Skip to main content

Simulation Tools and Techniques for Vehicular Communications and Applications

  • Chapter
Vehicular ad hoc Networks

Abstract

In the domain of Inter-Vehicle Communication (IVC), even though first field operational tests are already going on, performance evaluation is still dominated by simulation experiments. Yet, they require a very specific methodology as well as adapted tools and models not straightforwardly found in other domains. In this chapter, we first describe the required methodology in terms of scalability and applicability to select the right models and their interactions. In particular, we classify each class of models as in increasing level of granularity, and discuss in detail the trade-off between scalability and applicability typical to IVC simulations. We then introduce some of the most widely used and openly available simulation frameworks applicable to the domain of IVC, and emphasize their capabilities related to the required methodology. In particular, we present the IVC simulation toolkits Veins, iTETRIS, and VSimRTI, three prominent simulation platforms openly available for IVC simulations. To provide guidelines for efficient and scalable simulations of IVC applications, we discuss the appropriate selection of models and their level of granularity as function of the IVC application requirements, and provide an overview of their corresponding support in each of toolkit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.colombo-fp7.eu/.

  2. 2.

    http://veins.car2x.org/.

  3. 3.

    http://www.ict-itetris.eu/.

  4. 4.

    http://www.dcaiti.tu-berlin.de/research/simulation/.

References

  1. Ahmed S, Karmakar GC, Kamruzzaman J (2010) An environment-aware mobility model for wireless ad hoc network. Elsevier Comput Netw 54(9):1470–1489

    Article  MATH  Google Scholar 

  2. Baiocchi A, Cuomo F (2013) Infotainment services based on push-mode dissemination in an integrated VANET and 3G architecture. J Commun Netw 15(2):179–190. doi:10.1109/JCN.2013.000031

    Article  Google Scholar 

  3. Barr R, Haas ZJ, van Renesse R (2005) JiST: an efficient approach to simulation using virtual machines. Softw Pract Experience 35(6):539–576. doi:10.1002/spe.647

    Article  Google Scholar 

  4. Bellavista P, Caselli F, Foschini L (2014) Implementing and evaluating v2x protocols over itetris: traffic estimation in the colombo project. In: Proceedings of the 4th ACM international symposium on development and analysis of intelligent vehicular networks and applications, DIVANet ’14, pp 25–32

    Google Scholar 

  5. Bieker L, Krajzewicz D, Röckl M, Cappelle H (2010) Derivation of a fast, approximating 802.11p simulation model. In: 10th International conference on intelligent transport systems telecommunications (ITST 2010), Kyoto

    Google Scholar 

  6. Boban M, Vinhosa T, Barros J, Ferreira M, Tonguz OK (2011) Impact of vehicles as obstacles in vehicular Networks. IEEE J Sel Areas Commun 29(1):15–28

    Article  Google Scholar 

  7. Camp T, Boleng J, Davies V (2002) A survey of mobility models for ad goc network research. Wirel Commun Mob Comput 2(5):483–502. Special Issue on Mobile Ad Hoc Networking: Research, Trends and Applications

    Google Scholar 

  8. Chen Q, Jiang D, Taliwal V, Delgrossi L (2006) IEEE 802.11 based vehicular communication simulation design for NS-2. In: 3rd ACM international workshop on vehicular ad hoc networks (VANET 2006). ACM, Los Angeles, CA, pp 50–56. doi:10.1145/1161064.1161073

  9. Cheng W, Cheng X, Znati T, Lu X, Lu Z (2009) The complexity of channel scheduling in multi-radio multi-channel wireless Networks. In: 28th IEEE conference on computer communications (INFOCOM 2009), Rio de Janeiro, pp 1512–1520. doi:10.1109/INFCOM.2009.5062068

  10. Chrysanthou C, Bertoni HL (1990) Variability of sector averaged signals for UHF propagation in cities. IEEE Trans Veh Technol 39(4):352–358. doi:10.1109/25.61356

    Article  Google Scholar 

  11. Dressler F, Sommer C (2010) On the impact of human driver behavior on intelligent transportation systems. In: 71st IEEE vehicular technology conference (VTC2010-Spring). IEEE, Taipei, pp 1–5. doi:10.1109/VETECS.2010.5493964

  12. Dressler F, Sommer C, Eckhoff D, Tonguz OK (2011) Towards realistic simulation of inter-vehicle communication: models, techniques and pitfalls. IEEE Veh Technol Mag 6(3):43–51. doi:10.1109/MVT.2011.941898

    Article  Google Scholar 

  13. van Eenennaam M, Wolterink W, Karagiannis G, Heijenk G (2009) Exploring the solution space of beaconing in VANETs. In: 1st IEEE vehicular networking conference (VNC 2009). IEEE, Tokyo. doi:10.1109/VNC.2009.5416370

  14. European Telecommunications Standards Institute (2009) Intelligent transport systems (ITS); European profile standard for the physical and medium access control layer of Intelligent Transport Systems operating in the 5 GHz frequency band. ES 202 663 V1.1.0, ETSI

    Google Scholar 

  15. Fiore M, Härri J (2008) The networking shape of vehicular mobility. In: 9th ACM international symposium on mobile ad hoc networking and computing (Mobihoc 2008). ACM, Hong Kong, China, pp 261–272

    Google Scholar 

  16. Font J, Iñigo P, Domínguez M, Sevillano JL, Amaya C (2010) Architecture, design and source code comparison of ns-2 and ns-3 network simulators. In: 2010 spring simulation multiconference (SpringSim 2010). SCS, Orlando, FL

    Google Scholar 

  17. Harri J, Filali F, Bonnet C (2009) Mobility models for vehicular ad hoc networks: a survey and taxonomy. IEEE Commun Surv Tutorials 11(4):19–41

    Article  Google Scholar 

  18. Härri J, Cataldi P, Krajzewicz D, Blokpoel RJ, Lopez Y, Leguay J (2011) Modeling and simulating its applications with itetris. In: MSWiM’11, 14th ACM international conference on modeling, analysis and simulation of wireless and mobile systems

    Google Scholar 

  19. Hartenstein H, Laberteaux KP (2008) A tutorial survey on vehicular ad hoc networks. IEEE Commun Mag 46(6):164–171

    Article  Google Scholar 

  20. Institute of Electrical and Electronics Engineers (2010) Wireless access in vehicular environments. Std 802.11p-2010, IEEE

    Google Scholar 

  21. Institute of Electrical and Electronics Engineers (2011) IEEE trial-use standard for wireless access in vehicular environments (WAVE) - multi-channel operation. Std 1609.4, IEEE

    Google Scholar 

  22. Institute of Electrical and Electronics Engineers and IEEE-SA Standards Board (2000) IEEE standard for modeling and simulation (M&S) high level architecture (HLA): framework and rules. IEEE Standard 1516. IEEE standard, Institute of Electrical and Electronics Engineers

    Google Scholar 

  23. Joerer S, Dressler F, Sommer C (2012) Comparing apples and oranges? Trends in IVC simulations. In: 9th ACM international workshop on vehicular internetworking (VANET 2012). ACM, Low Wood Bay, pp 27–32. doi:10.1145/2307888.2307895

  24. Joerer S, Segata M, Bloessl B, Lo Cigno R, Sommer C, Dressler F (2014) A vehicular networking perspective on estimating vehicle collision probability at intersections. IEEE Trans Veh Technol 63(4):1802–1812. doi:10.1109/TVT.2013.2287343

    Article  Google Scholar 

  25. Karagiannis G, Altintas O, Ekici E, Heijenk G, Jarupan B, Lin K, Weil T (2011) Vehicular networking: a survey and tutorial on requirements, architectures, challenges, standards and solutions. IEEE Commun Surv Tutorials 13(4):584–616. doi:10.1109/SURV.2011.061411.00019

    Article  Google Scholar 

  26. Katsaros K, Kernchen R, Dianati M, Rieck D, Zinoviou C (2011) Application of vehicular communications for improving the efficiency of traffic in urban areas. Wirel Commun Mob Comput 11(12):1657–1667. doi:10.1002/wcm.1233

    Article  Google Scholar 

  27. Killat M, Hartenstein H (2009) An empirical model for probability of packet reception in vehicular ad hoc networks. EURASIP J Wirel Commun Netw 2009(1):721301

    Google Scholar 

  28. Klingler F, Dressler F, Cao J, Sommer C (2013) Use both lanes: multi-channel beaconing for message dissemination in vehicular networks. In: 10th IEEE/IFIP conference on wireless on demand network systems and services (WONS 2013). IEEE, Banff, pp 162–169

    Google Scholar 

  29. Köpke A, Swigulski M, Wessel K, Willkomm D, Haneveld PTK, Parker TEV, Visser OW, Lichte HS, Valentin S (2008) Simulating wireless and mobile networks in OMNeT++ – the MiXiM vision. In: 1st ACM/ICST international conference on simulation tools and techniques for communications, networks and systems (SIMUTools 2008): 1st ACM/ICST international workshop on OMNeT++ (OMNeT++ 2008). ACM, Marseille

    Google Scholar 

  30. Krajzewicz D, Hertkorn G, Rössel C, Wagner P (2002) SUMO (Simulation of Urban MObility); An open-source traffic simulation. In: 4th Middle east symposium on simulation and modelling (MESM 2002), Sharjah, pp 183–187

    Google Scholar 

  31. Lee KC, Lee U, Gerla M (2009) TO-GO: topology-assist geo-opportunistic routing in urban Vehicular Grids. In: 6th IEEE/IFIP conference on wireless on demand network systems and services (WONS 2009). IEEE, Snowbird, UT, pp 11–18

    Google Scholar 

  32. Lownes NE, Machemehl RB (2006) VISSIM: a multi-parameter sensitivity analysis. In: 38th winter simulation conference (WSC ’06). IEEE, Monterey, CA, pp 1406–1413. doi:10.1109/WSC.2006.323241

  33. Mittag J, Papanastasiou S, Hartenstein H, Strom E (2011) Enabling accurate cross-layer phy/mac/net simulation studies of vehicular communication networks. Proc IEEE 99(7):1311–1326

    Article  Google Scholar 

  34. Nagel R, Eichler S (2008) Efficient and realistic mobility and channel modeling for VANET scenarios using OMNeT++ and INET-Framework. In: 1st ACM/ICST international conference on simulation tools and techniques for communications, networks and systems (SIMUTools 2008). ICST, Marseille, pp 1–8

    Google Scholar 

  35. Naumann N, Schünemann B, Radusch I, Meinel C (2009) Improving v2x simulation performance with optimistic synchronization. In: Services computing conference, 2009. APSCC 2009. IEEE Asia-Pacific, pp 52–57. doi:10.1109/APSCC.2009.5394142

  36. Protzmann R, Schünemann B, Radusch I (2014) A sensitive metric for the assessment of vehicular communication applications. In: IEEE 28th international conference on advanced information networking and applications (AINA), 2014, pp 697–703. doi:10.1109/AINA.2014.86

  37. Rappaport TS (2009) Wireless communications: principles and practice, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  38. Rondinone M, Maneros J, Krajzewicz D, Bauza R, Cataldi P, Hrizi F, Gozalvez J, Kumar V, Röckl M, Lin L, Lazaro O, Leguay J, Härri J, Vaz S, Lopez Y, Sepulcre M, Wetterwald M, Blokpoel R, Cartolano F (2013) iTETRIS: a modular simulation platform for the large scale evaluation of cooperative ITS applications. Simul Modell Pract Theory 34:99–125. doi:10.1016/j.simpat.2013.01.007

    Article  Google Scholar 

  39. Saha AK, Johnson DB (2004) Modeling mobility for vehicular ad-hoc networks. In: 1st ACM workshop on vehicular ad hoc networks (VANET 2004), Philadelphia, PA, pp 91–92

    Google Scholar 

  40. Saunders SR, Aragón-Zavala A (2007) Antennas and propagation for wireless communication systems, 2nd edn. Wiley, Ney York

    Google Scholar 

  41. Schoch E, Feiri M, Kargl F, Weber M (2008) Simulation of ad hoc networks: ns-2 compared to JiST/SWANS. In: 1st ACM/ICST international conference on simulation tools and techniques for communications, networks and systems (SIMUTools 2008). ICST, Marseille

    Google Scholar 

  42. Schünemann B (2011) V2X simulation runtime infrastructure VSimRTI: an assessment tool to design smart traffic management systems. Elsevier Comput Netw 55(14):3189–3198. doi:10.1016/j.comnet.2011.05.005

    Article  Google Scholar 

  43. Sommer C, Dressler F (2008) Progressing toward realistic mobility models in VANET simulations. IEEE Commun Mag 46(11):132–137. doi:10.1109/MCOM.2008.4689256

    Article  Google Scholar 

  44. Sommer C, Dressler F (2011) Using the right two-ray model? A measurement based evaluation of PHY models in VANETs. In: 17th ACM international conference on mobile computing and networking (MobiCom 2011), Poster Session. ACM, Las Vegas, NV

    Google Scholar 

  45. Sommer C, Eckhoff D, German R, Dressler F (2011) A computationally inexpensive empirical model of IEEE 802.11p radio shadowing in Urban Environments. In: 8th IEEE/IFIP conference on wireless on demand network systems and services (WONS 2011). IEEE, Bardonecchia, pp 84–90. doi:10.1109/WONS.2011.5720204

  46. Sommer C, German R, Dressler F (2011) Bidirectionally coupled network and road traffic simulation for improved IVC analysis. IEEE Trans Mobile Comput 10(1):3–15. doi:10.1109/TMC.2010.133

    Article  Google Scholar 

  47. Stepanov I, Rothermel K (2008) On the impact of a more realistic physical layer on MANET simulations results. Elsevier Ad Hoc Netw 6(1):61–78

    Article  Google Scholar 

  48. Torrent-Moreno M, Schmidt-Eisenlohr F, Füßler H, Hartenstein H (2006) Effects of a realistic channel model on packet forwarding in vehicular ad hoc networks. In: IEEE wireless communications and networking conference (WCNC 2006). IEEE, Las Vegas, NV, pp 385–391. doi:10.1109/WCNC.2006.1683495

  49. Torrent-Moreno M, Mittag J, Santi P, Hartenstein H (2009) Vehicle-to-vehicle communication: fair transmit power control for safety-critical information. IEEE Trans Veh Technol 58(7):3684–3703. doi:10.1109/TVT.2009.2024873

    Article  Google Scholar 

  50. Varga A, Hornig R (2008) An overview of the OMNeT++ simulation environment. In: 1st ACM/ICST international conference on simulation tools and techniques for communications, networks and systems (SIMUTools 2008). ACM, Marseille

    Google Scholar 

  51. Werner M, Lupoaie R, Subramanian S, Jose J (2012) MAC layer performance of ITS G5 - optimized DCC and advanced transmitter coordination. In: 4th ETSI TC ITS Workshop, Doha, Qatar

    Google Scholar 

  52. Willke TL, Tientrakool P, Maxemchuk NF (2009) A survey of inter-vehicle communication protocols and their applications. IEEE Commun Surv Tutorials 11(2):3–20

    Article  Google Scholar 

Download references

Acknowledgements

EURECOM acknowledges the support of its industrial members: SFR, Orange, ST Microelectronics, BMW Group, SAP, Monaco Telecom, Symantec, IABG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Härri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sommer, C., Härri, J., Hrizi, F., Schünemann, B., Dressler, F. (2015). Simulation Tools and Techniques for Vehicular Communications and Applications. In: Campolo, C., Molinaro, A., Scopigno, R. (eds) Vehicular ad hoc Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-15497-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15497-8_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15496-1

  • Online ISBN: 978-3-319-15497-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics