Skip to main content

Wood Anatomy and Plant Hydraulics in a Changing Climate

  • Chapter
Functional and Ecological Xylem Anatomy

Abstract

Anthropogenic climate change will profoundly affect woody plants across the globe through rising atmospheric concentrations of carbon dioxide, increasing temperatures, and an accelerating hydrological cycle with more wet and dry extremes. Here, we provide an overview of how changing environmental conditions influence woody plant anatomy and hydraulics, and how anatomical and hydraulic traits can inform and predict plant responses to environmental stressors, such as mortality triggered by severe drought. We highlight that hydraulic traits may be useful in predicting cross-species patterns of drought and temperature stress, but the variability and plasticity within a species, and potential for recovery after stress are poorly known and critical to understand. We conclude with promising future research directions to connect plant anatomy and hydraulics to demographic outcomes that will help underpin and guide prediction of climate change impacts on woody plants globally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberto FJ, Aitken SN, Alía R, González-Martínez SC, Hänninen H, Kremer A, Lefèvre F, Lenormand T, Yeaman S, Whetten R, Savolainen O (2013) Potential for evolutionary responses to climate change—evidence from tree populations. Glob Chang Biol 19:1645–1661

    PubMed Central  PubMed  Google Scholar 

  • Alder N, Sperry J, Pockman W (1996) Root and stem xylem embolism, stomatal conductance, and leaf turgor in Acer grandidentatum populations along a soil moisture gradient. Oecologia 105:293–301

    Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage 259:660–684

    Google Scholar 

  • Anderegg WR (2014) Spatial and temporal variation in plant hydraulic traits and their relevance for climate change impacts on vegetation. New Phytol 205(3):1008–1014

    PubMed  Google Scholar 

  • Anderegg WRL, Berry JA, Field CB (2012a) Linking definitions, mechanisms, and modeling of drought-induced tree death. Trends Plant Sci 17:693–700

    CAS  PubMed  Google Scholar 

  • Anderegg WRL, Berry JA, Smith DD, Sperry JS, Anderegg LDL, Field CB (2012b) The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proc Natl Acad Sci U S A 109:233–237

    PubMed Central  CAS  PubMed  Google Scholar 

  • Anderegg LDL, Anderegg WRL, Berry JA (2013a) Not all droughts are created equal: translating meteorological drought into woody plant mortality. Tree Physiol 33:672–683

    Google Scholar 

  • Anderegg WRL, Kane JM, Anderegg LDL (2013b) Consequences of widespread tree mortality triggered by drought and temperature stress. Nat Clim Change 3:30–36

    Google Scholar 

  • Barnard DM, Meinzer FC, Lachenbruch B, McCulloh KA, Johnson DM, Woodruff DR (2011) Climate-related trends in sapwood biophysical properties in two conifers: avoidance of hydraulic dysfunction through coordinated adjustments in xylem efficiency, safety and capacitance. Plant Cell Environ 34:643–654

    PubMed  Google Scholar 

  • Betts RA, Boucher O, Collins M, Cox PM, Falloon PD, Gedney N, Hemming DL, Huntingford C, Jones CD, Sexton DM (2007) Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 448:1037–1041

    CAS  PubMed  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449

    CAS  PubMed  Google Scholar 

  • Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Romme WH, Kastens JH, Floyd ML, Belnap J, Anderson JJ, Myers OB, Meyer CW (2005) Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci U S A 102:15144–15148

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brodribb TJ (2009) Xylem hydraulic physiology: the functional backbone of terrestrial plant productivity. Plant Sci 177:245–251

    CAS  Google Scholar 

  • Brodribb TJ, Cochard H (2009) Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiol 149:575–584

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brodribb TJ, Holbrook NM, Edwards EJ, GutiÉRrez MV (2003) Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. Plant Cell Environ 26:443–450

    Google Scholar 

  • Brodribb TJ, Bowman DJMS, Nichols S, Delzon S, Burlett R (2010) Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit. New Phytol 188:533–542

    PubMed  Google Scholar 

  • Bucci S, Scholz F, Goldstein G, Meinzer F, Sternberg L (2003) Dynamic changes in hydraulic conductivity in petioles of two savanna tree species: factors and mechanisms contributing to the refilling of embolized vessels. Plant Cell Environ 26:1633–1645

    Google Scholar 

  • Bucci SJ, Scholz FG, Peschiutta ML, Arias NS, Meinzer FC, Goldstein G (2013) The stem xylem of Patagonian shrubs operates far from the point of catastrophic dysfunction and is additionally protected from drought‐induced embolism by leaves and roots. Plant Cell Environ 36:2163–2174

    CAS  PubMed  Google Scholar 

  • Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366

    PubMed  Google Scholar 

  • Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martinez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A, Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ, Zanne AE (2012) Global convergence in the vulnerability of forests to drought. Nature 491:752–755

    CAS  PubMed  Google Scholar 

  • Corcuera L, Camarero J, Gil-Pelegrín E (2004) Effects of a severe drought on Quercus ilex radial growth and xylem anatomy. Trees 18:83–92

    Google Scholar 

  • Cowan IR (1978) Stomatal behaviour and environment. In: Preston RD, Woolhouse HW (eds) Advances in botanical research. Academic, New York, pp 117–228

    Google Scholar 

  • Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Change 3:52–58

    Google Scholar 

  • Delzon S, Douthe C, Sala A, Cochard H (2010) Mechanism of water‐stress induced cavitation in conifers: bordered pit structure and function support the hypothesis of seal capillary‐seeding. Plant Cell Environ 33:2101–2111

    PubMed Central  PubMed  Google Scholar 

  • Diffenbaugh NS, Field CB (2013) Changes in ecologically critical terrestrial climate conditions. Science 341:486–492

    CAS  PubMed  Google Scholar 

  • Domec J-C, Gartner BL (2001) Cavitation and water storage capacity in bole xylem segments of mature and young Douglas-fir trees. Trees 15:204–214

    Google Scholar 

  • Domec J-C, Gartner BL (2003) Relationship between growth rates and xylem hydraulic characteristics in young, mature and old-growth ponderosa pine trees. Plant Cell Environ 26:471–483

    Google Scholar 

  • Domec J-C, Lachenbruch B, Meinzer FC (2006) Bordered pit structure and function determine spatial patterns of air-seeding thresholds in xylem of Douglas-fir (Pseudotsuga menziesii; Pinaceae) trees. Am J Bot 93:1588–1600

    PubMed  Google Scholar 

  • Domec J-C, Lachenbruch B, Meinzer FC, Woodruff DR, Warren JM, McCulloh KA (2008) Maximum height in a conifer is associated with conflicting requirements for xylem design. Proc Natl Acad Sci 105:12069–12074

    PubMed Central  CAS  PubMed  Google Scholar 

  • Domec J-C, Schäfer K, Oren R, Kim HS, McCarthy HR (2010) Variable conductivity and embolism in roots and branches of four contrasting tree species and their impacts on whole-plant hydraulic performance under future atmospheric CO2 concentration. Tree Physiol 30:1001–1015

    CAS  PubMed  Google Scholar 

  • Fonti P, von Arx G, García‐González I, Eilmann B, Sass‐Klaassen U, Gärtner H, Eckstein D (2010) Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol 185:42–53

    PubMed  Google Scholar 

  • Franks SJ, Weber JJ, Aitken SN (2014) Evolutionary and plastic responses to climate change in terrestrial plant populations. Evol Appl 7(1):123–139

    PubMed Central  PubMed  Google Scholar 

  • Friend AD, Lucht W, Rademacher TT, Keribin R, Betts R, Cadule P, Ciais P, Clark DB, Dankers R, Falloon PD, Ito A, Kahana R, Kleidon A, Lomas MR, Nishina K, Ostberg S, Pavlick R, Peylin P, Schaphoff S, Vuichard N, Warszawski L, Wiltshire A, Woodward FI (2013) Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. Proc Natl Acad Sci 111(9):3280–3285

    PubMed Central  PubMed  Google Scholar 

  • Hacke UG, Jansen S (2009) Embolism resistance of three boreal conifer species varies with pit structure. New Phytol 182:675–686

    PubMed  Google Scholar 

  • Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001a) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461

    Google Scholar 

  • Hacke UG, Stiller V, Sperry JS, Pittermann J, McCulloh KA (2001b) Cavitation fatigue. Embolism and refilling cycles can weaken the cavitation resistance of xylem. Plant Physiol 125:779–786

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hacke UG, Sperry JS, Pittermann J (2004) Analysis of circular bordered pit function II. Gymnosperm tracheids with torus-margo pit membranes. Am J Bot 91:386–400

    PubMed  Google Scholar 

  • Hartmann H (2011) Will a 385 million year-struggle for light become a struggle for water and for carbon?—how trees may cope with more frequent climate change-type drought events. Glob Chang Biol 17:642–655

    Google Scholar 

  • Hoffmann WA, Marchin RM, Abit P, Lau OL (2011) Hydraulic failure and tree dieback are associated with high wood density in a temperate forest under extreme drought. Glob Chang Biol 17:2731–2742

    Google Scholar 

  • Hölttä T, Cochard H, Nikinmaa E, Mencuccini M (2009) Capacitive effect of cavitation in xylem conduits: results from a dynamic model. Plant Cell Environ 32:10–21

    PubMed  Google Scholar 

  • IPCC (2013) Summary for policymakers. Climate change 2013: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Jacobsen AL, Pratt RB, Davis SD, Ewers FW (2007) Cavitation resistance and seasonal hydraulics differ among three arid Californian plant communities. Plant Cell Environ 30:1599–1609

    PubMed  Google Scholar 

  • Jasechko S, Sharp ZD, Gibson JJ, Birks SJ, Yi Y, Fawcett PJ (2013) Terrestrial water fluxes dominated by transpiration. Nature 496:347–350

    CAS  PubMed  Google Scholar 

  • Johnson DM, McCulloh KA, Woodruff DR, Meinzer FC (2012) Hydraulic safety margins and embolism reversal in stems and leaves: why are conifers and angiosperms so different? Plant Sci 195:48–53

    CAS  PubMed  Google Scholar 

  • Jones H, Sutherland R (1991) Stomatal control of xylem embolism. Plant Cell Environ 14:607–612

    Google Scholar 

  • Keenan TF, Hollinger DY, Bohrer G, Dragoni D, Munger JW, Schmid HP, Richardson AD (2013) Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499:324–327

    CAS  PubMed  Google Scholar 

  • Kilpeläinen A, Gerendiain AZ, Luostarinen K, Peltola H, Kellomäki S (2007) Elevated temperature and CO2 concentration effects on xylem anatomy of Scots pine. Tree Physiol 27:1329–1338

    PubMed  Google Scholar 

  • Koch GW, Sillett SC, Jennings GM, Davis SD (2004) The limits to tree height. Nature 428:851–854

    CAS  PubMed  Google Scholar 

  • Koepke DF, Kolb TE, Adams HD (2010) Variation in woody plant mortality and dieback from severe drought among soils, plant groups, and species within a northern Arizona ecotone. Oecologia 163:1079–1090

    PubMed  Google Scholar 

  • Kraft NJB, Metz MR, Condit RS, Chave J (2010) The relationship between wood density and mortality in a global tropical forest data set. New Phytol 188:1124–1136

    PubMed  Google Scholar 

  • Lamy JB, Delzon S, Bouche PS, Alia R, Vendramin GG, Cochard H, Plomion C (2013) Limited genetic variability and phenotypic plasticity detected for cavitation resistance in a Mediterranean pine. New Phytol 201(3):874–886

    PubMed  Google Scholar 

  • Le Quéré C, Raupach MR, Canadell JG, Marland G, Bopp L, Ciais P, Conway TJ, Doney SC, Feely RA, Foster P (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2:831–836

    Google Scholar 

  • Maherali H, DeLucia EH (2000a) Interactive effects of elevated CO2 and temperature on water transport inponderosa pine. Am J Bot 87:243–249

    CAS  PubMed  Google Scholar 

  • Maherali H, DeLucia EH (2000b) Xylem conductivity and vulnerability to cavitation of ponderosa pine growing in contrasting climates. Tree Physiol 20:859–867

    CAS  PubMed  Google Scholar 

  • Maherali H, Pockman WT, Jackson RB (2004) Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology 85:2184–2199

    Google Scholar 

  • Martínez‐Vilalta J, Cochard H, Mencuccini M, Sterck F, Herrero A, Korhonen J, Llorens P, Nikinmaa E, Nolè A, Poyatos R (2009) Hydraulic adjustment of Scots pine across Europe. New Phytol 184:353–364

    PubMed  Google Scholar 

  • Martorell S, Diaz‐Espejo A, Medrano H, Ball MC, Choat B (2014) Rapid hydraulic recovery in Eucalyptus pauciflora after drought: linkages between stem hydraulics and leaf gas exchange. Plant Cell Environ 37:617–626

    CAS  PubMed  Google Scholar 

  • McCulloh KA, Johnson DM, Meinzer FC, Woodruff DR (2014) The dynamic pipeline: hydraulic capacitance and xylem hydraulic safety in four tall conifer species. Plant Cell Environ 37(5):1171–1183

    PubMed  Google Scholar 

  • McCulloh KA, Meinzer FC, Sperry JS, Lachenbruch B, Voelker SL, Woodruff DR, Domec J-C (2011) Comparative hydraulic architecture of tropical trees representing a range of successional stages and wood density. Oecologia 167:27–37

    PubMed  Google Scholar 

  • McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739

    PubMed  Google Scholar 

  • McDowell NG, Beerling DJ, Breshears DD, Fisher RA, Raffa KF, Stitt M (2011) The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol Evol 26:523–532

    PubMed  Google Scholar 

  • Meinzer FC (2003) Functional convergence in plant responses to the environment. Oecologia 134:1–11

    PubMed  Google Scholar 

  • Meinzer FC, James SA, Goldstein G, Woodruff D (2003) Whole‐tree water transport scales with sapwood capacitance in tropical forest canopy trees. Plant Cell Environ 26:1147–1155

    Google Scholar 

  • Meinzer FC, Campanello PI, Domec J-C, Gatti MG, Goldstein G, Villalobos-Vega R, Woodruff DR (2008a) Constraints on physiological function associated with branch architecture and wood density in tropical forest trees. Tree Physiol 28:1609–1617

    PubMed  Google Scholar 

  • Meinzer FC, Woodruff DR, Domec J-C, Goldstein G, Campanello PI, Gatti MG, Villalobos-Vega R (2008b) Coordination of leaf and stem water transport properties in tropical forest trees. Oecologia 156:31–41

    PubMed  Google Scholar 

  • Meinzer FC, Johnson DM, Lachenbruch B, McCulloh KA, Woodruff DR (2009) Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance. Funct Ecol 23:922–930

    Google Scholar 

  • Meinzer FC, McCulloh KA, Lachenbruch B, Woodruff DR, Johnson DM (2010) The blind men and the elephant: the impact of context and scale in evaluating conflicts between plant hydraulic safety and efficiency. Oecologia 164:287–296

    PubMed  Google Scholar 

  • Melcher PJ, Zwieniecki MA, Holbrook NM (2003) Vulnerability of xylem vessels to cavitation in sugar maple. Scaling from individual vessels to whole branches. Plant Physiol 131:1775–1780

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mitchell PJ, O'Grady AP, Tissue DT, White DA, Ottenschlaeger ML, Pinkard EA (2013) Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality. New Phytol 197:862–872

    CAS  PubMed  Google Scholar 

  • Nardini A, Battistuzzo M, Savi T (2013) Shoot desiccation and hydraulic failure in temperate woody angiosperms during an extreme summer drought. New Phytol 200(2):322–329

    CAS  PubMed  Google Scholar 

  • Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan E, Mathesius U, Poot P, Purugganan MD, Richards C, Valladares F (2010) Plant phenotypic plasticity in a changing climate. Trends Plant Sci 15:684–692

    CAS  PubMed  Google Scholar 

  • Ogasa M, Miki NH, Murakami Y, Yoshikawa K (2013) Recovery performance in xylem hydraulic conductivity is correlated with cavitation resistance for temperate deciduous tree species. Tree Physiol 33:335–344

    PubMed  Google Scholar 

  • Olano JM, Arzac A, García-Cervigón AI, von Arx G, Rozas V (2013) New star on the stage: amount of ray parenchyma in tree rings shows a link to climate. New Phytol 198(2):486–495

    PubMed  Google Scholar 

  • Paddock W, Davis SD, Pratt RB, Jacobsen AL, Tobin MF, Lopez-Portillo J, Ewers F (2013) Factors determining mortality of adult chaparral shrubs in an extreme drought year in California. Aliso 31:49–57

    Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

    CAS  PubMed  Google Scholar 

  • Peng C, Ma Z, Lei X, Zhu Q, Chen H, Wang W, Liu S, Li W, Fang X, Zhou X (2011) A drought-induced pervasive increase in tree mortality across Canada's boreal forests. Nat Clim Change 1:467–471

    Google Scholar 

  • Phillips OL, van der Heijden G, Lewis SL, Lopez-Gonzalez G, Aragao LEOC, Lloyd J, Malhi Y, Monteagudo A, Almeida S, Alvarez Davila E, Amaral I, Andelman S, Andrade A, Arroyo L, Aymard G, Baker TR, Blanc L, Bonal D, Alves de Oliveira AC, Chao K-J, Davila Cardozo N, da Costa L, Feldpausch TR, Fisher JB, Fyllas NM, Freitas MA, Galbraith D, Gloor E, Higuchi N, Honorio E, Jimenez E, Keeling H, Killeen TJ, Lovett JC, Meir P, Mendoza C, Morel A, Nunez Vargas P, Patino S, Peh KSH, Pena Cruz A, Prieto A, Quesada CA, Ramirez F, Ramirez H, Rudas A, Salamao R, Schwarz M, Silva J, Silveira M, Slik JWF, Sonke B, Thomas AS, Stropp J, Taplin JRD, Vasquez R, Vilanova E (2010) Drought-mortality relationships for tropical forests. New Phytol 187:631–646

    PubMed  Google Scholar 

  • Phillips NG, Attard RD, Ghannoum O, Lewis JD, Logan BA, Tissue DT (2011) Impact of variable [CO2] and temperature on water transport structure–function relationships in Eucalyptus. Tree Physiol 31:945–952

    CAS  PubMed  Google Scholar 

  • Pittermann J, Sperry JS, Hacke UG, Wheeler JK, Sikkema EH (2005) Torus-margo pits help conifers compete with angiosperms. Science 310:1924–1924

    CAS  PubMed  Google Scholar 

  • Pittermann J, Choat B, Jansen S, Stuart SA, Lynn L, Dawson TE (2010) The relationships between xylem safety and hydraulic efficiency in the Cupressaceae: the evolution of pit membrane form and function. Plant Physiol 153:1919–1931

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pittermann J, Stuart SA, Dawson TE, Moreau A (2012) Cenozoic climate change shaped the evolutionary ecophysiology of the Cupressaceae conifers. Proc Natl Acad Sci 109:9647–9652

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pockman WT, Sperry JS (2000) Vulnerability to xylem cavitation and the distribution of Sonoran Desert vegetation. Am J Bot 87:1287–1299

    CAS  PubMed  Google Scholar 

  • Ponce Campos GE, Moran MS, Huete A, Zhang Y, Bresloff C, Huxman TE, Eamus D, Bosch DD, Buda AR, Gunter SA, Scalley TH, Kitchen SG, McClaran MP, McNab WH, Montoya DS, Morgan JA, Peters DPC, Sadler EJ, Seyfried MS, Starks PJ (2013) Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature 87:144–146

    Google Scholar 

  • Pratt R, Jacobsen A, Ewers F, Davis S (2007) Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytol 174:787–798

    CAS  PubMed  Google Scholar 

  • Pratt RB, Jacobsen AL, Jacobs SM, Esler KJ (2012) Xylem transport safety and efficiency differ among fynbos shrub life history types and between two sites differing in mean rainfall. Int J Plant Sci 173:474–483

    Google Scholar 

  • Pratt RB, Jacobsen AL, Ramirez AR, Helms AM, Traugh CA, Tobin MF, Heffner MS, Davis SD (2014) Mortality of resprouting chaparral shrubs after a fire and during a record drought: physiological mechanisms and demographic consequences. Glob Chang Biol 20:893–907

    PubMed  Google Scholar 

  • Reich PB (2014) The world‐wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J Ecol 102:275–301

    Google Scholar 

  • Salleo S, Trifilò P, Esposito S, Nardini A, Gullo MAL (2009) Starch-to-sugar conversion in wood parenchyma of field-growing Laurus nobilis plants: a component of the signal pathway for embolism repair? Funct Plant Biol 36:815–825

    Google Scholar 

  • Scholz FG, Bucci SJ, Goldstein G, Moreira MZ, Meinzer FC, Domec JC, Villalobos-Vega R, Franco AC, Miralles-Wilhelm F (2008) Biophysical and life-history determinants of hydraulic lift in Neotropical savanna trees. Funct Ecol 22:773–786

    Google Scholar 

  • Scholz FG, Phillips NG, Bucci SJ, Meinzer FC, Goldstein G (2011) Hydraulic capacitance: biophysics and functional significance of internal water sources in relation to tree size. In: Meinzer FCC, Lachenbruch B, Dawson TEE (eds) Size- and age-related changes in tree structure and function. Springer, Dordrecht, pp 341–361

    Google Scholar 

  • Schreiber SG, Hacke UG, Hamann A, Thomas BR (2011) Genetic variation of hydraulic and wood anatomical traits in hybrid poplar and trembling aspen. New Phytol 190:150–160

    PubMed  Google Scholar 

  • Sparks JP, Black RA (1999) Regulation of water loss in populations of Populus trichocarpa: the role of stomatal control in preventing xylem cavitation. Tree Physiol 19:453–459

    PubMed  Google Scholar 

  • Sperry JS, Hacke UG, Pittermann J (2006) Size and function in conifer tracheids and angiosperm vessels. Am J Bot 93:1490–1500

    PubMed  Google Scholar 

  • Sperry JS, Meinzer FC, McCulloh KA (2008) Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees. Plant Cell Environ 31:632–645

    PubMed  Google Scholar 

  • Thomas DS, Montagu KD, Conroy JP (2004) Changes in wood density of Eucalyptus camaldulensis due to temperature—the physiological link between water viscosity and wood anatomy. For Ecol Manage 193(1):157–165

    Google Scholar 

  • Tyree MT, Sperry JS (1988) Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? Answers from a model. Plant Physiol 88:574–580

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tyree MT, Davis SD, Cochard H (1994) Biophysical perspectives of xylem evolution: is there a trade-off of hydraulic efficiency for vulnerability to dysfunction? IAWA J 15:335–360

    Google Scholar 

  • Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of sap. Springer, Berlin

    Google Scholar 

  • Urli M, Porté AJ, Cochard H, Guengant Y, Burlett R, Delzon S (2013) Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees. Tree Physiol 33:672–683

    CAS  PubMed  Google Scholar 

  • van Mantgem PJ, Stephenson NL, Byrne JC, Daniels LD, Franklin JF, Fule PZ, Harmon ME, Larson AJ, Smith JM, Taylor AH, Veblen TT (2009) Widespread increase of tree mortality rates in the Western United States. Science 323:521–524

    PubMed  Google Scholar 

  • Voelker SL, Noirot-Cosson P-E, Stambaugh MC, McMurry ER, Meinzer FC, Lachenbruch B, Guyette RP (2012) Spring temperature responses of oaks are synchronous with North Atlantic conditions during the last deglaciation. Ecol Monogr 82:169–187

    Google Scholar 

  • Way DA (2013) Will rising CO2 and temperatures exacerbate the vulnerability of trees to drought? Tree Physiol 33:775–778

    PubMed  Google Scholar 

  • West AG, Hultine KR, Sperry JS, Bush SE, Ehleringer JR (2008) Transpiration and hydraulic strategies in a Piñon-Juniper woodland. Ecol Appl 18:911–927

    CAS  PubMed  Google Scholar 

  • Wheeler JK, Huggett BA, Tofte AN, Rockwell FE, Holbrook NM (2013) Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism. Plant Cell Environ 36:1938–1949

    CAS  PubMed  Google Scholar 

  • Woodruff D, Bond B, Meinzer F (2004) Does turgor limit growth in tall trees? Plant Cell Environ 27:229–236

    Google Scholar 

  • Worrall JJ, Egeland L, Eager T, Mask RA, Johnson EW, Kemp PA, Shepperd WD (2008) Rapid mortality of Populus tremuloides in southwestern Colorado, USA. For Ecol Manage 255:686–696

    Google Scholar 

  • Wortemann R, Herbette S, Barigah TS, Fumanal B, Alia R, Ducousso A, Gomory D, Roeckel-Drevet P, Cochard H (2011) Genotypic variability and phenotypic plasticity of cavitation resistance in Fagus sylvatica L. across Europe. Tree Physiol 31:1175–1182

    PubMed  Google Scholar 

  • Zanne AE, Westoby M, Falster DS, Ackerly DD, Loarie SR, Arnold SE, Coomes DA (2010) Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity. Am J Bot 97:207–215

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Uwe Hacke for feedback on the manuscript. W.R.L.A. was supported by a National Oceanic and Atmospheric Administration Climate and Global Change Postdoctoral Fellowship, administered by the University Corporation for Atmospheric Research in Boulder, Colorado.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. L. Anderegg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Anderegg, W.R.L., Meinzer, F.C. (2015). Wood Anatomy and Plant Hydraulics in a Changing Climate. In: Hacke, U. (eds) Functional and Ecological Xylem Anatomy. Springer, Cham. https://doi.org/10.1007/978-3-319-15783-2_9

Download citation

Publish with us

Policies and ethics