Skip to main content

Part of the book series: Cancer Treatment and Research ((CTAR,volume 166))

Abstract

Nanoparticle properties such as size, shape, deformability, and surface chemistry all play a role in nanomedicine drug delivery in cancer. While many studies address the behavior of particle systems in a biological setting, revealing how these properties work together presents unique challenges on the nanoscale. “Calibration-quality” control over such properties is needed to draw adequate conclusions that are independent of parameter variability. Furthermore, active targeting and drug loading strategies introduce even greater complexities via their potential to alter particle pharmacokinetics. Ultimately, the investigation and optimization of particle properties should be carried out in the appropriate preclinical tumor model. In doing so, translational efficacy improves as clinical tumor properties increase. Looking forward, the field of nanomedicine will continue to have significant clinical impacts as the capabilities of nanoparticulate drug delivery are further enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jain RK, Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7(11):653–664

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53(2):283–318

    CAS  PubMed  Google Scholar 

  3. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer-chemotherapy—mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12):6387–6392

    CAS  PubMed  Google Scholar 

  4. Peer D et al (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nano 2(12):751–760

    Article  CAS  Google Scholar 

  5. Marusyk A, Almendro V, Polyak K (2012) Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer 12(5):323–334

    Article  CAS  PubMed  Google Scholar 

  6. Van Furth R (1982) Current view on the mononuclear phagocyte system. Immunobiology 161(3–4):178–185

    Article  PubMed  Google Scholar 

  7. Nel AE et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8(7):543–557

    Article  CAS  PubMed  Google Scholar 

  8. Champion JA, Katare YK, Mitragotri S (2007) Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J Controlled Release 121(1–2):3–9

    Article  CAS  Google Scholar 

  9. Euliss LE et al (2006) Imparting size, shape, and composition control of materials for nanomedicine. Chem Soc Rev 35(11):1095–1104

    Article  CAS  PubMed  Google Scholar 

  10. Kersey FR et al (2012) Effect of aspect ratio and deformability on nanoparticle extravasation through nanopores. Langmuir 28(23):8773–8781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Byrne JD, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60(15):1615–1626

    Article  CAS  PubMed  Google Scholar 

  12. Benhabbour SR et al (2012) In vitro and in vivo assessment of targeting lipid-based nanoparticles to the epidermal growth factor-receptor (EGFR) using a novel Heptameric Z(EGFR) domain. J Controlled Release 158(1):63–71

    Article  CAS  Google Scholar 

  13. Mahon E et al (2012) Designing the nanoparticle-biomolecule interface for targeting and therapeutic delivery. J Controlled Release 161(2):164–174

    Article  CAS  Google Scholar 

  14. Liu Y et al (2012) The shape of things to come: importance of design in nanotechnology for drug delivery. Ther deliv 3(2):181–194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Rolland JP et al (2005) Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J Am Chem Soc 127(28):10096–10100

    Article  CAS  PubMed  Google Scholar 

  16. Alexis F et al (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5(4):505–515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Albanese A, Tang PS, Chan WCW (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14(14):1–16

    Article  CAS  PubMed  Google Scholar 

  18. Champion JA, Katare YK, Mitragotri S (2007) Making polymeric micro- and nanoparticles of complex shapes. Proc Nat Acad Sci USA 104(29):11901–11904

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Champion JA, Mitragotri S (2009) Shape induced inhibition of phagocytosis of polymer particles. Pharm Res 26(1):244–249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Carboni E et al (2014) Particle margination and its implications on intravenous anticancer drug delivery. Aaps Pharmscitech 15(3):762–771

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Decuzzi P et al (2010) Size and shape effects in the biodistribution of intravascularly injected particles. J Controlled Release 141(3):320–327

    Article  CAS  Google Scholar 

  22. Gentile F et al (2008) The effect of shape on the margination dynamics of non-neutrally buoyant particles in two-dimensional shear flows. J Biomech 41(10):2312–2318

    Article  CAS  PubMed  Google Scholar 

  23. Geng Y et al (2007) Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2(4):249–255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Gratton SEA et al (2008) The effect of particle design on cellular internalization pathways. Proc Nat Acad Sci USA 105(33):11613–11618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Toy R et al (2014) Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine 9(1):121–134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Decuzzi P et al (2005) A theoretical model for the margination of particles within blood vessels. Ann Biomed Eng 33(2):179–190

    Article  CAS  PubMed  Google Scholar 

  27. Decuzzi P et al (2009) Intravascular delivery of particulate systems: does geometry really matter? Pharm Res 26(1):235–243

    Article  CAS  PubMed  Google Scholar 

  28. Champion JA, Mitragotri S (2006) Role of target geometry in phagocytosis. Proc Nat Acad Sci USA 103(13):4930–4934

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Sharma G et al (2010) Polymer particle shape independently influences binding and internalization by macrophages. J Controlled Release 147(3):408–412

    Article  CAS  Google Scholar 

  30. Arnida et al (2011) Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. Eur J Pharm Biopharm 77(3):417–423

    Google Scholar 

  31. Perrault SD et al (2009) Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett 9(5):1909–1915

    Article  CAS  PubMed  Google Scholar 

  32. Dreher MR et al (2006) Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst 98(5):335–344

    Article  CAS  PubMed  Google Scholar 

  33. Cabral H et al (2011) Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 6(12):815–823

    Article  CAS  PubMed  Google Scholar 

  34. Chauhan VP et al (2011) Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. Angew Chem Int Ed 50(48):11417–11420

    Article  CAS  Google Scholar 

  35. Chu KS et al (2013) Plasma, tumor and tissue pharmacokinetics of Docetaxel delivered via nanoparticles of different sizes and shapes in mice bearing SKOV-3 human ovarian carcinoma xenograft. Nanomed Nanotechnol Biol Med 9(5):686–693

    Article  CAS  Google Scholar 

  36. Chu KS et al (2013) Nanoparticle drug loading as a design parameter to improve docetaxel pharmacokinetics and efficacy. Biomaterials 34(33):8424–8429

    Article  CAS  PubMed  Google Scholar 

  37. Christian DA et al (2009) Flexible filaments for in vivo imaging and delivery: persistent circulation of filomicelles opens the dosage window for sustained tumor shrinkage. Mol Pharm 6(5):1343–1352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Park J-H et al (2008) Magnetic iron oxide nanoworms for tumor targeting and imaging. Adv Mater 20(9):1630–1635

    Google Scholar 

  39. Sarin H (2010) Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J Angiogenesis Res 2:14

    Google Scholar 

  40. Merkel TJ et al (2011) Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc Nat Acad Sci USA 108(2):586–591

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Zhang L et al (2012) Softer zwitterionic nanogels for longer circulation and lower splenic accumulation. ACS Nano 6(8):6681–6686

    Article  CAS  PubMed  Google Scholar 

  42. Bae Y et al (2003) Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change. Angew Chem Int Ed 42(38):4640–4643

    Article  CAS  Google Scholar 

  43. Bohmer MR et al (2009) Ultrasound triggered image-guided drug delivery. Eur J Radiol 70(2):242–253

    Article  PubMed  Google Scholar 

  44. Caldorera-Moore M et al (2010) Designer nanoparticles: incorporating size, shape and triggered release into nanoscale drug carriers. Expert Opin Drug Deliv 7(4):479–495

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Doshi N, Mitragotri S (2009) Designer biomaterials for nanomedicine. Adv Funct Mater 19(24):3843–3854

    Article  CAS  Google Scholar 

  46. Ganta S et al (2008) A review of stimuli-responsive nanocarriers for drug and gene delivery. J Controlled Release 126(3):187–204

    Article  CAS  Google Scholar 

  47. Makadia HK, Siegel SJ (2011) Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3(3):1377–1397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Sethi M et al (2014) Effect of drug release kinetics on nanoparticle therapeutic efficacy and toxicity. Nanoscale 6(4):2321–2327

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Kratz F et al (2008) Prodrug strategies in anticancer chemotherapy. ChemMedChem 3(1):20–53

    Article  CAS  PubMed  Google Scholar 

  50. Chu KS et al (2014) Particle replication in nonwetting templates nanoparticles with tumor selective alkyl silyl ether docetaxel prodrug reduces toxicity. Nano Lett 14:1472–1476

    Google Scholar 

  51. Tannock IF, Rotin D (1989) Acid PH in tumors and its potential for therapeutic exploitation. Cancer Res 49(16):4373–4384

    CAS  PubMed  Google Scholar 

  52. Parrott MC et al (2012) Incorporation and controlled release of silyl ether prodrugs from PRINT nanoparticles. J Am Chem Soc 134(18):7978–7982

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Wang W et al (2014) Tailor-made gemcitabine prodrug nanoparticles from well-defined drug-polymer amphiphiles prepared by controlled living radical polymerization for cancer chemotherapy. J Mater Chem B 2(13):1891–1901

    Article  CAS  Google Scholar 

  54. Gref R et al (2000) Stealth corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf, B 18(3–4):301–313

    Article  CAS  Google Scholar 

  55. Perry JL et al. (2012) PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett 12(10):5304–5310

    Google Scholar 

  56. García I, Marradi M, Penadés S (2010) Glyconanoparticles: multifunctional nanomaterials for biomedical applications. Nanomedicine 5(5):777–792

    Article  PubMed  Google Scholar 

  57. García KP et al (2014) Zwitterionic-coated stealth nanoparticles for biomedical applications: recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. Small 10(13):2516–2529

    Article  Google Scholar 

  58. Pirollo KF, Chang EH (2008) Does a targeting ligand influence nanoparticle tumor localization or uptake? Trends Biotechnol 26(10):552–558

    Article  CAS  PubMed  Google Scholar 

  59. Lammers T et al (2012) Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress. J Controlled Release 161(2):175–187

    Article  CAS  Google Scholar 

  60. Kamaly N et al (2012) Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 41(7):2971–3010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Hrkach J et al (2012) Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Science Translational Medicine 4(128)

    Google Scholar 

  62. Wang J et al (2010) The complex role of multivalency in nanoparticles targeting the transferrin receptor for cancer therapies. J Am Chem Soc 132(32):11306–11313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Decuzzi P, Ferrari M (2006) The adhesive strength of non-spherical particles mediated by specific interactions. Biomaterials 27(30):5307–5314

    Article  CAS  PubMed  Google Scholar 

  64. Shah S et al (2011) Modeling particle shape-dependent dynamics in nanomedicine. J Nanosci Nanotechnol 11(2):919–928

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Liu Y, Shah S, Tan J (2012) Computational modeling of nanoparticle targeted drug delivery. Rev Nanosci Nanotechnol 1(1):66–83

    Article  CAS  Google Scholar 

  66. Kolhar P et al (2013) Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc Nat Acad Sci USA 110(26):10753–10758

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Morigi V (2012) Nanotechnology in medicine: from inception to market domination. J drug delivery 2012:389485

    Google Scholar 

  68. Combest AJ et al (2012) Genetically engineered cancer models, but not xenografts, faithfully predict anticancer drug exposure in melanoma tumors. Oncologist 17(10):1303–1316

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Usary J et al (2013) Predicting drug responsiveness in human cancers using genetically engineered mice. Clin Cancer Res 19(17):4889–4899

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Herschkowitz JI et al (2007) Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 8(5):R76

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph M. DeSimone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Perry, J.L., Kai, M.P., Reuter, K.G., Bowerman, C., Christopher Luft, J., DeSimone, J.M. (2015). Calibration-Quality Cancer Nanotherapeutics. In: Mirkin, C., Meade, T., Petrosko, S., Stegh, A. (eds) Nanotechnology-Based Precision Tools for the Detection and Treatment of Cancer. Cancer Treatment and Research, vol 166. Springer, Cham. https://doi.org/10.1007/978-3-319-16555-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16555-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16554-7

  • Online ISBN: 978-3-319-16555-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics