Skip to main content

Development, Structure, and Function of Torus–Margo Pits in Conifers, Ginkgo and Dicots

  • Chapter
Functional and Ecological Xylem Anatomy

Abstract

Tracheary elements, the water-conducting cells of the xylem, are connected by bordered pit pairs containing pit membranes. The function of the latter is to allow passage of water but not air embolisms. One type of pit membrane form that has evolved repeatedly consists of a central, impermeable torus surrounded by a permeable margo. This membrane structure is common in gymnosperms, but less so in angiosperms. In this chapter, various ontogenetic sequences for the formation of torus/margo pit membranes are explored. Also, the presence and function of such pit membranes under xeric conditions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Recently retransferred to Cartrema by Nesom (2012). This species has been retained within Osmanthus in this chapter.

  2. 2.

    Ephedra, a xeromorphic Gnetalean gymnosperm also has well-developed tori. Pit membrane structure in this genus is dealt with in a recent publication (Dute et al. 2014).

Abbreviations

A:

Pit aperture

B:

Pit border

C:

Pit cavity

CO:

Corona of torus

CM:

Cell membrane

D:

Desmotubule

DI:

Dictyosome

ER:

Endoplasmic reticulum

L:

Cell lumen

M:

Margo

MC:

Median cavity

MT:

Microtubule

P:

Pustular region of torus

PA:

Parenchyma cell

PD:

Plasmodesma

PL:

Protective layer of parenchyma cell wall

PS:

Plastid

R:

Ring of parallel microfibrils in torus

T:

Torus

TP:

Torus pad

V:

Vesicle

References

  • Arteaga MA, González G, Delgado JD, Arévalo JR, Fernández-Palacios JM (2006) Offspring spatial patterns in Picconia excelsa (Oleaceae) in the Canarian laurel forest. Flora 201:642–651

    Article  Google Scholar 

  • Baas P, Esser PM, van der Westen MET, Zandee M (1988) Wood anatomy of the Oleaceae. IAWA Bull New Ser 9:103–182

    Article  Google Scholar 

  • Bailey LH, Bailey EZ (1976) Hortus third, a concise dictionary of plants cultivated in the United States and Canada. Macmillan, New York

    Google Scholar 

  • Barnett JR (1982) Plasmodesmata and pit development in secondary xylem elements. Planta 155:251–260

    Article  CAS  PubMed  Google Scholar 

  • Barnett JR (1987) Changes in the distribution of plasmodesmata in developing fibre-tracheid pit membranes of Sorbus aucuparia L. Ann Bot 59:269–279

    Google Scholar 

  • Barnett JR, Harris JM (1975) Early stages of bordered pit formation in radiata pine. Wood Sci Technol 9:233–241

    Article  Google Scholar 

  • Bauch J, Liese W, Schultze R (1972) The morphological variability of the bordered pit membranes in gymnosperms. Wood Sci Technol 6:165–184

    Article  Google Scholar 

  • Beck CB, Coy K, Schmid R (1982) Observations on the fine structure of Callixylon wood. Am J Bot 69:54–76

    Article  Google Scholar 

  • Bilderback TE (2007) Development, evaluation, and promotion of underutilized and novel ornamental plants. Hatch Project, accession no. 0139259

    Google Scholar 

  • Coleman CM, Prather BL, Valente MJ, Dute RR, Miller ME (2004) Torus lignification in hardwoods. IAWA J 25:435–447

    Article  Google Scholar 

  • Cronquist A, Holmgren NH, Holmgren PK (1997) Intermountain flora: vascular plants of the Intermountain West, U.S.A. The New York Botanical Garden, Bronx

    Google Scholar 

  • Czaninski Y (1979) Cytochimie ultrastucturelle des parois du xyléme secondaire. Biol. Cellulaire 35:97–102

    Google Scholar 

  • Domec J-C, Lachenbruch B, Meinzer FC (2006) Bordered pit structure and function determine spatial patterns of air-seeding thresholds in xylem of Douglas-fir (Pseudotsuga menziesii; Pinaceae) trees. Am J Bot 93:1588–1600

    Article  PubMed  Google Scholar 

  • Dute RR (1994) Pit membrane structure and development in Ginkgo biloba. IAWA J 15:75–90

    Article  Google Scholar 

  • Dute RR, Elder T (2011) Atomic force microscopy of torus-bearing pit membranes. IAWA J 32:4154430

    Article  Google Scholar 

  • Dute RR, Rushing AE (1987) Pit pairs with tori in the wood of Osmanthus americanus (Oleaceae). IAWA Bull New Ser 8:237–244

    Article  Google Scholar 

  • Dute RR, Rushing AE (1988) Notes on torus development in the wood of Osmanthus americanus (L.) Benth. & Hook. ex Gray (Oleaceae). IAWA Bull New Ser 9:41–51

    Article  Google Scholar 

  • Dute RR, Rushing AE (1990) Torus structure and development in the woods of Ulmus alata Michx., Celtis laevigata Willd., and Celtis occidentalis L. IAWA Bull New Ser 11:71–83

    Article  Google Scholar 

  • Dute RR, Rushing AE, Perry JW (1990) Torus structure and development in species of Daphne. IAWA Bull New Ser 11:401–412

    Article  Google Scholar 

  • Dute RR, Rushing AE, Freeman JD (1992) Survey of intervessel pit membrane structure in Daphne species. IAWA Bull New Ser 13:113–123

    Article  Google Scholar 

  • Dute RR, Freeman JD, Henning F, Barnard LD (1996) Intervascular pit membrane structure in Daphne and Wikstroemia—Systematic implications. IAWA J 17:161–181

    Article  Google Scholar 

  • Dute RR, Miller ME, Carollo RR (2001) Intervascular pit structure in selected species of Thymelaeaceae. J Ala Acad Sci 72:14–26

    Google Scholar 

  • Dute RR, Martin AL, Jansen S (2004) Intervascular pit membranes with tori in wood of Planera aquatica J.F. Gmel. J Ala Acad Sci 75:7–21

    Google Scholar 

  • Dute R, Hagler L, Black A (2008) Comparative development of intertracheary pit membranes in Abies firma and Metasequoia glyptostroboides. IAWA J 29:277–289

    Article  Google Scholar 

  • Dute R, Patel J, Jansen S (2010a) Torus-bearing pit membranes in Cercocarpus. IAWA J 31:53–66

    Article  Google Scholar 

  • Dute R, Rabaey D, Allison J, Jansen S (2010b) Torus-bearing pit membranes in species of Osmanthus. IAWA J 31:217–226

    Article  Google Scholar 

  • Dute R, Jandrlich MD, Thornton S, Callahan N, Hansen CJ (2011) Tori in species of Diarthron, Stellera and Thymelaea (Thymelaeaceae). IAWA J 32:54–66

    Article  Google Scholar 

  • Dute RR, Hubbard Z, Patel RV (2012a) Intervascular pit membranes in roots of two species of Osmanthus (Oleaceae). J Ala Acad Sci 83:8–19

    Google Scholar 

  • Dute RR, Zwack PJ, Craig E, Baccus SM (2012b) Torus presence and distribution in leaves of Osmanthus armatus. IAWA J 33:257–268

    Article  Google Scholar 

  • Dute R, Hansen CJ, Baker M, Lambert E, Michael W (2013) Presence of torus-bearing pit membranes in reproductive organs of Osmanthus americanus (Oleaceae). J Ala Acad Sci 84:17–27

    Google Scholar 

  • Dute RR, Bowen LA, Schier S, Vevon AG, Best TL, Auad M, Elder T, Bouche P, Jansen J (2014) Pit membranes of Ephedra resemble gymnosperms more than angiosperms. IAWA J 35(3):217–235

    Article  Google Scholar 

  • Esau K (1977) Anatomy of seed plants, 2nd edn. Wiley, New York

    Google Scholar 

  • Fengel D (1972) Structure and function of the membrane in softwood bordered pits. Holzforschung 26:1–9

    Article  Google Scholar 

  • Ferreira RC, Piredda R, Bagnoli F, Bellarosa R, Attimonelli M, Fineschi S, Schirone B, Simeone MC (2011) Phylogeography and conservation perspectives of an endangered Macaronesian endemic: Picconia azorica (Tutin) Knobl. (Oleaceae). Eur J For Res 130:181–195

    Article  Google Scholar 

  • Ferreira RC, Lo Monaco A, Picchio R, Schirone A, Vessella F, Schirone B (2012) Wood anatomy and technological properties of an endangered species: Picconia azorica (Oleaceae). IAWA J 33:375–390

    Article  Google Scholar 

  • Fujikawa S, Ishida S (1972) Study on the pit of wood cells using scanning electron microscopy. III. Structural variation of bordered pit membrane on the radial wall between tracheids in Pinaceae species. J Jap Wood Res Soc 18:477–483

    Google Scholar 

  • Gomes ABA (1998) Creating native displays at the Faial Botanic Garden, Azores, Portugal http://www.bgci.org/congress/congress_1998_cape/html/gomes.htm

  • Green PS (1958) A monographic revision of Osmanthus in Asia and America. Notes Roy Bot Gard Edinburgh 22:439–542

    Google Scholar 

  • Hacke UG, Jansen S (2009) Embolism resistance of three boreal conifer species varies with pit structure. New Phytol 182:675–686

    Article  PubMed  Google Scholar 

  • Hacke UG, Sperry JS, Pittermann J (2004) Analysis of circular bordered pit function II. Gymnosperm tracheids with torus-margo pit membranes. Am J Bot 91:386–400

    Article  PubMed  Google Scholar 

  • Hacke UG, Sperry JS, Wheeler JK, Castro L (2006) Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol 26:689–701

    Article  PubMed  Google Scholar 

  • He S-A, Yin G, Pang Z-J (1997) Resources and prospects of Ginkgo biloba in China. In: Hori T, Ridge RW, Tulecke W, Del Tredici P, Trémouillaux-Guiller J, Tobe H (eds) Ginkgo biloba—a global treasure. Springer, Tokyo, pp 373–382

    Google Scholar 

  • Hickman JC (ed) (1993) The Jepson manual: higher plants of California. University of California Press, Berkeley

    Google Scholar 

  • Humphries CJ (1979) Endemism and evolution in Macaronesia. In: Bramwell D (ed) Plants and islands. Academic, London, pp 171–191

    Google Scholar 

  • Imamura Y, Harada H (1973) Electron microscopic study on the development of the bordered pit in coniferous tracheids. Wood Sci Technol 7:189–205

    Article  Google Scholar 

  • Imamura Y, Harada H, Saiki H (1974) Embedding substances of pit membranes in softwood tracheids and their degradation by enzymes. Wood Sci Technol 8:243–254

    Article  CAS  Google Scholar 

  • Jansen S, Choat B, Vinckier S, Lens F, Schols P, Smets E (2004) Intervascular pit membranes with a torus in the wood of Ulmus (Ulmacea) and related genera. New Phytol 163:51–59

    Article  Google Scholar 

  • Jansen S, Sano Y, Choat B, Rabaey D, Lens F, Dute RR (2007) Pit membranes in tracheary elements of Rosaceae and related families: new records of tori and pseudotori. Am J Bot 94:503–514

    Article  PubMed  Google Scholar 

  • Jansen S, Choat B, Pletsers A (2009) Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms. Am J Bot 96:409–419

    Article  PubMed  Google Scholar 

  • Jansen S, Lamy J-B, Burlett R, Cochard H, Gasson P, Delzon S (2012) Plasmodesmatal pores in the torus of bordered pit membranes affect cavitation resistance of conifer xylem. Plant Cell Environ 35:1109–1120

    Article  CAS  PubMed  Google Scholar 

  • Lancashire JR, Ennos AR (2002) Modelling the hydrodynamic resistance of bordered pits. J Exp Bot 53:1485–1493

    Article  CAS  PubMed  Google Scholar 

  • McGregor RL, Barkley TM, Brooks RE, Schofield EK (1986) Flora of the Great Plains. University Press of Kansas, Lawrence

    Google Scholar 

  • Mirov NT (1967) The genus Pinus. Ronald, New York

    Google Scholar 

  • Murmanis L, Sachs IB (1969) Seasonal development of secondary xylem in Pinus strobus L. Wood Sci Technol 3:177–193

    Article  Google Scholar 

  • Nesom GL (2012) Synopsis of American Cartrema (Oleaceae). Phytoneuron 2012–96:1–11

    Google Scholar 

  • Ohtani J (1983) SEM investigation on the micromorphology of vessel wall sculptures. Research Bulletin of the College Experiment Forests, College of Agriculture, Hokkaido University 40: 323–386

    Google Scholar 

  • Ohtani J, Ishida S (1978) Pit membrane with torus in dicotyledonous woods. Mokuzai Gakkaishi 24:673–675

    Google Scholar 

  • Parameswaran N, Gomes AV (1981) Fine structural aspects of helical thickenings and pits in vessels of Ligustrum lucidum Ait. (Oleaceae). IAWA Bull New Ser 2:179–185

    Article  Google Scholar 

  • Parameswaran N, Liese W (1973) Anomalous structures in the bordered pits of fiber-tracheids of Ribes sanguineum. Wood Fiber 5:76–79

    Google Scholar 

  • Parameswaran N, Liese W (1981) Torus-like structures in interfibre pits of Prunus and Pyrus. IAWA Bull New Ser 2:89–93

    Article  Google Scholar 

  • Pittermann J, Sperry JS, Hacke UG, Wheeler JK, Sikkema EH (2005) Torus-margo pits help conifers compete with angiosperms. Science 310:1924

    Article  CAS  PubMed  Google Scholar 

  • Plavcová L, Hacke UG (2011) Heterogeneous distribution of pectin epitopes and calcium in different pit types of four angiosperm species. New Phytol 192:885–897

    Article  PubMed  Google Scholar 

  • Rabaey D, Lens F, Smets E, Jansen S (2006) The micromorphology of pit membranes in tracheary elements of Ericales: New records of tori and pseudo-tori. Ann Bot 98:943–951

    Google Scholar 

  • Rabaey D, Huysmans S, Lens F, Smets E, Jansen S (2008a) Micromorphology and systematic distribution of pit membrane thickenings in Oleaceae: tori and pseudo-tori. IAWA J 29:409–424

    Article  Google Scholar 

  • Rabaey D, Lens F, Huysmans S, Smets E, Jansen S (2008b) A comparative ultrastructural study of pit membranes with plasmodesmata associated thickenings in four angiosperm species. Protoplasma 233:255–262

    Article  PubMed  Google Scholar 

  • Radford AE, Ahles HE, Bell CR (1968) Manual of the vascular flora of the Carolinas. The University of North Carolina Press, Chapel Hill

    Google Scholar 

  • Rendle AB (1925) The classification of flowering plants, vol II, Dictoyledons. Cambridge University Press, Cambridge

    Google Scholar 

  • Roth-Nebelsick A, Voigt D, Gorb S (2010) Cryo-scanning electron microscopy studies of Pinus wallichiana and Mallotus japonicas. IAWA J 31:257–267

    Article  Google Scholar 

  • Rushforth K (1987) Conifers. Christopher Helm, London

    Google Scholar 

  • Sano Y (2005) Inter- and intraspecific structural variations among intervascular pit membranes, as revealed by field-emission scanning electron microscopy. Am J Bot 92:1077–1084

    Article  PubMed  Google Scholar 

  • Sano Y, Kawakami Y, Ohtani J (1999) Variation in the structure of intertracheary pit membranes in Abies sachalinensis as observed by field-emission scanning electron microscopy. IAWA J 20:375–388

    Article  Google Scholar 

  • Sano Y, Utsumi Y, Nakada R (2013) Homoplastic occurrence of perforated pit membranes and torus-bearing pit membranes in ancestral angiosperms as observed by field-emission scanning electron microscopy. J Wood Sci 59:95–103

    Article  Google Scholar 

  • Schmid R, Machado RD (1968) Pit membranes in hardwoods—fine structure and development. Protoplasma 66:185–204

    Article  Google Scholar 

  • Shen Z-H, Zhang X-S (2000) A study on the classification of the plant functional types based on the topographical pattern of plant distribution. Acta Bot Sin 42:1190–1196

    Google Scholar 

  • Tan K (1982) Studies in the Thymelaeaceae III: the status of Diarthron, Dendrostellera, Stelleropsis and Stellera. Notes Roy Bot Gard Edinburgh 40:213–221

    Google Scholar 

  • Thomas RJ (1968) The development and ultrastructure of the bordered pit membrane in the southern yellow pines. Holzforschung 22:38–44

    Article  Google Scholar 

  • Thomas RJ (1969) The ultrastructure of southern pine bordered pit membranes as revealed by specialized drying techniques. Wood Fiber 1:110–123

    Google Scholar 

  • Thomas RJ (1970) Origin of bordered pit margo microfibrils. Wood Fiber 2:285–288

    Google Scholar 

  • Thomas RJ (1972) The ultrastructure of differentiating and mature bordered pit membranes from cypress (Taxodium distichum L. Rich.). Wood Fiber 4:87–94

    Google Scholar 

  • Timell TE (1979) Formation of compression wood in Balsam Fir (Abies balsamea) II. Ultrastructure of the differentiating xylem. Holzforschung 33:181–191

    Article  Google Scholar 

  • Wallander E, Albert VA (2000) Phylogeny and classification of Oleaceae based on Rps 16 and TRNL-F sequence data. Am J Bot 87:1827–1841

    Article  CAS  PubMed  Google Scholar 

  • Wheeler EA (1983) Intervascular pit membranes in Ulmus and Celtis native to the United States. IAWA Bull 4:79–88

    Article  Google Scholar 

  • Wheeler JK, Sperry JS, Hacke UG, Hoang N (2005) Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport. Plant Cell Environ 28:800–812

    Article  Google Scholar 

  • Wright JG (1928) The pit-closing membrane in the wood of the lower gymnosperms. Trans R Soc Can 22:63–94

    Google Scholar 

  • Wu Z-Y, Raven PH (1996) Osmanthus. Flora China 15:286–292

    Google Scholar 

  • Xiang Q, Liu L, Wu X (2008) Studies on the cultivar classification of Osmanthus. Acta Horticult 799:61–65

    Google Scholar 

  • Zimmermann MH (1983) Xylem structure and the ascent of sap. Springer, Berlin

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland R. Dute B.S., M.S., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dute, R.R. (2015). Development, Structure, and Function of Torus–Margo Pits in Conifers, Ginkgo and Dicots. In: Hacke, U. (eds) Functional and Ecological Xylem Anatomy. Springer, Cham. https://doi.org/10.1007/978-3-319-15783-2_3

Download citation

Publish with us

Policies and ethics