Skip to main content

Carbohydrate Secondary and Tertiary Structure Using Raman Spectroscopy

  • Reference work entry
  • First Online:
Polysaccharides

Abstract

Raman spectroscopy is a long-established analytical technique that has now proliferated into a variety of research tools that are able to identify and characterize almost any type of molecule under most conditions. As such, Raman spectroscopies are well suited to the study of carbohydrates, from simple monosaccharides to the largest glycosaminoglycans and from industrial bioreactors to in situ measurements on living cells. This review covers a range of examples of how Raman techniques are addressing the questions of glycobiologists working on diverse aspects of this fascinating but poorly understood class of biomolecules. Focus is placed on the application of Raman, surface-enhanced Raman, Raman optical activity, and related spectroscopies to characterizing carbohydrates of all types, with only a general introduction to the theory of the techniques themselves. Particular attention is also paid to the computational tools now regularly used by spectroscopists to analyze complex data. Although this review is aimed at the glycobiology community, the examples discussed also demonstrate to the expert spectroscopist how their techniques can impact on the exciting opportunities presented by working with carbohydrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Åkeson M, Brackmann C, Gustafsson L, Enejder A (2010) Chemical imaging of glucose by CARS microscopy. J Raman Spectrosc 41:1638–1644

    Google Scholar 

  • Albrecht MG, Creighton JA (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99:5215–5217

    CAS  Google Scholar 

  • Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453

    CAS  Google Scholar 

  • Arboleda PH, Loppnow GR (2000) Raman spectroscopy as a discovery tool in carbohydrate chemistry. Anal Chem 72:2093–2098

    CAS  Google Scholar 

  • Ashton LA, Pudney PDA, Blanch EW, Yakubov GA (2013) Understanding glycoprotein behaviours using Raman and Raman optical activity spectroscopies: Characterising the entanglement induced conformational changes in oligosaccharide chains of mucin. Adv Colloid Interface Sci 199:66–77

    Google Scholar 

  • Atkins PW, Barron LD (1969) Rayleigh scattering of polarized photons by molecules. Mol Phys 16:453–466

    CAS  Google Scholar 

  • Avetisyan A, Jensen JB, Huser T (2013) Monitoring Trehalose Uptake and Conversion by Single Bacteria using Laser Tweezers Raman Spectroscopy. Anal Chem 85:7264–7270

    CAS  Google Scholar 

  • Bailo E, Deckert V (2008) Tip-enhanced Raman scattering. Chem Soc Rev 37:921–930

    CAS  Google Scholar 

  • Bansil R, Yannas IV, Stanley HE (1978) Raman spectroscopy: a structural probe of glycosaminoglycans. Biochim Biophys Acta 541:535–542

    CAS  Google Scholar 

  • Barman I, Dingari NC, Kang JW, Horowitz GL, Dasari RR, Feld MS (2012) Raman Spectroscopy-Based Sensitive and Specific Detection of Glycated Hemoglobin. Anal Chem 84:2474–2482

    CAS  Google Scholar 

  • Barron LD, Blanch EW (2009) Raman optical activity of biological molecules. In: Matousek P, Morris M (eds) Emerging biomedical and pharmaceutical applications of Raman spectroscopy. Springer, Berlin/Heidelberg

    Google Scholar 

  • Barron LD, Bogaard MP, Buckingham AD (1973) Raman scattering of circularly polarized light by optically active molecules. J Am Chem Soc 95:603–605

    CAS  Google Scholar 

  • Barron LD, Gargaro AR, Wen ZQ, MacNicol DD, Butters C (1990) Vibrational Raman optical activity of cyclodextrins. Tetrahedron-Asymmetry 1:513–516

    CAS  Google Scholar 

  • Barron LD, Gargaro AR, Hecht L, Polavarapu PL (1991a) Experimental and ab initio theoretical vibrational Raman optical activity of alanine. Spectrochim Acta A 47:1001–1016

    Google Scholar 

  • Barron LD, Gargaro AR, Wen ZQ (1991b) Vibrational Raman optical activity of carbohydrates. Carbohydr Res 210:39–49

    CAS  Google Scholar 

  • Barron LD, Gargaro AR, Hecht L, Polavarapu PL, Sugeta H (1992) Experimental and ab initio theoretical vibrational Raman optical activity of tartaric acid. Spectrochim Acta A 48:1051–1066

    Google Scholar 

  • Barron LD, Hecht L, Blanch EW, Bell AF (2000) Solution structure and dynamics of biomolecules from Raman optical activity. Prog Biophys Mol Biol 73:1–49

    CAS  Google Scholar 

  • Barron LD, Blanch EW, Bell AF, Syme CD, Day LA, Hecht L (2003) New insight into solution structure and dynamics of proteins, nucleic acids and viruses from Raman optical activity. In: Hicks JM (ed) Chirality: physical chirality. ACS Books, Clarendon Hills

    Google Scholar 

  • Barron LD, Hecht L, McColl IH, Blanch EW (2004) Raman optical activity comes of age. Mol Phys 102:731–744

    CAS  Google Scholar 

  • Bell AF, Barron LD, Hecht L (1994a) Vibrational Raman optical activity study of D-glucose. Carbohydr Res 257:11–24

    CAS  Google Scholar 

  • Bell AF, Hecht L, Barron LD (1994b) Disaccharide Solution Stereochemistry from Vibrational Raman Optical Activity. J Am Chem Soc 116:5155–5161

    CAS  Google Scholar 

  • Bell AF, Ford SJ, Hecht L, Wilson G, Barron LD (1994c) Vibrational Raman optical activity of glycoproteins. Int J Biol Macromol 16:277–278

    CAS  Google Scholar 

  • Bell AF, Hecht L, Barron LD (1995) Polysaccharide vibrational Raman optical activity: Laminarin and pullulan. J Raman Spectrosc 26:1071–1074

    CAS  Google Scholar 

  • Bell AF, Hecht L, Barron LD (1997) New evidence for conformational flexibility in cyclodextrins from vibrational Raman optical activity. Chem Eur J 3:1292–1298

    CAS  Google Scholar 

  • Blanch EW, Hecht L, Barron LD (2003) Vibrational Raman optical activity of proteins, nucleic acids, and viruses. Methods 29:196–209

    CAS  Google Scholar 

  • Blundell CD, DeAngelis PL, Almond A (2006) Hyaluronan: the absence of amide-carboxylate hydrogen bonds and the chain conformation in aqueous solution are incompatible with stable secondary and tertiary structure models. Biochem J 396:487–498

    CAS  Google Scholar 

  • Bose PK, Barron LD, Polavarapu PL (1989) Ab initio and experimental vibrational Raman optical activity in (+)-(R)-methylthiirane. Chem Phys Lett 155:423–429

    CAS  Google Scholar 

  • Bour P, Sopkova J, Bednarova L, Malon P, Keiderling TA (1997) Transfer of molecular property tensors in Cartesian coordinates: A new algorithm for simulation of vibrational spectra, J Chem Theory Comput 5:646–659

    Google Scholar 

  • Brewster VL, Ashton L, Goodacre R (2011) Monitoring the Glycosylation Status of Proteins Using Raman Spectroscopy. Anal Chem 83:6074–6081

    CAS  Google Scholar 

  • Brizuela AB, Bichara LC, Romano E, Yurquina A, Locatelli S, Brandan SA (2012) A complete characterization of the vibrational spectra of sucrose. Carbohydr Res 361:212–218

    CAS  Google Scholar 

  • Brizuela AB, Castillo MV, Raschi AB, Davies L, Romano E, Brandan SA (2014) A complete assignment of the vibrational spectra of sucrose in aqueous medium based on the SQM methodology and SCRF calculations. Carbohydr Res 388:112–124

    CAS  Google Scholar 

  • Cabassi F, Casu B, Perlin AS (1978) Infrared absorption and raman scattering of sulfate groups of heparin and related glycosaminoglycans in aqueous solution. Carbohydr Res 63:1–11

    CAS  Google Scholar 

  • Cael JJ, Koenig JL, Blackwell J (1974) Infrared and raman spectroscopy of carbohydrates: Part IV. Identification of configuration- and conformation-sensitive modes for D-glucose by normal coordinate analysis. Carbohydr Res 32:79–91

    CAS  Google Scholar 

  • Carmona P, Molina M (1990) Raman and infrared spectra of D-ribose and D-ribose 5-phosphat. J Raman Spectrosc 21:395–400

    CAS  Google Scholar 

  • Cerchiaro G, Sant’Ana AC, Temperini MLA, da Costa Ferreira AM (2005) Investigations of different carbohydrate anomers in copper(II) complexes with D-glucose, D-fructose, and D-galactose by Raman and EPR spectroscopy. Carbohydr Res 340:2352–2359

    CAS  Google Scholar 

  • Chan JW (2013) Recent advances in laser tweezers Raman spectroscopy (LTRS) for label-free analysis of single cells. J Biophotonics 6:36–48

    CAS  Google Scholar 

  • Cheeseman JR, Frisch MJ (2011) Basis Set Dependence of Vibrational Raman and Raman Optical Activity Intensities. J Chem Theory Comput 7:3323–3334

    CAS  Google Scholar 

  • Cheeseman JR, Shaik MS, Popelier PLA, Blanch EW (2011) Calculation of Raman Optical Activity Spectra of Methyl-β-D-Glucose Incorporating a Full Molecular Dynamics Simulation of Hydration Effects. J Am Chem Soc 133:4991–4997

    CAS  Google Scholar 

  • Dauchez M, Derreumaux P, Lagant P, Vergoten G, Sekkal M, Legrand P (1994a) Force-field and vibrational spectra of oligosaccharides with different glycosidic linkages–Part I. Trehalose dihydrate, sophorose monohydrate and laminaribiose. Spectrochim Acta A 50A:87–104

    CAS  Google Scholar 

  • Dauchez M, Lagant P, Derreumaux P, Vergoten G, Sekkal M, Sombret B (1994b) Force field and vibrational spectra of oligosaccharides with different glycosidic linkages–Part II. Maltose monohydrate, cellobiose and gentiobiose. Spectrochim Acta A 50A:105–118

    CAS  Google Scholar 

  • de Oliveira LFC, Colambara R, Edwards HGM (2002) Fourier Transform Raman Spectroscopy of Honey. Appl Spectrosc 56:306–311

    Google Scholar 

  • Delfino I, Camerlingo C, Portaccio M, Della Ventura B, Mita L, Lepore M (2011) Visible micro-Raman spectroscopy for determining glucose content in beverage industry. Food Chem 127:735–742

    CAS  Google Scholar 

  • Diem M, Mazur A, Lenau K, Schubert J, Bird B, Milijkovic M, Krafft C, Popp J (2013) Molecular pathology via IR and Raman spectral imaging. J Biophotonics 6:855–886

    CAS  Google Scholar 

  • Dingari NC, Horowitz GL, Kang JW, Dasari RR, Barman I (2012) Raman Spectroscopy Provides a Powerful Diagnostic Tool for Accurate Determination of Albumin Glycation. PLoS ONE 7:e32406

    CAS  Google Scholar 

  • Dochow S, Krafft C, Neugebauer U, Bocklitz T, Henkel T, Mayer G, Albert J, Popp J (2011) Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments. Lab Chip 13:1484–1490

    Google Scholar 

  • Fioretto D, Comez L, Gallina ME, Morresi A, Palmieri L, Paolantoni M, Sassi P, Scarponi F (2007) Separate dynamics of solute and solvent in water–glucose solutions by depolarized light scattering. Chem Phys Lett 441:232–236

    CAS  Google Scholar 

  • Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166

    CAS  Google Scholar 

  • Galler K, Brautigam K, Grosse C, Popp J, Neugebauer U (2014) Making a big thing of a small cell – recent advances in single cell analysis. Analyst 139:1237–1273

    CAS  Google Scholar 

  • Gallina ME, Sassi P, Paolantoni M, Morresi A, Cataliotti RS (2006) Vibrational Analysis of Molecular Interactions in Aqueous Glucose Solutions. Temperature and Concentration Effects. J Phys Chem B 110:8856–8864

    CAS  Google Scholar 

  • Ghysels A, Van Neck D, Van Speybroeck V, Verstraelen T, Waroquier M (2007) Vibrational modes in partially optimized molecular systems. J Chem Phys 126:224102

    CAS  Google Scholar 

  • Helgaker T, Ruud K, Bak KL, Jorgensen P, Olsen J (1994) Vibrational Raman optical activity calculations using London atomic orbitals. Faraday Discuss 99:165–180

    CAS  Google Scholar 

  • Janosche R (1973) Ab initio Investigation of the IR- and Raman Activity of the Hydrogen Bond (C1HC1)- with Dfferent Environments. Theor Chim Acta 29:57–74

    Google Scholar 

  • Jeanmaire DL, van Duyne RP (1977) Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem 84:1–20

    CAS  Google Scholar 

  • Johannessen C, Pendrill R, Widmalm G, Hecht L, Barron LD (2011) Glycan Structure of a High-Mannose Glycoprotein from Raman Optical Activity. Angew Chem Int Ed 50:5349–5351

    CAS  Google Scholar 

  • Kačuráková M, Mathlouthi M (1996) FTIR and laser-Raman spectra of oligosaccharides in water: characterization of the glycosidic bond. Carbohydr Res 284:145–157

    Google Scholar 

  • Kaminsky J, Kapitan J, Baumruk V, Bednarova L, Bour P (2009) Interpretation of Raman and Raman Optical Activity Spectra of a Flexible Sugar Derivative, the Gluconic Acid Anion. J Phys Chem A 113:3594–3601

    CAS  Google Scholar 

  • Kaufmann J, Mohle K, Hofman J-G, Arnold K (1998) Molecular dynamics study of hyaluronic acid in water. J Mol Struct -theochem 422:109–121

    CAS  Google Scholar 

  • Kitahama Y, Itoh T, Pienpinijtham P, Ekgasit S, Han XX, Ozaki Y (2012) Biological applications of SERS using functional nanoparticles. In: Hepel M, Zhong CJ (eds) Functional nanoparticles for bioanalysis, nanomedicine, and bioelectronic devices, vol 2, ACS symposium series, 1113. American Chemical Society, Washington, DC, pp 181–234

    Google Scholar 

  • Kurouski D, Deckert-Gaudig T, Deckert V, Lednev IK (2012) Structure and Composition of Insulin Fibril Surfaces Probed by TERS. J Am Chem Soc 134:13323–13329

    CAS  Google Scholar 

  • Larmour IA, Graham D (2011) Surface enhanced optical spectroscopies for bioanalysis. Analyst 136:3831–3853

    CAS  Google Scholar 

  • Liegeois V, Ruud K, Champagne B (2007) An analytical derivative procedure for the calculation of vibrational Raman optical activity spectra. J Chem Phys 127:204105

    Google Scholar 

  • Lu X, Liu Q, Benavides-Montano JA, Nicola AV, Aston DE, Rasco BA, Aguilar HC (2013) Detection of Receptor-Induced Glycoprotein Conformational Changes on Enveloped Virions by Using Confocal Micro-Raman Spectroscopy. J Virol 87:3130–3142

    CAS  Google Scholar 

  • Luber S, Reiher M (2009a) Intensity-Carrying Modes in Raman and Raman Optical Activity Spectroscopy. ChemPhysChem 10:2049–2057

    CAS  Google Scholar 

  • Luber S, Reiher M (2009b) Calculated Raman Optical Activity Spectra of 1,6-Anhydro-β-d-glucopyranose. J Phys Chem A 113:8268–8277

    CAS  Google Scholar 

  • Lyandres O, Shah NC, Yonzon CR, Walsh JT, Glucksberg MR, van Duyne RP (2005) Real-Time Glucose Sensing by Surface-Enhanced Raman Spectroscopy in Bovine Plasma Facilitated by a Mixed Decanethiol/Mercaptohexanol Partition Layer. Anal Chem 77:6134–6139

    CAS  Google Scholar 

  • Ma K, Yuen JM, Shah NC, Walsh JT, Glucksberg MR, van Duyne RP (2011) In Vivo, Transcutaneous Glucose Sensing Using Surface-Enhanced Spatially Offset Raman Spectroscopy: Multiple Rats, Improved Hypoglycemic Accuracy, Low Incident Power, and Continuous Monitoring for Greater than 17 Days. Anal Chem 83:9146–9152

    CAS  Google Scholar 

  • Macleod NA, Johannessen C, Hecht L, Barron LD, Simons JP (2006) From the gas phase to aqueous solution: Vibrational spectroscopy, Raman optical activity and conformational structure of carbohydrates. Int J Mass Spectrom 253:193–200

    CAS  Google Scholar 

  • Mathlouthi M, Koenig JL (1986) Vibrational spectra of carbohydrates. Adv Carbohydr Chem Biochem 44:7–89

    CAS  Google Scholar 

  • Mathlouthi M, Seuvre AM, Koenig JL (1983) F.T.-I.R. and laser-raman spectra of d-ribose and 2-deoxy-d-erythro-pentose (“2-deoxy-d-ribose”). Carbohydr Res 122:31–47

    CAS  Google Scholar 

  • Matsuhiro B, Osorio-Román IO, Torres R (2012) Vibrational spectroscopy characterization and anticoagulant activity of a sulfated polysaccharide from sea cucumber Athyonidium chilensis. Carbohydr Polym 88:959–965

    CAS  Google Scholar 

  • McNay G, Eustace D, Smith WE, Faulds K, Graham D (2011) Surface-Enhanced Raman Scattering (SERS) and Surface-Enhanced Resonance Raman Scattering (SERRS): A Review of Applications. Appl Spectrosc 65:825–837

    CAS  Google Scholar 

  • Mensch C, Pendrill R, Widmalm G, Johannessen C (2014) Studying the Glycan Moiety of RNase B by Means of Raman and Raman Optical Activity. ChemPhysChem 15:2252–2254

    CAS  Google Scholar 

  • Mrozek MF, Weaver MJ (2002) Detection and Identification of Aqueous Saccharides by Using Surface-Enhanced Raman Spectroscopy. Anal Chem 74:4069–4075

    CAS  Google Scholar 

  • Mrozek MF, Zhang D, Ben-Amotz D (2004) Oligosaccharide identification and mixture quantification using Raman spectroscopy and chemometric analysis. Carbohydr Res 339:141–145

    CAS  Google Scholar 

  • Ortiz C, Zhang D, Xie Y, Ribbe AE, Ben-Amotz D (2006) Validation of the drop coating deposition Raman method for protein analysis. Anal Biochem 353:157–166

    CAS  Google Scholar 

  • Ostovar pour S, Bell SEJ, Blanch EW (2011) Use of a hydrogel polymer for reproducible surface enhanced Raman optical activity (SEROA). Chem Commun 47:4754–4756

    Google Scholar 

  • Paolantoni M, Sassi P, Morresi A, Santini S (2007) Hydrogen bond dynamics and water structure in glucose-water solutions by depolarized Rayleigh scattering and low-frequency Raman spectroscopy. J Chem Phys 127:024504

    Google Scholar 

  • Pecul M, Rizzo A (2003) Raman optical activity spectra: basis set and electron correlation effects. Mol Phys 101:2073–2081

    CAS  Google Scholar 

  • Perticaroli S, Sassi P, Morresi A, Paolantoni M (2008) Low-wavenumber Raman scattering from aqueous solutions of carbohydrates. J Raman Spectrosc 39:227–232

    CAS  Google Scholar 

  • Polavarapu PL (1990) Ab initio vibrational Raman and Raman optical activity spectra. J Phys Chem 94:8106–8112

    CAS  Google Scholar 

  • Quesada-Moreno MM, Azofra LM, Aviles-Moreno JR, Alkorta I, Elguero J, Lopez-Gonzalez JJ (2013) Conformational Preference and Chiroptical Response of Carbohydrates D-Ribose and 2-Deoxy-D-ribose in Aqueous and Solid Phases. J Phys Chem B 117:14599–14614

    CAS  Google Scholar 

  • Rasmussen A, Deckert V (2006) Surface- and tip-enhanced Raman scattering of DNA components. J Raman Spectrosc 37:311–317

    CAS  Google Scholar 

  • Reiher M, Liegeois V, Ruud K (2005) Basis Set and Density Functional Dependence of Vibrational Raman Optical Activity Calculations. J Phys Chem A 109:7567–7574

    CAS  Google Scholar 

  • Ringe E, Sharma B, Henry A, Marks LD, van Duyne RP (2013) Single nanoparticle plasmonics. Phys Chem Chem Phys 15:4110–4129

    CAS  Google Scholar 

  • Rudd TR, Hussain R, Siligardi G, Yates EA (2010) Raman and Raman optical activity of glycosaminoglycans. Chem Commun 46:4124–4126

    CAS  Google Scholar 

  • Ruud K, Thorvaldsen AJ (2009) Theoretical approaches to the calculation of Raman optical activity spectra. Chirality 21:E54–E67

    CAS  Google Scholar 

  • Ruud K, Helgaker T, Bour P (2002) Gauge-Origin Independent Density-Functional Theory Calculations of Vibrational Raman Optical Activity. J Phys Chem A 106:7448–7455

    CAS  Google Scholar 

  • Schafer-Peltier KE, Haynes CL, Glucksberg MR, van Duyne RP (2003) Toward a Glucose Biosensor Based on Surface-Enhanced Raman Scattering. J Am Chem Soc 125:588–593

    Google Scholar 

  • Schlucker S (2009) SERS Microscopy: Nanoparticle Probes and Biomedical Applications. ChemPhysChem 10:1344–1354

    Google Scholar 

  • Schlucker S (2014) Surface-Enhanced Raman Spectroscopy: Concepts and Chemical Applications. Angew Chem Int J 53:4756–4795

    Google Scholar 

  • Smyth E, Syme CD, Blanch EW, Hecht L, Vasak M, Barron LD (2001) Solution structure of native proteins with irregular folds from Raman optical activity. Biopolymers 58:138–151

    CAS  Google Scholar 

  • Soderholm S, Roos YH, Meinander N, Hotokka M (1999) Raman spectra of fructose and glucose in the amorphous and crystalline states. J Raman Spectrosc 30:1009–1018

    CAS  Google Scholar 

  • Vangala K, Yanney M, Hsiao C-T, Wu WW, Shen R-F, Zou S, Sygula A, Zhang D (2010) Sensitive Carbohydrate Detection Using Surface Enhanced Raman Tagging. Anal Chem 82:10164–10171

    CAS  Google Scholar 

  • Wang L, Mizaikoff B, Kranz C (2009) Quantification of Sugar Mixtures with Near-Infrared Raman Spectroscopy and Multivariate Data Analysis. A Quantitative Analysis Laboratory Experiment. J Chem Educ 86:1322–1325

    CAS  Google Scholar 

  • Wells HA Jr, Atalla RH (1990) An investigation of the vibrational spectra of glucose, galactose and mannose. J Mol Struct 224:385–424

    CAS  Google Scholar 

  • Wen ZQ, Barron LD, Hecht L (1993) Vibrational Raman optical activity of monosaccharides. J Am Chem Soc 115:285–292

    CAS  Google Scholar 

  • Xu H, Li Q, Wang LH, He Y, Shi JY, Tang B, Fan CH (2014) Nanoscale optical probes for cellular imaging. Chem Soc Rev 43:2650–2661

    CAS  Google Scholar 

  • Yaffe NR, Almond A, Blanch EW (2010) A New Route to Carbohydrate Secondary and Tertiary Structure Using Raman Spectroscopy and Raman Optical Activity. J Am Chem Soc 132:10654–10655

    CAS  Google Scholar 

  • Yamamoto S, Bour P (2011) On the limited precision of transfer of molecular optical activity tensors. Collect Czechoslov Chem Commun 76:567–583

    CAS  Google Scholar 

  • Yamamoto YS, Ishikawa M, Ozaki Y, Itoh T (2014) Fundamental studies on enhancement and blinking mechanism of surface-enhanced Raman scattering (SERS) and basic applications of SERS biological sensing. Front Phys 9:31–46

    Google Scholar 

  • Yuen JM, Shah NC, Walsh JT, Glucksberg MR, van Duyne RP (2010) Transcutaneous Glucose Sensing by Surface-Enhanced Spatially Offset Raman Spectroscopy in a Rat Model. Anal Chem 82:8382–8385

    CAS  Google Scholar 

  • Zhu FJ, Isaacs NW, Hecht L, Barron LD (2005) Polypeptide and Carbohydrate Structure of an Intact Glycoprotein from Raman Optical Activity. J Am Chem Soc 127:6142–6143

    CAS  Google Scholar 

  • Zuber G, Hug W (2004) Rarefied Basis Sets for the Calculation of Optical Tensors. 1. The Importance of Gradients on Hydrogen Atoms for the Raman Scattering Tensor. J Phys Chem A 108:2108–2118

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewan William Blanch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Mutter, S.T., Blanch, E.W. (2015). Carbohydrate Secondary and Tertiary Structure Using Raman Spectroscopy. In: Ramawat, K., Mérillon, JM. (eds) Polysaccharides. Springer, Cham. https://doi.org/10.1007/978-3-319-16298-0_36

Download citation

Publish with us

Policies and ethics