: splicing of a group III twintron transcribed from a transgenic psbK operon. Curr Genet 39(1):49–60

    Google Scholar 

  • Douglas S et al (2001) The highly reduced genome of an enslaved algal nucleus. Nature 410(6832):1091–1096

    Google Scholar 

  • Downes CM, Archambault S, Erickson C (2013) Formulation and estimation of a production function model of biofuels from microalgae. In: Paper presented at the 7th algae biomass summit, Orlando, Florida, 1 Oct 2013

    Google Scholar 

  • Dreesen IA, Charpin-El Hamri G, Fussenegger M (2010) Heat-stable oral alga-based vaccine protects mice from staphylococcus aureus infection. J Biotechnol 145(3):273–280

    Google Scholar 

  • Drop B, Webber-Birungi M, Fusetti F, Kouril R, Redding KE, Boekema EJ, Croce R (2011) Photosystem I of Chlamydomonas reinhardtii contains nine light-harvesting complexes (Lhca) located on one side of the core. J Biol Chem 286(52):44878–44887

    Google Scholar 

  • Ducat DC, Avelar-Rivas JA, Way JC, Silver PA (2012) Rerouting carbon flux to enhance photosynthetic productivity. Appl Environ Microbiol 78(8):2660–2668

    Google Scholar 

  • Dunahay TG (1993) Transformation of Chlamydomonas reinhardtii with silicon carbide whiskers. Biotechniques 15(3):452–455, 457–458, 460

    Google Scholar 

  • Dunahay TG, Jarvis EE, Roessler PG (1995) Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. J Phycol 31(6):1004–1012

    Google Scholar 

  • Dunahay TG, Jarvis EE, Dais SS, Roessler PG (1996) Manipulation of microalgal lipid production using genetic engineering. Appl Biochem Biotechnol 57–8:223–231

    Google Scholar 

  • Eberhard S, Drapier D, Wollman FA (2002) Searching limiting steps in the expression of chloroplast-encoded proteins: relations between gene copy number, transcription, transcript abundance and translation rate in the chloroplast of Chlamydomonas reinhardtii. Plant J 31(2):149–160

    Google Scholar 

  • Erickson JM, Rahire M, Bennoun P, Delepelaire P, Diner B, Rochaix JD (1984) Herbicide resistance in Chlamydomonas reinhardtii results from a mutation in the chloroplast gene for the 32-kilodalton protein of photosystem II. Proc Natl Acad Sci USA 81(12):3617–3621

    Google Scholar 

  • Evans JR (2013) Improving photosynthesis. Plant Physiol 162(4):1780–1793

    Google Scholar 

  • Falciatore A, Casotti R, Leblanc C, Abrescia C, Bowler C (1999) Transformation of nonselectable reporter genes in marine diatoms. Mar Biotechnol (NY) 1(3):239–251

    Google Scholar 

  • Fang W et al (2012) Transcriptome-wide changes in Chlamydomonas reinhardtii gene expression regulated by carbon dioxide and the CO2-concentrating mechanism regulator CIA5/CCM1. Plant Cell 24(5):1876–1893

    Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations) (2014) FAOSTAT. http://faostat.fao.org

  • Fei X, Eriksson M, Yang J, Deng X (2009) An Fe deficiency responsive element with a core sequence of TGGCA regulates the expression of FEA1 in Chlamydomonas reinhardtii. J Biochem 146(2):157–166

    Google Scholar 

  • Feng S, Xue L, Liu H, Lu P (2009) Improvement of efficiency of genetic transformation for Dunaliella salina by glass beads method. Mol Biol Rep 36(6):1433–1439

    Google Scholar 

  • Feng Z et al (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23(10):1229–1232

    Google Scholar 

  • Fernandez E, Schnell R, Ranum LPW, Hussey SC, Silflow CD, Lefebvre PA (1989) Isolation and characterization of the nitrate reductase structural gene of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 86(17):6449–6453

    Google Scholar 

  • Ferris PJ (1995) Localization of the NIC-7, AC-29 and THI-10 genes within the mating-type locus of Chlamydomonas reinhardtii. Genetics 141(2):543–549

    MathSciNet  Google Scholar 

  • Fischer H, Robl I, Sumper M, Kroger N (1999) Targeting and covalent modification of cell wall and membrane proteins heterologously expressed in the diatom Cylindrotheca fusiformis (Bacillariophyceae). J Phycol 35(1):113–120

    Google Scholar 

  • Forrest ARR et al (2014) A promoter-level mammalian expression atlas. Nature 507(7493):462–470

    Google Scholar 

  • Franklin SE, Mayfield SP (2005) Recent developments in the production of human therapeutic proteins in eukaryotic algae. Expert Opin Biol Ther 5(2):225–235

    Google Scholar 

  • Franklin S, Ngo B, Efuet E, Mayfield SP (2002a) Development of a GFP reporter gene for Chlamydomonas reinhardtii chloroplast. Plant J 30(6):733–744

    Google Scholar 

  • Franklin S, Ngo B, Efuet E, Mayfield SP (2002b) Development of a GFP reporter gene for Chlamydomonas reinhardtii chloroplast. Plant Journal 30(6):733–744

    Google Scholar 

  • Fuhrmann M, Oertel W, Hegemann P (1999) A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. Plant J 19(3):353–361

    Google Scholar 

  • Fuhrmann M, Stahlberg A, Govorunova E, Rank S, Hegemann P (2001) The abundant retinal protein of the Chlamydomonas eye is not the photoreceptor for phototaxis and photophobic responses. J Cell Sci 114(Pt 21):3857–3863

    Google Scholar 

  • Fuhrmann M, Hausherr A, Ferbitz L, Schodl T, Heitzer M, Hegemann P (2004) Monitoring dynamic expression of nuclear genes in Chlamydomonas reinhardtii by using a synthetic luciferase reporter gene. Plant Mol Biol 55(6):869–881

    Google Scholar 

  • Fujiwara T, Ohnuma M, Yoshida M, Kuroiwa T, Hirano T (2013) Gene targeting in the red alga cyanidioschyzon merolae: single- and multi-copy insertion using authentic and chimeric selection markers. PLoS One 8(9):e73608

    Google Scholar 

  • Fukuzawa H, Miura K, Ishizaki K, Kucho KI, Saito T, Kohinata T, Ohyama K (2001) Ccm1, a regulatory gene controlling the induction of a carbon-concentrating mechanism in Chlamydomonas reinhardtii by sensing CO2 availability. Proc Natl Acad Sci USA 98(9):5347–5352

    Google Scholar 

  • Gao H, Wright DA, Li T, Wang Y, Horken K, Weeks DP, Yang B (2014) TALE activation of endogenous genes in Chlamydomonas reinhardtii. Algal Res 1(5):52–60

    Google Scholar 

  • Geng DG, Han Y, Wang YQ, Wang P, Zhang LM, Li WB, Sun YR (2004) Construction of a system for the stable expression of foreign genes in Dunaliella salina. Acta Botanica Sinica 46(3):342–346

    Google Scholar 

  • Gimpel JA, Mayfield SP (2013) Analysis of heterologous regulatory and coding regions in algal chloroplasts. Appl Microbiol Biotechnol 97(10):4499–4510

    Google Scholar 

  • Gobler CJ et al (2011) Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics. Proc Natl Acad Sci USA 108(11):4352–4357

    Google Scholar 

  • Goldschmidt-Clermont M (1991) Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker of site-directed transformation of Chlamydomonas. Nucleic Acids Res 19(15):4083–4089

    Google Scholar 

  • Goulding SE, Olmstead RG, Morden CW, Wolfe KH (1996) Ebb and flow of the chloroplast inverted repeat. Mol Gen Genet 252(1–2):195–206

    Google Scholar 

  • Gray BN, Ahner BA, Hanson MR (2009) High-level bacterial cellulase accumulation in chloroplast-transformed tobacco mediated by downstream box fusions. Biotechnol Bioeng 102(4):1045–1054

    Google Scholar 

  • Gray BN, Yang H, Ahner BA, Hanson MR (2011) An efficient downstream box fusion allows high-level accumulation of active bacterial beta-glucosidase in tobacco chloroplasts. Plant Mol Biol 76(3–5):345–355

    Google Scholar 

  • Gregory JA, Topol AB, Doerner DZ, Mayfield S (2013) Alga-produced cholera toxin-Pfs25 fusion proteins as oral vaccines. Appl Environ Microbiol 79(13):3917–3925

    Google Scholar 

  • Gressel J, van der Vlugt CJB, Bergmans HEN (2013) Environmental risks of large scale cultivation of microalgae: mitigation of spills. Algal Res-Biomass Biofuels Bioproducts 2(3):286–298

    Google Scholar 

  • Grossman AR (2000) Chlamydomonas reinhardtii and photosynthesis: genetics to genomics. Curr Opin Plant Biol 3(2):132–137

    MathSciNet  Google Scholar 

  • Grossman AR (2007) In the grip of algal genomics. Adv Exp Med Biol 616:54–76

    Google Scholar 

  • Guckert JB, Cooksey KE (1990) Triglyceride accumulation and fatty-acid profile changes in Chlorella (Chlorophyta) during high pH-induced cell-cycle inhibition. J Phycol 26(1):72–79

    Google Scholar 

  • Gumpel NJ, Rochaix JD, Purton S (1994) Studies on homologous recombination in the green-alga Chlamydomonas reinhardtii. Curr Genet 26(5–6):438–442

    Google Scholar 

  • Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45(2):160–186

    Google Scholar 

  • Guschina IA, Harwood JL (2013) Algal lipids and their metabolism. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Developments in applied phycology, vol 5. Springer, London

    Google Scholar 

  • Gutierrez CL, Gimpel J, Escobar C, Marshall SH, Henriquez V (2012) Chloroplast genetic tool for the green microalgae Haematococcus pluvialis (Chlorophyceae, Volvocales). J Phycol 48(4):976–983

    Google Scholar 

  • Hager M, Bock R (2000) Enslaved bacteria as new hope for plant biotechnologists. Appl Microbiol Biotechnol 54(3):302–310

    Google Scholar 

  • Hallmann A, Rappel A (1999) Genetic engineering of the multicellular green alga Volvox: a modified and multiplied bacterial antibiotic resistance gene as a dominant selectable marker. Plant J 17(1):99–109

    Google Scholar 

  • Hallmann A, Sumper M (1994) Reporter genes and highly regulated promoters as tools for transformation experiments in Volvox carteri. Proc Natl Acad Sci USA 91(24):11562–11566

    Google Scholar 

  • Hallmann A, Sumper M (1996) The Chlorella Hexose H+ symporter is a useful selectable marker and biochemical reagent when expressed in Volvox. Proc Natl Acad Sci USA 93(2):669–673

    Google Scholar 

  • Harris EH, Burkhart BD, Gillham NW, Boynton JE (1989) Antibiotic resistance mutations in the chloroplast 16S and 23S rRNA genes of Chlamydomonas reinhardtii: correlation of genetic and physical maps of the chloroplast genome. Genetics 123(2):281–292

    Google Scholar 

  • Harris EH, Stern DB, Witman GB (2009) The Chlamydomonas sourcebook, 2nd edn. Academic Press, Oxford

    Google Scholar 

  • Hasnain SE, Manavathu EK, Leung WC (1985) DNA-mediated transformation of Chlamydomonas reinhardii cells: use of aminoglycoside 3′-phosphotransferase as a selectable marker. Mol Cell Biol 5(12):3647–3650

    Google Scholar 

  • Hauser CR, Gillham NW, Boynton JE (1996) Translational regulation of chloroplast genes—proteins binding to the 5′-untranslated regions of chloroplast mRNAs in Chlamydomonas reinhardtii. J Biol Chem 271(3):1486–1497

    Google Scholar 

  • Hawkins RL, Nakamura M (1999) Expression of human growth hormone by the eukaryotic alga, Chlorella. Curr Microbiol 38(6):335–341

    Google Scholar 

  • Heitzer M, Zschoernig B (2007) Construction of modular tandem expression vectors for the green alga Chlamydomonas reinhardtii using the Cre/lox-System. Biotechniques 43(3):324, 326, 328 passim

    Google Scholar 

  • Heitzer M, Eckert A, Fuhrmann M, Griesbeck C (2007) Influence of codon bias on the expression of foreign genes in microalgae. Transgenic Microalgae Green Cell Factories 616:46–53

    Google Scholar 

  • Heng RL, Lee E, Pilon L (2014) Radiation characteristics and optical properties of filamentous cyanobacterium Anabaena cylindrica. J Opt Soc Am Opt Image Sci Vis 31(4):836–845

    Google Scholar 

  • Henley WJ, Litaker RW, Noyoyeska L, Duke CS, Quemada HD, Sayre RT (2013) Initial risk assessment of genetically modified (GM) microalgae for commodity-scale biofuel cultivation. Algal Res-Biomass Biofuels Bioprod 2(1):66–77

    Google Scholar 

  • Herrin DL, Nickelsen J (2004) Chloroplast RNA processing and stability. Photosynth Res 82(3):301–314

    Google Scholar 

  • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA 103(30):11206–11210

    Google Scholar 

  • Hiramatsu T, Nakamura S, Misumi O, Kuroiwa T, Nakamura S (2006) Morphological changes in mitochondrial and chloroplast nucleoids and mitochondria during the Chlamydomonas reinhardtii (Chlorophyceae) cell cycle. J Phycol 42(5):1048–1058

    Google Scholar 

  • Holloway SP, Herrin DL (1998) Processing of a composite large subunit rRNA: studies with Chlamydomonas mutants deficient in maturation of the 23S-like rRNA. Plant Cell 10(7):1193–1206

    Google Scholar 

  • Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278

    Google Scholar 

  • Huesemann MH, Hausmann TS, Bartha R, Aksoy M, Weissman JC, Benemann JR (2009) Biomass productivities in wild type and pigment mutant of Cyclotella sp. (Diatom). Appl Biochem Biotechnol 157(3):507–526

    Google Scholar 

  • Inouye T, Odahara M, Fujita T, Hasebe M, Sekine Y (2008) Expression and complementation analyses of a chloroplast-localized homolog of bacterial RecA in the moss physcomitrella patens. Biosci Biotechnol Biochem 72(5):1340–1347

    Google Scholar 

  • Iwai M, Takizawa K, Tokutsu R, Okamuro A, Takahashi Y, Minagawa J (2010) Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. Nature 464(7292):1210–1213

    Google Scholar 

  • Jakobiak T, Mages W, Scharf B, Babinger P, Stark K, Schmitt R (2004) The bacterial paromomycin resistance gene, aphH, as a dominant selectable marker in Volvox carteri. Protist 155(4):381–393

    Google Scholar 

  • Jarvis EE, Brown LM (1991) Transient expression of firefly luciferase in protoplasts of the green-alga Chlorella ellipsoidea. Curr Genet 19(4):317–321

    Google Scholar 

  • Jia Y, Li S, Allen G, Feng S, Xue L (2012) A novel glyceraldehyde-3-phosphate dehydrogenase (GAPDH) promoter for expressing transgenes in the halotolerant alga Dunaliella salina. Curr Microbiol 64(5):506–513

    Google Scholar 

  • Johnson X, Alric J (2013) Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: metabolic constraints for carbon partitioning between oil and starch. Eukaryot Cell 12(6):776–793

    Google Scholar 

  • Jones PR (2014) Genetic instability in cyanobacteria—an elephant in the room? Front Bioeng Biotechnoly 2

    Google Scholar 

  • Kandilian R, Lee E, Pilon L (2013) Radiation and optical properties of Nannochloropsis oculata grown under different irradiances and spectra. Bioresour Technol 137:63–73

    Google Scholar 

  • Kargul J, Turkina MV, Nield J, Benson S, Vener AV, Barber J (2005) Light-harvesting complex II protein CP29 binds to photosystem I of Chlamydomonas reinhardtii under State 2 conditions. FEBS J 272(18):4797–4806

    Google Scholar 

  • Kasai S, Yoshimura S, Ishikura K, Takaoka Y, Kobayashi K, Kato K, Shinmyo A (2003) Effect of coding regions on chloroplast gene expression in Chlamydomonas reinhardtii. J Biosci Bioeng 95(3):276–282

    Google Scholar 

  • Kathiresan S, Chandrashekar A, Ravishankar GA, Sarada R (2009) Agrobacterium-mediated transformation in the green alga Haematococcus pluvialis (Chlorophyceae, Volvocales). J Phycol 45(3):642–649

    Google Scholar 

  • Katz YS, Danon A (2002) The 3′-untranslated region of chloroplast psbA mRNA stabilizes binding of regulatory proteins to the leader of the message. J Biol Chem 277(21):18665–18669

    Google Scholar 

  • Khozin-Goldberg I, Cohen Z (2011) Unraveling algal lipid metabolism: recent advances in gene identification. Biochimie 93(1):91–100

    Google Scholar 

  • Kilian O, Benemann CS, Niyogi KK, Vick B (2011) High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proc Natl Acad Sci USA 108(52):21265–21269

    Google Scholar 

  • Kim DH, Kim YT, Cho JJ, Bae JH, Hur SB, Hwang I, Choi TJ (2002) Stable integration and functional expression of flounder growth hormone gene in transformed microalga, Chlorella ellipsoidea. Marine Biotechnol 4(1):63–73

    MATH  Google Scholar 

  • Kindle KL (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 87(3):1228–1232

    Google Scholar 

  • Kindle KL, Schnell RA, Fernandez E, Lefebvre PA (1989) Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase. J Cell Biol 109(6):2589–2601

    Google Scholar 

  • Kroth PG et al (2008) A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. PLoS ONE 3(1):14

    Google Scholar 

  • Kumar SV, Misquitta RW, Reddy VS, Rao BJ, Rajam MV (2004) Genetic transformation of the green alga—Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci 166(3):731–738

    Google Scholar 

  • Kuroda H, Maliga P (2001a) Complementarity of the 16S rRNA penultimate stem with sequences downstream of the AUG destabilizes the plastid mRNAs. Nucleic Acids Res 29(4):970–975

    Google Scholar 

  • Kuroda H, Maliga P (2001b) Sequences downstream of the translation initiation codon are important determinants of translation efficiency in chloroplasts. Plant Physiol 125(1):430–436

    Google Scholar 

  • La Russa M, Bogen C, Uhmeyer A, Doebbe A, Filippone E, Kruse O, Mussgnug JH (2012) Functional analysis of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga Chlamydomonas reinhardtii. J Biotechnol 162(1):13–20

    Google Scholar 

  • Lambertz C, Hemschemeier A, Happe T (2010) Anaerobic expression of the ferredoxin-encoding FDX5 gene of Chlamydomonas reinhardtii is regulated by the Crr1 transcription factor. Eukaryot Cell 9(11):1747–1754

    Google Scholar 

  • Lapidot M, Raveh D, Sivan A, Arad S, Shapira M (2002) Stable chloroplast transformation of the unicellular red alga Porphyridium species. Plant Physiol 129(1):7–12

    Google Scholar 

  • Lauersen KJ, Berger H, Mussgnug JH, Kruse O (2013) Efficient recombinant protein production and secretion from nuclear transgenes in Chlamydomonas reinhardtii. J Biotechnol 167(2):101–110

    Google Scholar 

  • Lee H, Bingham SE, Webber AN (1996) Function of 3′ non-coding sequences and stop codon usage in expression of the chloroplast psaB gene in Chlamydomonas reinhardtii. Plant Mol Biol 31(2):337–354

    Google Scholar 

  • Lee E, Heng RL, Pilon L (2013) Spectral optical properties of selected photosynthetic microalgae producing biofuels. J Quant Spectrosc Radiat Transfer 114:122–135

    Google Scholar 

  • Lerche K, Hallmann A (2009) Stable nuclear transformation of Gonium pectorale. BMC Biotechnology 9:64

    Google Scholar 

  • Lerche K, Hallmann A (2013) Stable nuclear transformation of Eudorina elegans. BMC Biotechnol 13:11

    Google Scholar 

  • Li S-S, Tsai H-J (2009) Transgenic microalgae as a non-antibiotic bactericide producer to defend against bacterial pathogen infection in the fish digestive tract. Fish Shellfish Immunol 26(2):316–325

    MathSciNet  Google Scholar 

  • Li J, Xue L, Yan H, Wang L, Liu L, Lu Y, Xie H (2007) The nitrate reductase gene-switch: a system for regulated expression in transformed cells of Dunaliella salina. Gene 403(1–2):132–142

    Google Scholar 

  • Li YT, Han DX, Hu GR, Sommerfeld M, Hu QA (2010) Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol Bioeng 107(2):258–268

    Google Scholar 

  • Li F, Gao D, Hu H (2014) High-efficiency nuclear transformation of the oleaginous marine Nannochloropsis species using PCR product. Biosci Biotechnol Biochem 78(5):812–817

    Google Scholar 

  • Lin Z, Kong H, Nei M, Ma H (2006) Origins and evolution of the recA/RAD51 gene family: evidence for ancient gene duplication and endosymbiotic gene transfer. Proc Natl Acad Sci USA 103(27):10328–10333

    Google Scholar 

  • Lin MT, Occhialini A, Andralojc PJ, Parry MAJ, Hanson MR (2014) A faster rubisco with potential to increase photosynthesis in crops. Nature 513(7519):547–550

    Google Scholar 

  • Liu BS, Benning C (2013) Lipid metabolism in microalgae distinguishes itself. Curr Opin Biotechnol 24(2):300–309

    Google Scholar 

  • Liu CH, Chang CY, Liao Q, Zhu X, Chang JS (2013) Photoheterotrophic growth of Chlorella vulgaris ESP6 on organic acids from dark hydrogen fermentation effluents. Bioresour Technol 145:331–336

    Google Scholar 

  • Lommer M et al (2012) Genome and low-iron response of an oceanic diatom adapted to chronic iron limitation. Genome Biol 13(7):R66

    Google Scholar 

  • Lu YM, Li J, Xue LX, Yan HX, Yuan HJ, Wang C (2011) A duplicated carbonic anhydrase 1 (DCA1) promoter mediates the nitrate reductase gene switch of Dunaliella salina. J Appl Phycol 23(4):673–680

    Google Scholar 

  • Malasarn D et al (2013) Zinc deficiency impacts CO2 assimilation and disrupts copper homeostasis in Chlamydomonas reinhardtii. J Biol Chem 288(15):10672–10683

    Google Scholar 

  • Mali P et al (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826

    Google Scholar 

  • Manning WM, Strain HH (1943) Chlorophyll d, a green pigment of red algae. J Biol Chem 151(1):1–19

    Google Scholar 

  • Manuell AL et al (2007) Robust expression of a bioactive mammalian protein in Chlamydomonas Chloroplast. Plant Biotechnol J 5(3):402–412

    Google Scholar 

  • Marin-Navarro J, Manuell AL, Wu J, S PM (2007) Chloroplast translation regulation. Photosynth Res 94(2–3):359-374

    Google Scholar 

  • Maruyama M, Horakova I, Honda H, Xing XH, Shiragami N, Unno H (1994) Introduction of foreign DNA into Chlorella saccharophila by electroporation. Biotechnol Tech 8(11):821–826

    Google Scholar 

  • Matsuoka M, Takahama K, Ogawa T (2001) Gene replacement in cyanobacteria mediated by a dominant streptomycin-sensitive rps12 gene that allows selection of mutants free from drug resistance markers. Microbiology-Sgm 147:2077–2087

    Google Scholar 

  • Matsuzaki M et al (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428(6983):653–657

    Google Scholar 

  • Maul JE, Jason WL, Cui L, dePamphilis CW, Miller W, Harris EH, Stern DB (2002) The Chlamydomonas reinhardtii plastid chromosome: islands of genes in a sea of repeats. Plant Cell 14(11):2659–2679

    Google Scholar 

  • Mayfield SP, Franklin SE (2005) Expression of human antibodies in eukaryotic micro-algae. Vaccine 23(15):1828–1832

    Google Scholar 

  • Mayfield SP, Kindle KL (1990) Stable nuclear transformation of Chlamydomonas reinhardtii by using a C. reinhardtii gene as the selectable marker. Proc Natl Acad Sci USA 87(6):2087–2091

    Google Scholar 

  • Mayfield SP, Schultz J (2004) Development of a luciferase reporter gene, luxCt, for Chlamydomonas reinhardtii chloroplast. Plant J 37(3):449–458

    Google Scholar 

  • Mayfield SP, Franklin SE, Lerner RA (2003) Expression and assembly of a fully active antibody in algae. Proc Natl Acad Sci USA 100(2):438–442

    Google Scholar 

  • Melis A (2009) Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci 177(4):272–280

    Google Scholar 

  • Melis A (2013) Carbon partitioning in photosynthesis. Curr Opin Chem Biol 17(3):453–456

    Google Scholar 

  • Merchant SS et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318(5848):245–250

    Google Scholar 

  • Merchant SS, Kropat J, Liu BS, Shaw J, Warakanont J (2012) TAG, You’re it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation. Curr Opin Biotechnol 23(3):352–363

    Google Scholar 

  • Minko I, Holloway SP, Nikaido S, Carter M, Odom OW, Johnson CH, Herrin DL (1999) Renilla luciferase as a vital reporter for chloroplast gene expression in Chlamydomonas. Mol Gen Genet 262(3):421–425

    Google Scholar 

  • Minoda A, Sakagami R, Yagisawa F, Kuroiwa T, Tanaka K (2004) Improvement of culture conditions and evidence for nuclear transformation by homologous recombination in a red alga, Cyanidioschyzon merolae 10D. Plant Cell Physiol 45(6):667–671

    Google Scholar 

  • Mitchell DR, Kang Y (1991) Identification of ODA6 as a chlamydomonas dynein mutant by rescue with the wild-type gene. J Cell Biol 113(4):835–842

    Google Scholar 

  • Mitra M, Melis A (2008) Optical properties of microalgae for enhanced biofuels production. Opt Express 16(26):21807–21820

    Google Scholar 

  • Miyagawa A, Okami T, Kira N, Yamaguchi H, Ohnishi K, Adachi M (2009) Research note: high efficiency transformation of the diatom Phaeodactylum tricornutum with a promoter from the diatom Cylindrotheca fusiformis. Phycol Res 57(2):142–146

    Google Scholar 

  • Miyagawa-Yamaguchi A, Okami T, Kira N, Yamaguchi H, Ohnishi K, Adachi M (2011) Stable nuclear transformation of the diatom Chaetoceros sp. Phycol Res 59(2):113–119

    Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N, Adachi K, Chihara M, Miyachi S (1996) Chlorophyll d as a major pigment. Nature 383(6599):402

    Google Scholar 

  • Moellering ER, Benning C (2010) RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryot Cell 9(1):97–106

    Google Scholar 

  • Molnar A, Schwach F, Studholme DJ, Thuenemann EC, Baulcombe DC (2007) miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature 447(7148):1126–1129

    Google Scholar 

  • Molnar A et al (2009) Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii. Plant Journal 58(1):165–174

    Google Scholar 

  • Monde RA, Greene JC, Stern DB (2000) The sequence and secondary structure of the 3′-UTR affect 3′-end maturation, RNA accumulation, and translation in tobacco chloroplasts. Plant Mol Biol 44(4):529–542

    Google Scholar 

  • Moore CE, Curtis B, Mills T, Tanifuji G, Archibald JM (2012) Nucleomorph genome sequence of the cryptophyte alga Chroomonas mesostigmatica CCMP1168 reveals lineage-specific gene loss and genome complexity. Genome Biol Evol 4(11):1162–1175

    Google Scholar 

  • Moseley JL, Gonzalez-Ballester D, Pootakham W, Bailey S, Grossman AR (2009) Genetic interactions between regulators of Chlamydomonas phosphorus and sulfur deprivation responses. Genetics 181(3):889–905

    Google Scholar 

  • Mussgnug JH et al (2005) NAB1 is an RNA binding protein involved in the light-regulated differential expression of the light-harvesting antenna of Chlamydomonas reinhardtii. Plant Cell 17(12):3409–3421

    Google Scholar 

  • Mussgnug JH et al (2007) Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotechnol J 5(6):802–814

    Google Scholar 

  • Nakazato E, Fukuzawa H, Tabata S, Takahashi H, Tanaka K (2003) Identification and expression analysis of cDNA encoding a chloroplast recombination protein REC1, the chloroplast RecA homologue in Chlamydomonas reinhardtii. Biosci Biotechnol Biochem 67(12):2608–2613

    Google Scholar 

  • Nelson JA, Lefebvre PA (1995) Targeted disruption of the NIT8 gene in Chlamydomonas reinhardtii. Mol Cell Biol 15(10):5762–5769

    Google Scholar 

  • Nelson JA, Savereide PB, Lefebvre PA (1994) The CRY1 gene in Chlamydomonas reinhardtii: structure and use as a dominant selectable marker for nuclear transformation. Mol Cell Biol 14(6):4011–4019

    Google Scholar 

  • Nickelsen J (2003) Chloroplast RNA-binding proteins. Curr Genet 43(6):392–399

    Google Scholar 

  • Oey M, Lohse M, Kreikemeyer B, Bock R (2009) Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. Plant J 57(3):436–445

    Google Scholar 

  • Oey M et al (2013) RNAi knock-down of LHCBM1, 2 and 3 increases photosynthetic H2 production efficiency of the green alga Chlamydomonas reinhardtii. PLoS ONE 8(4):e61375

    Google Scholar 

  • Oey M, Ross IL, Hankamer B (2014) Gateway-assisted vector construction to facilitate expression of foreign proteins in the chloroplast of single celled algae. PLoS ONE 9(2):e86841

