Skip to main content

Evaluation of Cardiac Damage in Hypertension: Electrocardiography

  • Chapter
Assessment of Preclinical Organ Damage in Hypertension

Abstract

The aim of this chapter is to review the literature on the use of surface electrocardiography for evaluating target-organ damage in patients with hypertension. Topics covered include a brief introduction to basic electrocardiography, pathophysiology and prognostic implications of electrocardiographic left ventricular hypertrophy, imaging surrogates and predictive value of the electrocardiographic “strain” pattern (lateral ST-T abnormalities) in hypertensive patients with and without obstructive coronary artery disease, correlates of intracardiac conduction delay (QRS duration) with risk of incident heart failure and sudden cardiac death in patients with and without concomitant left ventricular hypertrophy, clinical implications of preexisting atrial fibrillation, and novel evidence identifying new-onset atrial fibrillation as a marker of left ventricular decomenpensation in hypertension. Finally, this chapter discusses the recently proposed entity of “electrical” hypertrophy as compared to anatomical hypertrophy by echocardiogram or MRI and how this may play into the future role of classic electrocardiography as a low-cost risk-stratification tool in hypertensive patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hein S, Arnon E, Kostin S, et al. Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation. 2003;107:984–91.

    Article  PubMed  Google Scholar 

  2. Agabiti-Rosei E, Muiesan ML, Salvetti M. Evaluation of subclinical target organ damage for risk assessment and treatment in the hypertensive patients: left ventricular hypertrophy. J Am Soc Nephrol. 2006;17:S104–8.

    Article  PubMed  Google Scholar 

  3. Kannel WB. Prevalence and natural history of electrocardiographic left ventricular hypertrophy. Am J Med. 1983;75:4–11.

    Article  CAS  PubMed  Google Scholar 

  4. Sokolow M, Lyon TP. The ventricular complex in left ventricular hypertrophy as obtained by unipolar precordial and limb leads. Am Heart J. 1949;37:161–86.

    Article  CAS  PubMed  Google Scholar 

  5. Roberts WC, Filardo G, Ko JM, et al. Comparison of total 12-lead QRS voltage in a variety of cardiac conditions and its usefulness in predicting increased cardiac mass. Am J Cardiol. 2013;112:904–9.

    Article  PubMed  Google Scholar 

  6. Angeli F, Verdecchia P, Angeli E, et al. Day-to-day variability of electrocardiographic diagnosis of left ventricular hypertrophy in hypertensive patients. Influence of electrode placement. J Cardiovasc Med (Hagerstown). 2006;7:812–6.

    Article  Google Scholar 

  7. Dhingra R, Ho NB, Benjamin EJ, et al. Cross-sectional relations of electrocardiographic QRS duration to left ventricular dimensions: the Framingham Heart Study. J Am Coll Cardiol. 2005;45:685–9.

    Article  PubMed  Google Scholar 

  8. Wiegerinck RF, Verkerk AO, Belterman CN, et al. Larger cell size in rabbits with heart failure increases myocardial conduction velocity and QRS duration. Circulation. 2006;113:806–13.

    Article  PubMed  Google Scholar 

  9. Johnson NP, Gould KL. Physiological basis for angina and ST-segment change PET-verified thresholds of quantitative stress myocardial perfusion and coronary flow reserve. JACC Cardiovasc Imaging. 2011;4:990–8.

    Article  PubMed  Google Scholar 

  10. Cabrera E, Monroy JR. Systolic and diastolic loading of the heart. II. Electrocardiographic data. Am Heart J. 1952;43:669–86.

    Article  CAS  PubMed  Google Scholar 

  11. Pichard AD, Gorlin R, Smith H, Ambrose J, Meller J. Coronary flow studies in patients with left ventricular hypertrophy of the hypertensive type. Evidence for an impaired coronary vascular reserve. Am J Cardiol. 1981;47:547–54.

    Article  CAS  PubMed  Google Scholar 

  12. Li D, Li CY, Yong AC, Kilpatrick D. Source of electrocardiographic ST changes in subendocardial ischemia. Circ Res. 1998;82:957–70.

    Article  CAS  PubMed  Google Scholar 

  13. Hancock EW, Deal BJ, Mirvis DM, et al. AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: part V: electrocardiogram changes associated with cardiac chamber hypertrophy: a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society. Endorsed by the International Society for Computerized Electrocardiology. J Am Coll Cardiol. 2009;53:992–1002.

    Article  PubMed  Google Scholar 

  14. Pewsner D, Juni P, Egger M, Battaglia M, Sundstrom J, Bachmann LM. Accuracy of electrocardiography in diagnosis of left ventricular hypertrophy in arterial hypertension: systematic review. BMJ. 2007;335:711.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Alfakih K, Walters K, Jones T, Ridgway J, Hall AS, Sivananthan M. New gender-specific partition values for ECG criteria of left ventricular hypertrophy: recalibration against cardiac MRI. Hypertension. 2004;44:175–9.

    Article  CAS  PubMed  Google Scholar 

  16. Okin PM, Devereux RB, Jern S, Kjeldsen SE, Julius S, Dahlof B. Baseline characteristics in relation to electrocardiographic left ventricular hypertrophy in hypertensive patients: the Losartan intervention for endpoint reduction (LIFE) in hypertension study. The Life Study Investigators. Hypertension. 2000;36:766–73.

    Article  CAS  PubMed  Google Scholar 

  17. Angeli F, Verdecchia P, Iacobellis G, Reboldi G. Usefulness of QRS voltage correction by body mass index to improve electrocardiographic detection of left ventricular hypertrophy in patients with systemic hypertension. Am J Cardiol. 2014;114(3):427–32.

    Article  PubMed  Google Scholar 

  18. Ang D, Lang C. The prognostic value of the ECG in hypertension: where are we now? J Hum Hypertens. 2008;22:460–7.

    Article  PubMed  Google Scholar 

  19. Verdecchia P, Porcellati C, Reboldi G, et al. Left ventricular hypertrophy as an independent predictor of acute cerebrovascular events in essential hypertension. Circulation. 2001;104:2039–44.

    Article  CAS  PubMed  Google Scholar 

  20. Schillaci G, Battista F, Pucci G. A review of the role of electrocardiography in the diagnosis of left ventricular hypertrophy in hypertension. J Electrocardiol. 2012;45:617–23.

    Article  PubMed  Google Scholar 

  21. Okin PM, Devereux RB, Jern S, et al. Regression of electrocardiographic left ventricular hypertrophy during antihypertensive treatment and the prediction of major cardiovascular events. JAMA. 2004;292:2343–9.

    Article  CAS  PubMed  Google Scholar 

  22. Wachtell K, Okin PM, Olsen MH, et al. Regression of electrocardiographic left ventricular hypertrophy during antihypertensive therapy and reduction in sudden cardiac death: the LIFE Study. Circulation. 2007;116:700–5.

    Article  PubMed  Google Scholar 

  23. La Salvia EA, Gilkeson RC, Dahms BB, Siwik E. Delayed contrast enhancement magnetic resonance imaging in congenital aortic stenosis. Pediatr Cardiol. 2006;27:388–90.

    Article  PubMed  Google Scholar 

  24. Muiesan ML. Left ventricular hypertrophy: a new approach for fibrosis inhibition. J Hypertens. 2002;20:611–3.

    Article  CAS  PubMed  Google Scholar 

  25. Buchner S, Debl K, Haimerl J, et al. Electrocardiographic diagnosis of left ventricular hypertrophy in aortic valve disease: evaluation of ECG criteria by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2009;11:18.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Okin PM, Devereux RB, Nieminen MS, et al. Relationship of the electrocardiographic strain pattern to left ventricular structure and function in hypertensive patients: the LIFE study. Losartan Intervention For End point. J Am Coll Cardiol. 2001;38:514–20.

    Article  CAS  PubMed  Google Scholar 

  27. Okin PM, Devereux RB, Nieminen MS, et al. Electrocardiographic strain pattern and prediction of cardiovascular morbidity and mortality in hypertensive patients. Hypertension. 2004;44:48–54.

    Article  CAS  PubMed  Google Scholar 

  28. Verdecchia P, Reboldi G, Angeli F, et al. Prognostic value of serial electrocardiographic voltage and repolarization changes in essential hypertension: the HEART Survey study. Am J Hypertens. 2007;20:997–1004.

    Article  PubMed  Google Scholar 

  29. Schillaci G, Pirro M, Pasqualini L, et al. Prognostic significance of isolated, non-specific left ventricular repolarization abnormalities in hypertension. J Hypertens. 2004;22:407–14.

    Article  CAS  PubMed  Google Scholar 

  30. Okin PM, Oikarinen L, Viitasalo M, et al. Prognostic value of changes in the electrocardiographic strain pattern during antihypertensive treatment: the Losartan Intervention for End-Point Reduction in Hypertension Study (LIFE). Circulation. 2009;119:1883–91.

    Article  CAS  PubMed  Google Scholar 

  31. Morin DP, Oikarinen L, Viitasalo M, et al. QRS duration predicts sudden cardiac death in hypertensive patients undergoing intensive medical therapy: the LIFE study. Eur Heart J. 2009;30:2908–14.

    Article  PubMed  Google Scholar 

  32. Okin PM, Devereux RB, Kjeldsen SE, Edelman JM, Dahlof B. Incidence of heart failure in relation to QRS duration during antihypertensive therapy: the LIFE study. J Hypertens. 2009;27:2271–7.

    Article  CAS  PubMed  Google Scholar 

  33. Lenegre J. Etiology and pathology of bilateral bundle branch block in relation to complete heart block. Prog Cardiovasc Dis. 1964;6:409–44.

    Article  CAS  PubMed  Google Scholar 

  34. Drazner MH. The progression of hypertensive heart disease. Circulation. 2011;123:327–34.

    Article  PubMed  Google Scholar 

  35. Mewton N, Liu CY, Croisille P, Bluemke D, Lima JA. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol. 2011;57:891–903.

    Article  PubMed  Google Scholar 

  36. Wachtell K, Hornestam B, Lehto M, et al. Cardiovascular morbidity and mortality in hypertensive patients with a history of atrial fibrillation: the Losartan Intervention For End Point Reduction in Hypertension (LIFE) study. J Am Coll Cardiol. 2005;45:705–11.

    Article  PubMed  Google Scholar 

  37. Chrispin J, Jain A, Soliman EZ, et al. Association of electrocardiographic and imaging surrogates of left ventricular hypertrophy with incident atrial fibrillation: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol. 2014;63:2007–13.

    Article  PubMed  Google Scholar 

  38. Wachtell K, Devereux RB, Lyle PA, Okin PM, Gerdts E. The left atrium, atrial fibrillation, and the risk of stroke in hypertensive patients with left ventricular hypertrophy. Ther Adv Cardiovasc Dis. 2008;2:507–13.

    Article  PubMed  Google Scholar 

  39. Okin PM, Wachtell K, Devereux RB, et al. Regression of electrocardiographic left ventricular hypertrophy and decreased incidence of new-onset atrial fibrillation in patients with hypertension. JAMA. 2006;296:1242–8.

    Article  CAS  PubMed  Google Scholar 

  40. Wachtell K, Lehto M, Gerdts E, et al. Angiotensin II receptor blockade reduces new-onset atrial fibrillation and subsequent stroke compared to atenolol: the Losartan Intervention For End Point Reduction in Hypertension (LIFE) study. J Am Coll Cardiol. 2005;45:712–9.

    Article  CAS  PubMed  Google Scholar 

  41. Okin PM, Bang CN, Wachtell K, et al. Relationship of sudden cardiac death to new-onset atrial fibrillation in hypertensive patients with left ventricular hypertrophy. Circ Arrhythm Electrophysiol. 2013;6:243–51.

    Article  CAS  PubMed  Google Scholar 

  42. Sundstrom J, Lind L, Arnlov J, Zethelius B, Andren B, Lithell HO. Echocardiographic and electrocardiographic diagnoses of left ventricular hypertrophy predict mortality independently of each other in a population of elderly men. Circulation. 2001;103:2346–51.

    Article  CAS  PubMed  Google Scholar 

  43. Bacharova L, Szathmary V, Kovalcik M, Mateasik A. Effect of changes in left ventricular anatomy and conduction velocity on the QRS voltage and morphology in left ventricular hypertrophy: a model study. J Electrocardiol. 2010;43:200–8.

    Article  PubMed  Google Scholar 

  44. Ann Noninvasive Electrocardiol. 2014;19(6):524–33. doi: 10.1111/anec.12223. Epub 2014 Nov 4.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders M. Greve MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Greve, A.M., Okin, P.M., Olsen, M.H., Wachtell, K. (2015). Evaluation of Cardiac Damage in Hypertension: Electrocardiography. In: Agabiti Rosei, E., Mancia, G. (eds) Assessment of Preclinical Organ Damage in Hypertension. Springer, Cham. https://doi.org/10.1007/978-3-319-15603-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15603-3_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15602-6

  • Online ISBN: 978-3-319-15603-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics