Skip to main content

Nanoparticle Albumin-Bound Anticancer Agents

  • Chapter
  • First Online:
Non-Biological Complex Drugs

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 20))

Abstract

Albumin is a key plasmic carrier of hydrophobic molecules and is highly accumulated in tumors. Nanoparticle albumin bound (nab) technology is a nanoparticle drug delivery platform that utilizes the unique transport and binding properties of albumin to achieve enhanced tumor penetration and accumulation of albumin-bound hydrophobic drugs while eliminating the need for toxic solvents coadministered with poorly soluble drugs. The first product in the nab drug family and the first protein nanotechnology-based chemotherapeutic approved by the US Food and Drug Administration and the EMA is nab-paclitaxel (Abraxane®, ABI- 007; manufactured by Celgene Corporation, Summit, NJ). It is a Cremophor-free, albumin-bound nanoparticle formulation of paclitaxel with a mean particle size of approximately 130 nm. A proprietary process combines paclitaxel with albumin to create a colloidal suspension of nanoparticles. Paclitaxel and albumin are not covalently linked but rather associated through hydrophobic interactions. The particles of paclitaxel are in a noncrystalline, amorphous, readily bioavailable state, allowing for rapid drug release from the particles following intravenous administration. Nanoparticles of nab-paclitaxel are complex three dimensional constructs that require careful design and engineering, detailed orthogonal analysis methods, and a reproducible scale-up and manufacturing process to achieve a consistent product with the intended physicochemical characteristics, biological behavior, and pharmacological profiles. Due to its complexity, the safety and efficacy may be influenced by minor variations in the physicochemical properties or the manufacturing process and needs to be carefully examined in preclinical and clinical studies.

Preclinical and clinical studies have demonstrated that nanoparticlebased nab-paclitaxel displays distinct pharmacokinetics (PK) and biodistribution profiles compared with conventional Cremophor-paclitaxel. nab-Paclitaxel exhibits a linear PK profile with faster clearance and increased volume of distribution, whereas Cremophor-paclitaxel forms micelles leading to prolonged exposure to the systemic circulation, slower tissue distribution, and increased drug toxicity. In preclinical and clinical studies, nab-paclitaxel demonstrated an increased antitumor efficacy and an improved safety profile compared with Cremophor-paclitaxel. Based on significant clinical benefit in pivotal trials, nab-paclitaxel has been approved for use in the treatment of patients with metastatic breast cancer, locally advanced or metastatic non-small cell lung cancer (NSCLC), and for first-line treatment of metastatic adenocarcinoma of the pancreas. Anticancer agents based on nab technology demonstrate broad applications and could target multiple types of malignancies through exploitation of the natural properties of albumin and tumor biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CI:

Confidence interval

CrEL:

Cremophor EL®

EPR:

Enhanced permeability and retention

HR:

Hazard ratio

MTD:

Maximum tolerated dose

nab :

Nanoparticle albumin bound

NSCLC:

Non-small cell lung cancer

OS:

Overall survival

PFS:

Progression-free survival

PK:

Pharmacokinetics

TEM:

Transmission electron microscopy

Vdss:

Volume of distribution steady state

References

  • Alvarez R, Musteanu M, Garcia-Garcia E, Lopez-Casas PP, Megias D, Guerra C, Munoz M, Quijano Y, Cubillo A, Rodriguez-Pascual J, Plaza C, de Vicente E, Prados S, Tabernero S, Barbacid M, Lopez-Rios F, Hidalgo M (2013) Stromal disrupting effects of nab-paclitaxel in pancreatic cancer. Br J Cancer 109(4):926–933. doi:10.1038/bjc.2013.415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Androulakis N, Kourousis C, Dimopoulos MA, Samelis G, Kakolyris S, Tsavaris N, Genatas K, Aravantinos G, Papadimitriou C, Karabekios S, Stathopoulos GP, Georgoulias V (1999) Treatment of pancreatic cancer with docetaxel and granulocyte colony-stimulating factor: a multicenter phase II study. J Clin Oncol 17(6):1779–1785

    CAS  PubMed  Google Scholar 

  • Bosi S, Feruglio L, Da Ros T, Spalluto G, Gregoretti B, Terdoslavich M, Decorti G, Passamonti S, Moro S, Prato M (2004) Hemolytic effects of water-soluble fullerene derivatives. J Med Chem 47(27):6711–6715. doi:10.1021/jm0497489

    Article  CAS  PubMed  Google Scholar 

  • Brouwer E, Verweij J, De Bruijn P, Loos WJ, Pillay M, Buijs D, Sparreboom A (2000) Measurement of fraction unbound paclitaxel in human plasma. Drug Metab Dispos 28(10):1141–1145

    CAS  PubMed  Google Scholar 

  • Chen N, Li Y, Ye Y, Palmisano M, Chopra R, Zhou S (2014) Pharmacokinetics and pharmacodynamics of nab-paclitaxel in patients with solid tumors: disposition kinetics and pharmacology distinct from solvent-based paclitaxel. J Clin Pharmacol. doi:10.1002/jcph.304

    Google Scholar 

  • Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ, Hackett S, Grabocka E, Nofal M, Drebin JA, Thompson CB, Rabinowitz JD, Metallo CM, Vander Heiden MG, Bar-Sagi D (2013) Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497(7451):633–637. doi:nature12138 [pii] 10.1038/nature12138

    Article  CAS  PubMed  Google Scholar 

  • Crommelin DJ, Florence AT (2013) Towards more effective advanced drug delivery systems. Int J Pharm 454(1):496–511. doi:10.1016/j.ijpharm.2013.02.020

    Article  CAS  PubMed  Google Scholar 

  • Dancey J (2010) mTOR signaling and drug development in cancer. Nat Rev Clin Oncol 7(4):209–219. doi:10.1038/nrclinonc.2010.21

    Article  CAS  PubMed  Google Scholar 

  • Desai N (2012a) Albumin drug nanoparticles. In: Kratz F, Senter P, Steinhagen H (eds) Drug delivery in oncology: from basic research to cancer therapy, vol 1, 1 edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 1133–1161. doi:DOI: 10.1002/9783527634057

    Google Scholar 

  • Desai N (2012b) Challenges in development of nanoparticle-based therapeutics. AAPS J 14(2):282–295. doi:10.1208/s12248-012-9339-4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Desai N (2013) Integration of nab-technology into clinical drug development. In: Bischoff J (ed) Nanotechnologie beim Mammakarzinom- Grundlagen und aktuelle Perspektiven. UNI-MED Verlag AG, Bremen, Germany, pp 22–31

    Google Scholar 

  • Desai N, Trieu V, Yao Z, Louie L, Ci S, Yang A, Tao C, De T, Beals B, Dykes D, Noker P, Yao R, Labao E, Hawkins M, Soon-Shiong P (2006) Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res 12(4):1317–1324

    Article  CAS  PubMed  Google Scholar 

  • Desai NP, Trieu V, Hwang LY, Wu R, Soon-Shiong P, Gradishar WJ (2008) Improved effectiveness of nanoparticle albumin-bound (nab) paclitaxel versus polysorbate-based docetaxel in multiple xenografts as a function of HER2 and SPARC status. Anticancer Drugs 19(9):899–909. doi:10.1097/CAD.0b013e32830f904600001813-200810000-00007 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2(8):469–478. doi:nnano.2007.223 [pii] 10.1038/nnano.2007.223

    Article  CAS  PubMed  Google Scholar 

  • Dobrovolskaia MA, Aggarwal P, Hall JB, McNeil SE (2008) Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm 5(4):487–495

    Google Scholar 

  • Ehmann F, Sakai-Kato K, Duncan R, Hernan Perez de la Ossa D, Pita R, Vidal JM, Kohli A, Tothfalusi L, Sanh A, Tinton S, Robert JL, Silva Lima B, Amati MP (2013) Next-generation nanomedicines and nanosimilars: EU regulators’ initiatives relating to the development and evaluation of nanomedicines. Nanomedicine (London, England) 8(5):849–856. doi:10.2217/nnm.13.68

    Article  CAS  PubMed  Google Scholar 

  • Eifler AC, Thaxton CS (2011) Nanoparticle therapeutics: FDA approval, clinical trials, regulatory pathways, and case study. Methods Mol Biol 726:325–338. doi:10.1007/978-1-61779-052-221

    Article  CAS  PubMed  Google Scholar 

  • FDA (2002) Guidance for Industry: Liposome Drug Products. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm070570.pdf

  • FDA (2010) Draft Guidance on Doxorubicin Hydrochloride. http://www.fda.gov/downloads/Drugs/.../Guidances/UCM199635.pdf

  • FDA (2012) Draft Guidance on Paclitaxel. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm320015.pdf

  • Feng SS (2006) New-concept chemotherapy by nanoparticles of biodegradable polymers: where are we now? Nanomed 1(3):297–309. doi:10.2217/17435889.1.3.297

    Article  CAS  Google Scholar 

  • Frese KK, Neesse A, Cook N, Bapiro TE, Lolkema MP, Jodrell DI, Tuveson DA (2012) Nab-Paclitaxel potentiates gemcitabine activity by reducing cytidine deaminase levels in a mouse model of pancreatic cancer. Cancer Discov 2(3):260–269. doi:2159-8290.CD-11-0242 [pii] 10.1158/2159-8290.CD-11-0242

    Article  CAS  PubMed  Google Scholar 

  • Gardner ER, Dahut WL, Scripture CD, Jones J, Aragon-Ching JB, Desai N, Hawkins MJ, Sparreboom A, Figg WD (2008) Randomized crossover pharmacokinetic study of solvent-based paclitaxel and nab-paclitaxel. Clin Cancer Res 14(13):4200–4205. doi:10.1158/1078-0432.ccr-07-4592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gianni L, Kearns CM, Giani A, Capri G, Vigano L, Locatelli A, Bonadonna G, Egorin MJ (1995) Nonlinear pharmacokinetics and metabolism of paclitaxel and its pharmacokinetic/pharmacodynamic relationships in humans. J Clin Oncol 13(1):180–190

    CAS  PubMed  Google Scholar 

  • Goncharova EA (2013) mTOR and vascular remodeling in lung diseases: current challenges and therapeutic prospects. FASEB J 27 (5):1796–1807. doi:10.1096/fj.12-222224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gonzalez-Angulo AM, Meric-Bernstam F, Chawla S, Falchook G, Hong D, Akcakanat A, Chen H, Naing A, Fu S, Wheler J, Moulder S, Helgason T, Li S, Elias I, Desai N, Kurzrock R (2013) Weekly nab-rapamycin in patients with advanced nonhematologic malignancies: final results of a phase I trial. Clin Cancer Res 19(19):5474–5484. doi:10.1158/1078-0432.CCR-12-3110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gradishar WJ (2006) Albumin-bound paclitaxel: a next-generation taxane. Expert Opin Pharmacother 7(8):1041–1053

    Article  CAS  PubMed  Google Scholar 

  • Gradishar WJ, Tjulandin S, Davidson N, Shaw H, Desai N, Bhar P, Hawkins M, O’Shaughnessy J (2005) Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol 23(31):7794–7803. doi:10.1200/jco.2005.04.937

    Article  CAS  PubMed  Google Scholar 

  • Greish K, Thiagarajan G, Herd H, Price R, Bauer H, Hubbard D, Burckle A, Sadekar S, Yu T, Anwar A, Ray A, Ghandehari H (2011) Size and surface charge significantly influence the toxicity of silica and dendritic nanoparticles. Nanotoxicology. doi:10.3109/17435390.2011.604442

    Google Scholar 

  • Haley B, Frenkel E (2008) Nanoparticles for drug delivery in cancer treatment. Urol Oncol 26(1):57–64

    Article  CAS  PubMed  Google Scholar 

  • Hawkins MJ, Desai N, Soon-Shiong P (2003) Rationale, Preclinical Support, and Clinical Proofof-Concept for Formulating Waterinsoluble Therapeutics as Albumin-stabilized Nanoparticles: Experience with Paclitaxel. [abstr 442]. American Association for Cancer Research (AACR) Annual Meeting, Anaheim, CA, 2003. pp Control/Tracking Number: 03-AB-442-AACR

    Google Scholar 

  • Hawkins MJ, Soon-Shiong P, Desai N (2008) Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliv Rev 60(8):876–885. doi:S0169-409X(08)00042-2 [pii] 10.1016/j.addr.2007.08.044

    Article  CAS  PubMed  Google Scholar 

  • Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A 95(8):4607–4612

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu J, Johnston KP, Williams RO 3rd (2004) Nanoparticle engineering processes for enhancing the dissolution rates of poorly water soluble drugs. Drug Dev Ind Pharm 30(3):233–245

    Article  PubMed  Google Scholar 

  • Ibrahim NK, Desai N, Legha S, Soon-Shiong P, Theriault RL, Rivera E, Esmaeli B, Ring SE, Bedikian A, Hortobagyi GN, Ellerhorst JA (2002) Phase I and pharmacokinetic study of ABI-007, a cremophor-free, protein-stabilized, nanoparticle formulation of paclitaxel. Clin Cancer Res 8(5):1038–1044

    CAS  PubMed  Google Scholar 

  • Irizarry L, Luu T, McKoy J, Samaras A, Fisher M, Carias E, Raisch D, Calhoun E, Bennett C (2009) Cremophor EL-containing paclitaxel-induced anaphylaxis: a call to action. Community Oncol 6(3):132–134

    Article  Google Scholar 

  • Jacobs AD, Otero H, Picozzi V (1999) Gemcitabine (G) and Taxotere® (T) in patients with unresectable pancreatic carcinoma. Proc Am Soc Clin Oncol 18:1103A

    Google Scholar 

  • Kessel D (1992) Properties of cremophor EL micelles probed by fluorescence. Photochem Photobiol 56(4):447–451

    Article  CAS  PubMed  Google Scholar 

  • Langer K, Balthasar S, Vogel V, Dinauer N, von Briesen H, Schubert D (2003) Optimization of the preparation process for human serum albumin (HSA) nanoparticles. Int J Pharm 257(1–2):169–180

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Chen N, Palmisano M, Zhou S (2014) Pharmacology of paclitaxel sensitive to its delivery vehicles drives distinct clinical outcome of paclitaxel formulations. J Pharmacol Exp Ther (Submitted)

    Google Scholar 

  • Maeda H, Sawa T, Konno T (2001) Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release 74(1–3):47–61

    Article  CAS  PubMed  Google Scholar 

  • Merisko-Liversidge E, Sarpotdar P, Bruno J, Hajj S, Wei L, Peltier N, Rake J, Shaw JM, Pugh S, Polin L, Jones J, Corbett T, Cooper E, Liversidge GG (1996) Formulation and antitumor activity evaluation of nanocrystalline suspensions of poorly soluble anticancer drugs. Pharm Res 13(2):272–278

    Article  CAS  PubMed  Google Scholar 

  • Mielke S, Sparreboom A, Mross K (2006) Peripheral neuropathy: a persisting challenge in paclitaxel-based regimes. Eur J Cancer 42(1):24–30

    Article  CAS  PubMed  Google Scholar 

  • Nichols JW, Bae YH (2014) EPR: evidence and fallacy. J Control Release 190:451–464. doi:10.1016/j.jconrel.2014.03.057

    Article  CAS  PubMed  Google Scholar 

  • Paal K, Muller J, Hegedus L (2001) High affinity binding of paclitaxel to human serum albumin. Eur J Biochem 268(7):2187–2191

    Article  CAS  PubMed  Google Scholar 

  • Schiff PB, Horwitz SB (1980) Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci U S A 77(3):1561–1565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schnitzer JE (1992) gp60 is an albumin-binding glycoprotein expressed by continuous endothelium involved in albumin transcytosis. Am J Physiol 262(1 Pt 2):H246–254

    CAS  PubMed  Google Scholar 

  • Socinski MA, Vinnichenko I, Okamoto I, Hon JK (2010) Hirsh V Results of a Randomized, Phase 3 Trial of nab-Paclitaxel (nab-P) and Carboplatin (C) Compared With Cremophor-based Paclitaxel (P) and Carboplatin as First-line Therapy in Advanced Non-small Cell Lung Cancer (NSCLC). Proceedings of the 46th American Society of Clinical Oncology Annual Meeting (ASCO), Chicago, IL, June 4–8 2010. p abstr LBA7511

    Google Scholar 

  • Socinski MA, Bondarenko I, Karaseva NA, Makhson AM, Vynnychenko I, Okamoto I, Hon JK, Hirsh V, Bhar P, Zhang H, Iglesias JL, Renschler MF (2012) Weekly nab-paclitaxel in combination with carboplatin versus solvent-based paclitaxel plus carboplatin as first-line therapy in patients with advanced non-small-cell lung cancer: final results of a phase III trial. J Clin Oncol 30(17):2055–2062. doi:10.1200/JCO.2011.39.5848

    Article  CAS  PubMed  Google Scholar 

  • Sparreboom A, Verweij J, van der Burg ME, Loos WJ, Brouwer E, Vigano L, Locatelli A, de Vos AI, Nooter K, Stoter G, Gianni L (1998) Disposition of Cremophor EL in humans limits the potential for modulation of the multidrug resistance phenotype in vivo. Clin Cancer Res 4(8):1937–1942

    CAS  PubMed  Google Scholar 

  • Sparreboom A, Scripture CD, Trieu V, Williams PJ, De T, Yang A, Beals B, Figg WD, Hawkins M, Desai N (2005) Comparative preclinical and clinical pharmacokinetics of a cremophor-free, nanoparticle albumin-bound paclitaxel (ABI-007) and paclitaxel formulated in Cremophor (Taxol). Clin Cancer Res 11(11):4136–4143

    Article  CAS  PubMed  Google Scholar 

  • Srivastava RK, Srivastava AR, Korsmeyer SJ, Nesterova M, Cho-Chung YS, Longo DL (1998) Involvement of microtubules in the regulation of Bcl2 phosphorylation and apoptosis through cyclic AMP-dependent protein kinase. Mol Cell Biol 18(6):3509–3517

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stehle G, Sinn H, Wunder A, Schrenk HH, Stewart JC, Hartung G, Maier-Borst W, Heene DL (1997) Plasma protein (albumin) catabolism by the tumor itself–implications for tumor metabolism and the genesis of cachexia. Crit Rev Oncol Hematol 26(2):77–100

    Article  CAS  PubMed  Google Scholar 

  • Tiruppathi C, Song W, Bergenfeldt M, Sass P, Malik AB (1997) Gp60 activation mediates albumin transcytosis in endothelial cells by tyrosine kinase-dependent pathway. J Biol Chem 272(41):25968–25975

    Article  CAS  PubMed  Google Scholar 

  • Trynda-Lemiesz L (2004) Paclitaxel-HSA interaction. Binding sites on HSA molecule. Bioorg Med Chem 12(12):3269–3275. doi:10.1016/j.bmc.2004.03.073S0968089604002767 [pii]

    Article  CAS  PubMed  Google Scholar 

  • van Tellingen O, Huizing MT, Panday VR, Schellens JH, Nooijen WJ, Beijnen JH (1999) Cremophor EL causes (pseudo-) non-linear pharmacokinetics of paclitaxel in patients. Br J Cancer 81(2):330–335

    Article  CAS  PubMed  Google Scholar 

  • van Zuylen L, Karlsson MO, Verweij J, Brouwer E, de Bruijn P, Nooter K, Stoter G, Sparreboom A (2001) Pharmacokinetic modeling of paclitaxel encapsulation in Cremophor EL micelles. Cancer Chemother Pharmacol 47(4):309–318

    Article  CAS  PubMed  Google Scholar 

  • Verweij J, Clavel M, Chevalier B (1994) Paclitaxel (Taxol) and docetaxel (Taxotere): not simply two of a kind. Ann Oncol 5(6):495–505

    CAS  PubMed  Google Scholar 

  • Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, Seay T, Tjulandin SA, Ma WW, Saleh MN, Harris M, Reni M, Dowden S, Laheru D, Bahary N, Ramanathan RK, Tabernero J, Hidalgo M, Goldstein D, Van Cutsem E, Wei X, Iglesias J, Renschler MF (2013) Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 369(18):1691–1703. doi:10.1056/NEJMoa1304369

    Article  CAS  PubMed  Google Scholar 

  • Wagner LM, Yin H, Eaves D, Currier M, Cripe TP (2014) Preclinical evaluation of nanoparticle albumin-bound paclitaxel for treatment of pediatric bone sarcoma. Pediatric Blood Cancer. doi:10.1002/pbc.25062

    Google Scholar 

  • Weiss RB, Donehower RC, Wiernik PH, Ohnuma T, Gralla RJ, Trump DL, Baker JR Jr, Van Echo DA, Von Hoff DD, Leyland-Jones B (1990) Hypersensitivity reactions from taxol. J Clin Oncol 8(7):1263–1268

    CAS  PubMed  Google Scholar 

  • Whitehead RP, Jacobson J, Brown TD, Taylor SA, Weiss GR, Macdonald JS (1997) Phase II trial of paclitaxel and granulocyte colony-stimulating factor in patients with pancreatic carcinoma: a Southwest Oncology Group study. J Clin Oncol 15(6):2414–2419

    CAS  PubMed  Google Scholar 

  • Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, Jain RK (1995) Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 55(17):3752–3756

    CAS  PubMed  Google Scholar 

  • Zhang L, Marrano P, Kumar S, Leadley M, Elias E, Thorner P, Baruchel S (2013) Nab-Paclitaxel is an active drug in preclinical model of pediatric solid tumors. Clin Cancer Res 19(21):5972–5983. doi:10.1158/1078-0432.CCR-13-1485

    Article  CAS  PubMed  Google Scholar 

  • Zolnik BS, Gonzalez-Fernandez A, Sadrieh N, Dobrovolskaia MA (2010) Nanoparticles and the immune system. Endocrinology 151(2):458–465. doi:en.2009-1082 [pii] 10.1210/en.2009–1082

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Dr Shihe Hou’s expert editorial and writing assistance of this manuscript is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil Desai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Desai, N. (2015). Nanoparticle Albumin-Bound Anticancer Agents. In: Crommelin, D., de Vlieger, J. (eds) Non-Biological Complex Drugs. AAPS Advances in the Pharmaceutical Sciences Series, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-16241-6_10

Download citation

Publish with us

Policies and ethics