    Google Scholar 

  • Ohnishi N, Mukherjee B, Tsujikawa T, Yanase M, Nakano H, Moroney JV, Fukuzawa H (2010) Expression of a low CO(2)-inducible protein, LCI1, increases inorganic carbon uptake in the green alga Chlamydomonas reinhardtii. Plant Cell 22(9):3105–3117

    Google Scholar 

  • Ohnuma M, Yokoyama T, Inouye T, Sekine Y, Tanaka K (2008) Polyethylene glycol (PEG)-mediated transient gene expression in a red alga, Cyanidioschyzon merolae 10D. Plant Cell Physiol 49(1):117–120

    Google Scholar 

  • Ohnuma M, Misumi O, Fujiwara T, Watanabe S, Tanaka K, Kuroiwa T (2009) Transient gene suppression in a red alga, Cyanidioschyzon merolae 10D. Protoplasma 236(1–4):107–112

    Google Scholar 

  • O’Neill BM et al (2012) An exogenous chloroplast genome for complex sequence manipulation in algae. Nucleic Acids Res 40(6):2782–2792

    MathSciNet  Google Scholar 

  • Pahlow M, Oschlies A (2013) Optimal allocation backs Droop’s cell-quota model. Mar Ecol Prog Ser 473:1–5

    Google Scholar 

  • Palenik B et al (2007) The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc Natl Acad Sci USA 104(18):7705–7710

    Google Scholar 

  • Palmer JD (1983) Chloroplast DNA exists in 2 orientations. Nature 301(5895):92–93

    Google Scholar 

  • Palmer JD, Thompson WF (1982) Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence is lost. Cell 29(2):537–550

    Google Scholar 

  • Pape M, Lambertz C, Happe T, Hemschemeier A (2012) Differential expression of the Chlamydomonas [FeFe]-hydrogenase-encoding HYDA1 gene is regulated by the copper response regulator1. Plant Physiol 159(4):1700–1712

    Google Scholar 

  • Park S, Lee Y, Lee JH, Jin E (2013) Expression of the high light-inducible Dunaliella LIP promoter in Chlamydomonas reinhardtii. Planta 238:1147–1156

    Google Scholar 

  • Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45(1):11–36

    Google Scholar 

  • Perrine Z, Negi S, Sayre RT (2012) Optimization of photosynthetic light energy utilization by microalgae. Algal Res 1(2):134–142

    Google Scholar 

  • Perry AS, Wolfe KH (2002) Nucleotide substitution rates in legume chloroplast DNA depend on the presence of the inverted repeat. J Mol Evol 55(5):501–508

    Google Scholar 

  • Petroutsos D, Terauchi AM, Busch A, Hirschmann I, Merchant SS, Finazzi G, Hippler M (2009) PGRL1 participates in iron-induced remodeling of the photosynthetic apparatus and in energy metabolism in Chlamydomonas reinhardtii. J Biol Chem 284(47):32770–32781

    Google Scholar 

  • Plaza M, Herrero M, Cifuentes A, Ibanez E (2009) Innovative natural functional ingredients from microalgae. J Agric Food Chem 57(16):7159–7170

    Google Scholar 

  • Poerschmann J, Spijkerman E, Langer U (2004) Fatty acid patterns in Chlamydomonas sp as a marker for nutritional regimes and temperature under extremely acidic conditions. Microb Ecol 48(1):78–89

    Google Scholar 

  • Polle JEW, Benemann JR, Tanaka A, Melis A (2000) Photosynthetic apparatus organization and function in the wild type and a chlorophyll b-less mutant of Chlamydomonas reinhardtii. Dependence on Carbon Source. Planta 211(3):335–344

    Google Scholar 

  • Polle JEW, Niyogi KK, Melis A (2001) Absence of lutein, violaxanthin and neoxanthin affects the functional chlorophyll antenna size of photosystem-ii but not that of photosystem-I in the green alga Chlamydomonas reinhardtii. Plant Cell Physiol 42(5):482–491

    Google Scholar 

  • Polle JE, Kanakagiri SD, Melis A (2003) tla1, a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size. Planta 217(1):49–59

    Google Scholar 

  • Pombert JF, Otis C, Lemieux C, Turmel M (2005) The chloroplast genome sequence of the green alga Pseudendoclonium akinetum (Ulvophyceae) reveals unusual structural features and new insights into the branching order of chlorophyte lineages. Mol Biol Evol 22(9):1903–1918

    Google Scholar 

  • Popescu CE, Lee RW (2007) Mitochondrial genome sequence evolution in Chlamydomonas. Genetics 175(2):819–826

    Google Scholar 

  • Poulsen N, Kroger N (2005) A new molecular tool for transgenic diatoms—control of mRNA and protein biosynthesis by an inducible promoter-terminator cassette. FEBS J 272(13):3413–3423

    Google Scholar 

  • Poulsen N, Chesley PM, Kroger N (2006) Molecular genetic manipulation of the diatom Thalassiosira pseudonana (Bacillariophyceae). J Phycol 42(5):1059–1065

    Google Scholar 

  • Price DC et al (2012) Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants. Science 335(6070):843–847

    Google Scholar 

  • Prochnik SE et al (2010) Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science 329(5988):223–226

    Google Scholar 

  • Proschold T, Harris EH, Coleman AW (2005) Portrait of a species: Chlamydomonas reinhardtii. Genetics 170(4):1601–1610

    Google Scholar 

  • Purton S (2007) Tools and techniques for chloroplast transformation of Chlamydomonas. Adv Exp Med Biol 616:34–45

    Google Scholar 

  • Purton S, Szaub JB, Wannathong T, Young R, Economou CK (2013) Genetic engineering of algal chloroplasts: progress and prospects. Russ J Plant Physiol 60(4):491–499

    Google Scholar 

  • Radakovits R, Eduafo PM, Posewitz MC (2011) Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum. Metab Eng 13(1):89–95

    Google Scholar 

  • Radakovits R, Jinkerson RE, Fuerstenberg SI, Tae H, Settlage RE, Boore JL, Posewitz MC (2012) Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana. Nat Commun 3:686

    Google Scholar 

  • Randolph-Anderson BL, Boynton JE, Gillham NW, Harris EH, Johnson AM, Dorthu MP, Matagne RF (1993) Further characterization of the respiratory deficient DUM-1 mutation of Chlamydomonas reinhardtii and its use as a recipient for mitochondrial transformation. Mol Gen Genet 236(2–3):235–244

    Google Scholar 

  • Rasala BA et al (2010) Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol J 8(6):719–733

    Google Scholar 

  • Rasala BA, Muto M, Sullivan J, Mayfield SP (2011) Improved heterologous protein expression in the chloroplast of Chlamydomonas reinhardtii through promoter and 5′ untranslated region optimization. Plant Biotechnol J 9(6):674–683

    Google Scholar 

  • Rasala BA, Lee PA, Shen Z, Briggs SP, Mendez M, Mayfield SP (2012) Robust Expression and Secretion of Xylanase1 in Chlamydomonas reinhardtii by fusion to a selection gene and processing with the FMDV 2A Peptide. PLoS One 7(8):e43349

    Google Scholar 

  • Rasala BA, Gimpel JA, Tran M, Hannon MJ, Miyake-Stoner SJ, Specht EA, Mayfield SP (2013) Genetic engineering to improve algal biofuels production. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Developments in applied phycology, vol 5. Springer, Berlin, pp 99–113

    Google Scholar 

  • Ravi V, Khurana JP, Tyagi AK, Khurana P (2008) An update on chloroplast genomes. Plant Syst Evol 271(1–2):101–122

    Google Scholar 

  • Raymond JA, Kim HJ (2012) Possible role of horizontal gene transfer in the colonization of sea ice by algae. PLoS ONE 7(5):e35968

    Google Scholar 

  • Read BA et al (2013) Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature 499(7457):209–213

    Google Scholar 

  • Reiss B, Klemm M, Kosak H, Schell J (1996) RecA protein stimulates homologous recombination in plants. Proc Natl Acad Sci USA 93(7):3094–3098

    Google Scholar 

  • Reiss B, Schubert I, Kopchen K, Wendeler E, Schell J, Puchta H (2000) RecA stimulates sister chromatid exchange and the fidelity of double-strand break repair, but not gene targeting, in plants transformed by Agrobacterium. Proc Natl Acad Sci USA 97(7):3358–3363

    Google Scholar 

  • Remacle C, Cardol P, Coosemans N, Gaisne M, Bonnefoy N (2006) High-efficiency biolistic transformation of Chlamydomonas mitochondria can be used to insert mutations in complex I genes. Proc Natl Acad Sci USA 103(12):4771–4776

    Google Scholar 

  • Remacle C, Larosa V, Salinas T, Hamel P, Subrahmanian N, Bonnefoy N, Kempken F (2012) Transformation and nucleic acid delivery to mitochondria. In: Bock R, Knoop V (eds) Genomics of chloroplasts and mitochondria, vol 35., Advances in photosynthesis and respirationSpringer, Netherlands, pp 443–458

    Google Scholar 

  • Riano-Pachon DM, Correa LGG, Trejos-Espinosa R, Mueller-Roeber B (2008) Green transcription factors: a chlamydomonas overview. Genetics 179(1):31–39

    Google Scholar 

  • Rismani-Yazdi H, Haznedaroglu BZ, Bibby K, Peccia J (2011) Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: pathway description and gene discovery for production of next-generation biofuels. BMC Genom 12:17

    Google Scholar 

  • Rochaix JD, Vandillewijn J (1982) Transformation of the green alga Chlamydomonas reinhardii with yeast DNA. Nature 296(5852):70–72

    Google Scholar 

  • Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112

    Google Scholar 

  • Roessler PG (1988a) Changes in the activities of various lipid and carbohydrate biosynthetic-enzymes in the diatom Cyclotella cryptica in response to silicon deficiency. Arch Biochem Biophys 267(2):521–528

    Google Scholar 

  • Roessler PG (1988b) Effects of silicon deficiency on lipid-composition and metabolism in the diatom Cyclotella cryptica. J Phycol 24(3):394–400

    Google Scholar 

  • Roessler PG (1990) Environmental-control of glycerolipid metabolism in microalgae—commercial implications and future-research directions. J Phycol 26(3):393–399

    Google Scholar 

  • Rohr J, Sarkar N, Balenger S, Jeong BR, Cerutti H (2004) Tandem inverted repeat system for selection of effective transgenic RNAi strains in Chlamydomonas. Plant J 40(4):611–621

    Google Scholar 

  • Rott R, Liveanu V, Drager RG, Stern DB, Schuster G (1998) The sequence and structure of the 3′-untranslated regions of chloroplast transcripts are important determinants of mRNA accumulation and stability. Plant Mol Biol 36(2):307–314

    Google Scholar 

  • Rowan BA, Oldenburg DJ, Bendich AJ (2010) RecA maintains the integrity of chloroplast DNA molecules in Arabidopsis. J Exp Bot 61(10):2575–2588

    Google Scholar 

  • Ruhlman T, Verma D, Samson N, Daniell H (2010) The role of heterologous chloroplast sequence elements in transgene integration and expression. Plant Physiol 152(4):2088–2104

    Google Scholar 

  • Sakaguchi T, Nakajima K, Matsuda Y (2011) Identification of the UMP synthase gene by establishment of uracil auxotrophic mutants and the phenotypic complementation system in the marine diatom phaeodactylum tricornutum. Plant Physiol 156(1):78–89

    Google Scholar 

  • Sakamoto W, Kindle KL, Stern DB (1993) Invivo analysis of chlamydomonas chloroplast petd gene-expression using stable transformation of beta-glucuronidase translational fusions. Proc Natl Acad Sci USA 90(2):497–501

    Google Scholar 

  • Salvador ML, Klein U, Bogorad L (1993) 5′ sequences are important positive and negative determinants of the longevity of chlamydomonas chloroplast gene transcripts. Proc Natl Acad Sci USA 90(4):1556–1560

    Google Scholar 

  • Sander JD, Joung JK (2014) CRISPR-cas systems for editing, regulating and targeting genomes. Nat Biotech 32(4):347–355

    Google Scholar 

  • Schiedlmeier B, Schmitt R, Muller W, Kirk MM, Gruber H, Mages W, Kirk DL (1994) Nuclear transformation of Volvox carteri. Proc Natl Acad Sci USA 91(11):5080–5084

    Google Scholar 

  • Schmollinger S, Strenkert D, Schroda M (2010) An inducible artificial microRNA system for Chlamydomonas reinhardtii confirms a key role for heat shock factor 1 in regulating thermotolerance. Curr Genet 56(4):383–389

    Google Scholar 

  • Schönfeld C, Wobbe L, Borgstädt R, Kienast A, Nixon PJ, Kruse O (2004) The nucleus-encoded protein MOC1 is essential for mitochondrial light acclimation in Chlamydomonas reinhardtii. J Biol Chem 279(48):50366–50374

    Google Scholar 

  • Schonknecht G et al (2013) Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science 339(6124):1207–1210

    Google Scholar 

  • Schroda M, Vallon O, Wollman FA, Beck CF (1999) A chloroplast-targeted heat shock protein 70 (HSP70) contributes to the photoprotection and repair of photosystem II during and after photoinhibition. Plant Cell 11(6):1165–1178

    Google Scholar 

  • Schroda M, Blocker D, Beck CF (2000) The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. Plant J 21(2):121–131

    Google Scholar 

  • Schulze T, Prager K, Dathe H, Kelm J, Kiessling P, Mittag M (2010) How the green alga Chlamydomonas reinhardtii keeps time. Protoplasma 244(1–4):3–14

    Google Scholar 

  • Seitz SB, Voytsekh O, Mohan KM, Mittag M (2010) The role of an E-box element: multiple frunctions and interacting partners. Plant Signal Behav 5(9):1077–1080

    Google Scholar 

  • Shalev G, Sitrit Y, Avivi-Ragolski N, Lichtenstein C, Levy AA (1999) Stimulation of homologous recombination in plants by expression of the bacterial resolvase RuvC. Proc Natl Acad Sci USA 96(13):7398–7402

    Google Scholar 

  • Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: The tortoise and the hare III. Am J Bot 94(3):275–288

    Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U.S. department of energy’s aquatic species program-biodiesel from algae. National Renewable Energy Institute, NREL/TP-580-24190, Golden, CO

    Google Scholar 

  • Shimogawara K, Fujiwara S, Grossman A, Usuda H (1998) High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics 148(4):1821–1828

    Google Scholar 

  • Siaut M et al (2011) Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol 11:7

    Google Scholar 

  • Sizova I, Fuhrmann M, Hegemann P (2001) A Streptomyces rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii. Gene 277(1–2):221–229

    Google Scholar 

  • Sizova I, Greiner A, Awasthi M, Kateriya S, Hegemann P (2013) Nuclear gene targeting in Chlamydomonas using engineered zinc-finger nucleases. Plant J 73:873–882

    Google Scholar 

  • Smart EJ, Selman BR (1993) Complementation of a chlamydomonas-reinhardtii mutant defective in the nuclear gene encoding the chloroplast coupling factor-I (CF1) gamma-subunit (ATPC). J Bioenerg Biomembr 25(3):275–284

    Google Scholar 

  • Smith GR (2012) How RecBCD enzyme and Chi promote DNA break repair and recombination: a molecular biologist’s view. Microbiol Mol Biol Rev 76(2):217–228

    Google Scholar 

  • Smith VH, Sturm BSM, deNoyelles FJ, Billings SA (2010) The ecology of algal biodiesel production. Trends Ecol Evol 25(5):301–309

    Google Scholar 

  • Sodeinde OA, Kindle KL (1993) Homologous recombination in the nuclear genome of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 90(19):9199–9203

    Google Scholar 

  • Sommer F, Kropat J, Malasarn D, Grossoehme NE, Chen X, Giedroc DP, Merchant SS (2010) The CRR1 nutritional copper sensor in Chlamydomonas contains two distinct metal-responsive domains. Plant Cell 22(12):4098–4113

    Google Scholar 

  • Specht E, Miyake-Stoner S, Mayfield S (2010) Micro-algae come of age as a platform for recombinant protein production. Biotechnol Lett 32(10):1373–1383

    Google Scholar 

  • Speight JG (2006) The Chemistry and Technology of Petroleum. CRC Press

    Google Scholar 

  • Spoehr HA, Milner HW (1949) The chemical composition of chlorella—effect of environmental conditions. Plant Physiol 24(1):120–149

    Google Scholar 

  • Stein DB, Palmer JD, Thompson WF (1986) Structural evolution and flip-flop recombination of chloroplast DNA in the fern genus osmunda. Curr Genet 10(11):835–841

    Google Scholar 

  • Steinbrenner J, Sandmann G (2006) Transformation of the green alga Haematococcus pluvialis with a phytoene desaturase for accelerated astaxanthin biosynthesis. Appl Environ Microbiol 72(12):7477–7484

    Google Scholar 

  • Stephens E, De Nys R, Ross IL, Hankamer B (2013a) Algae fuels as an alternative to petroleum. J Pet Environ Biotechnol 4(4):148. http://www.omicsonline.org/algae-fuels-as-an-alternative-to-petroleum-2157-7463.1000148.pdf

  • Stephens E, Ross IL, Hankamer B (2013b) Expanding the microalgal industry—continuing controversy or compelling case? Curr Opin Chem Biol 17(3):444–452

    Google Scholar 

  • Stern DB, Gruissem W (1987) Control of plastid gene-expression—3′ inverted repeats act as messenger-RNA processing and stabilizing elements, But do not terminate transcription. Cell 51(6):1145–1157

    Google Scholar 

  • Stern DB, Radwanski ER, Kindle KL (1991) A 3′ stem/loop structure of the Chlamydomonas chloroplast atpB gene regulates mRNA accumulation in vivo. Plant Cell 3(3):285–297

    Google Scholar 

  • Stevens DR, Rochaix JD, Purton S (1996) The bacterial phleomycin resistance gene ble as a dominant selectable marker in Chlamydomonas. Mol Gen Genet 251(1):23–30

    Google Scholar 

  • Strenkert D, Schmollinger S, Sommer F, Schulz-Raffelt M, Schroda M (2011) Transcription factor-dependent chromatin remodeling at heat shock and copper-responsive promoters in Chlamydomonas reinhardtii. Plant Cell 23(6):2285–2301

    Google Scholar 

  • Strenkert D, Schmollinger S, Schroda M (2013) Heat shock factor 1 counteracts epigenetic silencing of nuclear transgenes in Chlamydomonas reinhardtii. Nucleic Acids Res 41(10):5273–5289

    Google Scholar 

  • Sun Y, Yang Z, Gao X, Li Q, Zhang Q, Xu Z (2005) Expression of foreign genes in Dunaliella by electroporation. Mol Biotechnol 30(3):185–192

    Google Scholar 

  • Sun G, Zhang X, Sui Z, Mao Y (2008) Inhibition of pds gene expression via the RNA interference approach in Dunaliella salina (Chlorophyta). Mar Biotechnol (NY) 10(3):219–226

    Google Scholar 

  • Sunda WG, Graneli E, Gobler CJ (2006) Positive feedback and the development and persistence of ecosystem disruptive algal blooms. J Phycol 42:963–974

    Google Scholar 

  • Sung P, Klein H (2006) Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat Rev Mol Cell Biol 7(10):739–750

    Google Scholar 

  • Surzycki R, Cournac L, Peltier G, Rochaix JD (2007) Potential for hydrogen production with inducible chloroplast gene expression in Chlamydomonas. Proc Natl Acad Sci USA 104(44):17548–17553

    Google Scholar 

  • Surzycki R et al (2009) Factors effecting expression of vaccines in microalgae. Biologicals 37(3):133–138

    Google Scholar 

  • Hosseini Tafreshi A, Shariati M (2009) Dunaliella biotechnology: methods and applications. J Appl Microbiol 107(1):14–35

    Google Scholar 

  • Tam LW, Lefebvre PA (1993) Cloning of flagellar genes in Chlamydomonas reinhardtii by DNA insertional mutagenesis. Genetics 135(2):375–384

    Google Scholar 

  • Tan C, Qin S, Zhang Q, Jiang P, Zhao F (2005) Establishment of a micro-particle bombardment transformation system for Dunaliella salina. J Microbiol 43(4):361–365

    Google Scholar 

  • Tanaka A, Ito H, Tanaka R, Tanaka NK, Yoshida K, Okada K (1998) Chlorophyll a oxygenase (CAO) is Involved in Chlorophyll b Formation from Chlorophyll a. Proc Natl Acad Sci USA 95(21):12719–12723

    Google Scholar 

  • ten Lohuis MR, Miller DJ (1998) Genetic transformation of dinoflagellates (Amphidinium and Symbiodinium): expression of GUS in microalgae using heterologous promoter constructs. Plant J 13(3):427–435

    Google Scholar 

  • Teng CY, Qin S, Liu JG, Yu DZ, Liang CW, Tseng CK (2002) Transient expression of lacZ in bombarded unicellular green alga Haematococcus pluvialis. J Appl Phycol 14(6):497–500

    Google Scholar 

  • Tolleter D et al (2011) Control of hydrogen photoproduction by the proton gradient generated by cyclic electron flow in Chlamydomonas reinhardtii. Plant Cell 23(7):2619–2630

    Google Scholar 

  • Tran M, Zhou B, Pettersson PL, Gonzalez MJ, Mayfield SP (2009) Synthesis and assembly of a full-length human monoclonal antibody in algal chloroplasts. Biotechnol Bioeng 104(4):663–673

    Google Scholar 

  • Tran M, Van C, Barrera DJ, Pettersson PL, Peinado CD, Bui J, Mayfield SP (2013) Production of unique immunotoxin cancer therapeutics in algal chloroplasts. Proc Natl Acad Sci USA 110(1):E15–E22

    Google Scholar 

  • Trebitsh T, Levitan A, Sofer A, Danon A (2000) Translation of chloroplast psbA mRNA is modulated in the light by counteracting oxidizing and reducing activities. Mol Cell Biol 20(4):1116–1123

    Google Scholar 

  • Trentacoste EM, Shrestha RP, Smith SR, Gle C, Hartmann AC, Hildebrand M, Gerwick WH (2013) Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc Natl Acad Sci USA 110(49):19748–19753

    Google Scholar 

  • Vahrenholz C, Riemen G, Pratje E, Dujon B, Michaelis G (1993) Mitochondrial-DNA of Chlamydomonas reinhardtii—the structure of the ends of the linear 15.8-KB genome suggests mechanisms for DNA-replication. Curr Genet 24(3):241–247

    Google Scholar 

  • Van Dolah FM, Roelke D, Greene RM (2001) Health and ecological impacts of harmful algal blooms: risk assessment needs. Hum Ecol Risk Assess 7:1329–1345

    Google Scholar 

  • Vieler A et al (2012) Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. Plos Genet 8(11):e1003064

    Google Scholar 

  • Vinyard DJ, Gimpel J, Ananyev GM, Mayfield SP, Dismukes GC (2014) Engineered photosystem II reaction centers optimize photochemistry versus photoprotection at different solar intensities. J Am Chem Soc 136(10):4048–4055

    Google Scholar 

  • Walker TL, Purton S, Becker DK, Collet C (2005) Microalgae as bioreactors. Plant Cell Rep 24(11):629–641

    Google Scholar 

  • Wang C, Wang Y, Su Q, Gao X (2007) Transient expression of the GUS gene in a unicellular marine green alga, Chlorella sp MACC/C95, via electroporation. Biotechnol Bioprocess Eng 12(2):180–183

    Google Scholar 

  • Wijffels RH, Kruse O, Hellingwerf KJ (2013) Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr Opin Biotechnol 24(3):405–413

    Google Scholar 

  • Wilson NF, Lefebvre PA (2004) Regulation of flagellar assembly by glycogen synthase kinase 3 in Chlamydomonas reinhardtii. Eukaryot Cell 3(5):1307–1319

    Google Scholar 

  • Wobbe L, Schwarz C, Nickelsen J, Kruse O (2008) Translational control of photosynthetic gene expression in phototrophic eukaryotes. Physiol Plant 133(3):507–515

    Google Scholar 

  • Wobbe L, Blifernez O, Schwarz C, Mussgnug JH, Nickelsen J, Kruse O (2009) Cysteine modification of a specific repressor protein controls the translational status of nucleus-encoded LHCII mRNAs in Chlamydomonas. Proc Natl Acad Sci USA 106(32):13290–13295

    Google Scholar 

  • Worden AZ et al (2009) Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science 324(5924):268–272

    Google Scholar 

  • Work VH et al (2010) Increased lipid accumulation in the Chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryot Cell 9(8):1251–1261

    Google Scholar 

  • Wykoff DD, Grossman AR, Weeks DP, Usuda H, Shimogawara K (1999) Psr1, a nuclear localized protein that regulates phosphorus metabolism in Chlamydomonas. Proc Natl Acad Sci USA 96(26):15336–15341

    Google Scholar 

  • Yamasaki T, Kurokawa S, Watanabe KI, Ikuta K, Ohama T (2005) Shared molecular characteristics of successfully transformed mitochondrial genomes in Chlamydomonas reinhardtii. Plant Mol Biol 58(4):515–527

    Google Scholar 

  • Yamasaki T, Voshall A, Kim EJ, Moriyama E, Cerutti H, Ohama T (2013) Complementarity to an miRNA seed region is sufficient to induce moderate repression of a target transcript in the unicellular green alga Chlamydomonas reinhardtii. Plant J 76(6):1045–1056

    Google Scholar 

  • Yoon K, Han DX, Li YT, Sommerfeld M, Hu Q (2012) Phospholipid: diacylglycerol acyltransferase is a multifunctional enzyme involved in membrane lipid turnover and degradation while synthesizing triacylglycerol in the unicellular green microalga Chlamydomonas reinhardtii. Plant Cell 24(9):3708–3724

    Google Scholar 

  • Yoshioka S, Taniguchi F, Miura K, Inoue T, Yamano T, Fukuzawa H (2004) The novel Myb transcription factor LCR1 regulates the CO2-responsive gene Cah1, encoding a periplasmic carbonic anhydrase in Chlamydomonas reinhardtii. Plant Cell 16(6):1466–1477

    Google Scholar 

  • Yu WL, Ansari W, Schoepp NG, Hannon MJ, Mayfield SP, Burkart MD (2011) Modifications of the metabolic pathways of lipid and triacylglycerol production in microalgae. Microb Cell Fact 10:11

    Google Scholar 

  • Zabawinski C et al (2001) Starchless mutants of Chlamydomonas reinhardtii lack the small subunit of a heterotetrameric ADP-glucose pyrophosphorylase. J Bacteriol 183(3):1069–1077

    Google Scholar 

  • Zaslavskaia LA, Lippmeier JC, Kroth PG, Grossman AR, Apt KE (2000) Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes. J Phycol 36(2):379–386

    Google Scholar 

  • Zaslavskaia LA, Lippmeier JC, Shih C, Ehrhardt D, Grossman AR, Apt KE (2001) Trophic obligate conversion of an photoautotrophic organism through metabolic engineering. Science 292(5524):2073–2075

    Google Scholar 

  • Zerges W (2000) Translation in chloroplasts. Biochimie 82(6–7):583–601

    Google Scholar 

  • Zhang X et al (2012) De novo sequencing and analysis of the Ulva linza transcriptome to discover putative mechanisms associated with its successful colonization of coastal ecosystems. BMC Genom 13:565

    Google Scholar 

  • Zhang R, Patena W, Armbruster U, Gang SS, Blum SR, Jonikas MC (2014) High-throughput genotyping of green algal mutants reveals random distribution of mutagenic insertion sites and endonucleolytic cleavage of transforming DNA. Plant Cell 26(4):1398–1409

    Google Scholar 

  • Zhao T, Li G, Mi S, Li S, Hannon GJ, Wang XJ, Qi Y (2007) A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev 21(10):1190–1203

    Google Scholar 

  • Zhao T, Wang W, Bai X, Qi Y (2009) Gene silencing by artificial microRNAs in Chlamydomonas. Plant J 58(1):157–164

    Google Scholar 

  • Zhu XG, Long SP, Ort DR (2010) Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol 61(61):235–261

    Google Scholar 

  • Zorin B, Hegemann P, Sizova I (2005) Nuclear-gene targeting by using single-stranded DNA avoids illegitimate DNA integration in Chlamydomonas reinhardtii. Eukaryot Cell 4(7):1264–1272

    Google Scholar 

  • Zorin B, Lu Y, Sizova I, Hegemann P (2009) Nuclear gene targeting in Chlamydomonas as exemplified by disruption of the PHOT gene. Gene 432(1–2):91–96

    Google Scholar 

  • Zou Z, Eibl C, Koop HU (2003) The stem-loop region of the tobacco psbA 5′ UTR is an important determinant of mRNA stability and translation efficiency. Mol Genet Genomics 269(3):340–349

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge support from Australian federal research grants: NHMRC Project Grant APP1074296, ARC Project Grant DP130100346 and the Queensland State Government NIRAP Grant High Efficiency Microalgal Biofuel Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian L. Ross .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stephens, E., Wolf, J., Oey, M., Zhang, E., Hankamer, B., Ross, I.L. (2015). Genetic Engineering for Microalgae Strain Improvement in Relation to Biocrude Production Systems. In: Moheimani, N., McHenry, M., de Boer, K., Bahri, P. (eds) Biomass and Biofuels from Microalgae. Biofuel and Biorefinery Technologies, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-16640-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16640-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16639-1

  • Online ISBN: 978-3-319-16640-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics