Skip to main content

Electrolytes for Lithium and Lithium-Ion Batteries

  • Chapter
  • First Online:
Rechargeable Batteries

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

In this chapter, new trends in the formulation of non-aqueous liquid electrolytes will be discussed. Novel solvents and salts used in Li-ion battery electrolytes are categorized and illustrated, and the progress in understanding the formation mechanism behind the solid-electrolyte interphase (SEI) is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abouimrane A, Belharouak I, Amine K (2009) Sulfone-based electrolytes for high-voltage Li-ion batteries. Electrochem Commun 11:1073–1076

    Google Scholar 

  2. Abraham KM, Goldman JL, Natwig DL (1982) Characterization of ether electrolytes for rechargeable lithium cells. J Electrochem Soc 129:2404–2409. doi:10.1149/1.2123556

    Google Scholar 

  3. Abu-Lebdeh Y, Davidson I (2009) High-voltage electrolytes based on adiponitrile for Li-ion batteries. J Electrochem Soc 156:A60–A65. doi:10.1149/1.3023084

    Google Scholar 

  4. Abu-Lebdeh Y, Davidson I (2009) New electrolytes based on glutaronitrile for high energy/power Li-ion batteries. J Power Sources 189:576–579. doi:10.1016/j.jpowsour.2008.07.113

    Google Scholar 

  5. Achiha T, Nakajima T, Ohzawa Y, Koh M, Yamauchi A, Kagawa M, Aoyama H (2009) Electrochemical behavior of nonflammable organo-fluorine compounds for lithium ion batteries. J Electrochem Soc 156:A483–A488. doi:10.1149/1.3111904

    Google Scholar 

  6. Achiha T, Nakajima T, Ohzawa Y, Koh M, Yamauchi A, Kagawa M, Aoyama H (2010) Thermal stability and electrochemical properties of fluorine compounds as nonflammable solvents for lithium-ion batteries. J Electrochem Soc 157:A707–A712. doi:10.1149/1.3377084

    Google Scholar 

  7. Amine K, Wang Q, Vissers DR, Zhang Z, Rossi NAA, West R (2006) Novel silane compounds as electrolyte solvents for Li-ion batteries. Electrochem Commun 8:429–433. doi:10.1016/j.elecom.2005.12.017

    Google Scholar 

  8. Arai J, Matsuo A, Fujisaki T, Ozawa K (2009) A novel high temperature stable lithium salt (Li2B12F12) for lithium ion batteries. J Power Sources 193:851–854. doi:10.1016/j.jpowsour.2007.04.001

    Google Scholar 

  9. Aravindan V, Gnanaraj J, Madhavi S, Liu H-K (2011) Lithium-ion conducting electrolyte salts for lithium batteries. Chem Eur J 17:14326–14346. doi:10.1002/chem.201101486

    Google Scholar 

  10. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657. doi:10.1038/451652a

    Google Scholar 

  11. Azeez F, Fedkiw PS (2010) Conductivity of LIBOB-based electrolyte for lithium-ion batteries. J Power Sources 195:7627–7633. doi:10.1016/j.jpowsour.2010.06.021

    Google Scholar 

  12. Azimi N, Weng W, Takoudis C, Zhang Z (2013) Improved performance of lithium–sulfur battery with fluorinated electrolyte. Electrochem Commun 37:96–99. doi:10.1016/j.elecom.2013.10.020

    Google Scholar 

  13. Azimi N, Xue Z, Rago ND, Takoudis C, Gordin ML, Song J, Wang D, Zhang Z (2015) Fluorinated electrolytes for Li-S battery: suppressing the self-discharge with an electrolyte containing fluoroether solvent. J Electrochem Soc 162:A64–A68. doi:10.1149/2.0431501jes

    Google Scholar 

  14. Balakrishnan PG, Ramesh R, Prem Kumar T (2006) Safety mechanisms in lithium-ion batteries. J Power Sources 155:401–414. doi:10.1016/j.jpowsour.2005.12.002

    Google Scholar 

  15. Barthel J, Buestrich R, Gores HJ, Schmidt M, Wuhr M (1997) A new class of electrochemically and thermally stable lithium salts for lithium battery electrolytes: 4. Investigations of the electrochemical oxidation of lithium organoborates. J Electrochem Soc 144:3866–3870. doi:10.1149/1.1838103

    Google Scholar 

  16. Barthel J, Schmidt M, Gores HJ (1998) Lithium bis[5-fluoro-2-olato-1-benzenesulfonato (2-)-O, O’]borate(1-), a new anodically and cathodically stable salt for electrolytes of lithium-ion cells. J Electrochem Soc 145:L17–L20. doi:10.1149/1.1838265

    Google Scholar 

  17. Barthel J, Wuhr M, Buestrich R, Gores HJ (1995) New class of electrochemically and thermally stable lithium-salts for lithium battery electrolytes: 1. Synthesis and properties of lithium bis[1,2-Benzenediolato(2-)-O, O’]borate. J Electrochem Soc 142:2527–2531. doi:10.1149/1.2050048

    Google Scholar 

  18. Belov D, Shieh D-T (2012) GBL-based electrolyte for Li-ion battery: thermal and electrochemical performance. J Solid State Electrochem 16:603–615. doi:10.1007/s10008-011-1391-y

    Google Scholar 

  19. Brutti S, Panero S (2013) Recent advances in the development of LiCoPO4 as high voltage cathode material for Li-ion batteries. ACS Sym Ser 1140:67–99. doi:10.1021/bk-2013-1140.ch004

    Google Scholar 

  20. Chagnes A, Carre B, Willmann P, Dedryvere R, Gonbeau D, Lemordant D (2003) Cycling ability of gamma-butyrolactone-ethylene carbonate based electrolytes. J Electrochem Soc 150:A1255–A1261. doi:10.1149/1.1597882

    Google Scholar 

  21. Chen R, Zhu L, Wu F, Li L, Zhang R, Chen S (2014) Investigation of a novel ternary electrolyte based on dimethyl sulfite and lithium difluoromono(oxalato)borate for lithium ion batteries. J Power Sources 245:730–738. doi:10.1016/j.jpowsour.2013.06.132

    Google Scholar 

  22. Chen Z, Liu J, Amine K (2007) Lithium difluoro(oxalato)borate as salt for lithium-ion batteries. Electrochem Solid-State Lett 10:A45–A47. doi:10.1149/1.2409743

    Google Scholar 

  23. Chung G-C, Kim H-J, Yu S-I, Jun S-H, Choi J-W, Kim M-H (2000) Origin of graphite exfoliation: an investigation of the important role of solvent cointercalation. J Electrochem Soc 147:4391–4398. doi:10.1149/1.1394076

    Google Scholar 

  24. Cui X, Zhang H, Li S, Zhao Y, Mao L, Zhao W, Li Y, Ye X (2013) Electrochemical performances of a novel high-voltage electrolyte based upon sulfolane and γ-butyrolactone. J Power Sources 240:476–485. doi:10.1016/j.jpowsour.2013.04.063

    Google Scholar 

  25. Dominey LA, Koch VR, Blakley TJ (1992) Thermally stable lithium salts for polymer electrolytes. Electrochim Acta 37:1551–1554. doi:10.1016/0013-4686(92)80109-Y

    Google Scholar 

  26. Dudley JT, Wilkinson DP, Thomas G, LeVae R, Woo S, Blom H, Horvath C, Juzkow MW, Denis B et al (1991) Conductivity of electrolytes for rechargeable lithium batteries. J Power Sources 35:59–82. doi:10.1016/0378-7753(91)80004-h

    Google Scholar 

  27. Duncan H, Salem N, Abu-Lebdeh Y (2013) Electrolyte formulations based on dinitrile solvents for high voltage Li-ion batteries. J Electrochem Soc 160:A838–A848. doi:10.1149/2.088306jes

    Google Scholar 

  28. Etacheri V, Haik O, Goffer Y, Roberts GA, Stefan IC, Fasching R, Aurbach D (2012) Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes. Langmuir 28:965–976. doi:10.1021/la203712s

    Google Scholar 

  29. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262. doi:10.1039/c1ee01598b

    Google Scholar 

  30. Fan LZ, Xing TF, Awan R, Qiu WH (2011) Studies on lithium bis(oxalato)-borate/propylene carbonate-based electrolytes for Li-ion batteries. Ionics 17:491–494. doi:10.1007/s11581-011-0551-5

    Google Scholar 

  31. Fish D, Khan IM, Smid J (1986) Poly[(methoxyheptaethylene oxide)methylsiloxane]/lithium perchlorate complexes as solvent-free polymer electrolytes for high energy density storage devices. Polym Prepr (Am Chem Soc, Div Polym Chem) 27:325–326

    Google Scholar 

  32. Fong R, Von Sacken U, Dahn JR (1990) Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J Electrochem Soc 137:2009–2013. doi:10.1149/1.2086855

    Google Scholar 

  33. Foster DL, Wolfenstine J, Behl WK (1999) Tertiary polyamines as additives to lithium-ion battery electrolytes. Proc of Electrochem Soc 98–16:391–397

    Google Scholar 

  34. Gachot G, Grugeon S, Armand M, Pilard S, Guenot P, Tarascon J-M, Laruelle S (2008) Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries. J Power Sources 178:409–421. doi:10.1016/j.jpowsour.2007.11.110

    Google Scholar 

  35. Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W (2010) Lithium-air battery: promise and challenges. J Phys Chem Lett 1:2193–2203. doi:10.1021/jz1005384

    Google Scholar 

  36. Gmitter AJ, Plitz I, Amatucci GG (2012) High concentration dinitrile, 3-alkoxypropionitrile, and linear carbonate electrolytes enabled by vinylene and monofluoroethylene carbonate additives. J Electrochem Soc 159:A370–A379. doi:10.1149/2.016204jes

    Google Scholar 

  37. Goldman JL, Long BR, Gewirth AA, Nuzzo RG (2011) Strain anisotropies and self-limiting capacities in single-crystalline 3D silicon microstructures: models for high energy density lithium-ion battery anodes. Adv Funct Mater 21:2412–2422. doi:10.1002/adfm.201002487

    Google Scholar 

  38. Gordin M, Dai F, Chen S, Xu T, Song J, Tang D, Azimi N, Zhang Z, Wang D (2014) Bis(2,2,2-trifluoroethyl) ether as an electrolyte co-solvent for mitigating self-discharge in lithium-sulfur batteries. ACS Appl Mater Interfaces 6(11):8006–8010. doi:10.1021/am501665s

    Google Scholar 

  39. Guibert S, Cariou M, Simonet J (1988) Research of new solvents for lithium batteries: II. Behavior of aliphatic nitriles substituted by electron donating groups. Bull Soc Chim Fr 924–927

    Google Scholar 

  40. Guidotti RA, Reinhardt FW (2001) The performance of manganese oxides as a function of temperature in several molten-salt systems. ITE Lett Batteries New Technol Med 2:26–32

    Google Scholar 

  41. Han H, Guo J, Zhang D, Feng S, Feng W, Nie J, Zhou Z (2011) Lithium (fluorosulfonyl)(nonafluorobutanesulfonyl)imide (LiFNFSI) as conducting salt to improve the high-temperature resilience of lithium-ion cells. Electrochem Commun 13:265–268. doi:10.1016/j.elecom.2010.12.030

    Google Scholar 

  42. Han S-D, Allen JL, Boyle PD, Henderson WA (2012) Delving into the properties and solution structure of nitrile-lithium difluoro(oxalato)borate (LiDFOB) electrolytes for Li-ion batteries. ECS Trans 41:47–51. doi:10.1149/1.4717962

    Google Scholar 

  43. Handa M, Suzuki M, Suzuki J, Kanematsu H, Sasaki Y (1999) A new lithium salt with a chelate complex of phosphorus for lithium battery electrolytes. Electrochem Solid St 2:60–62. doi:10.1149/1.1390734

    Google Scholar 

  44. He P, Yu H, Li D, Zhou H (2012) Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries. J Mater Chem 22:3680–3695. doi:10.1039/c2jm14305d

    Google Scholar 

  45. Hu L, Zhang Z, Amine K (2013) Fluorinated electrolytes for Li-ion battery: an FEC-based electrolyte for high voltage LiNi0.5Mn1.5O4/graphite couple. Electrochem Commun 35:76–79. doi:10.1016/j.elecom.2013.08.007

    Google Scholar 

  46. Huang J-Y, Liu X-J, Kang X-l YuZ-X, Xu T-T, Qiu W-H (2009) Study on γ-butyrolactone for LiBOB-based electrolytes. J Power Sources 189:458–461. doi:10.1016/j.jpowsour.2008.12.088

    Google Scholar 

  47. Huber B, Linder T, Hormann K, Froemling T, Sundermeyer J, Roling B (2012) Synthesis of novel lithium salts containing pentafluorophenylamido-based anions and investigation of their thermal and electrochemical properties. Z Phys Chem (Muenchen, Ger) 226:377–390. doi:10.1524/zpch.2012.0220

    Google Scholar 

  48. Inaba M, Kawatate Y, Funabiki A, Jeong SK, Abe T, Ogumi Z (1999) STM study on graphite/electrolyte interface in lithium-ion batteries: solid electrolyte interface formation in trifluoropropylene carbonate solution. Electrochim Acta 45:99–105. doi:10.1016/S0013-4686(99)00196-6

    Google Scholar 

  49. Ji L, Lin Z, Alcoutlabi M, Zhang X (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4:2682–2699. doi:10.1039/c0ee00699h

    Google Scholar 

  50. Jung SC, Choi JW, Han Y-K (2012) Anisotropic volume expansion of crystalline silicon during electrochemical lithium insertion: an atomic level rationale. Nano Lett 12:5342–5347. doi:10.1021/nl3027197

    Google Scholar 

  51. Kamamura K, Umegaki T, Shiraishi S, Ohashi M, Takehara Z (2002) Electrochemical behavior of Al current collector of rechargeable lithium batteries in propylene carbonate with LiCF3SO3, Li(CF3SO2)2N, or Li(C4F9SO2)(CF3SO2)N. J Electrochem Soc 149:A185–A194. doi:10.1149/1.1433471

    Google Scholar 

  52. Kasnatscheew J, Schmitz RW, Wagner R, Winter M, Schmitz R (2013) Fluoroethylene carbonate as an additive for γ-butyrolactone based electrolytes. J Electrochem Soc 160:A1369–A1374. doi:10.1149/2.009309jes

    Google Scholar 

  53. Kinoshita S-C, Kotato M, Sakata Y, Ue M, Watanabe Y, Morimoto H, Tobishima S-I (2008) Effects of cyclic carbonates as additives to γ-butyrolactone electrolytes for rechargeable lithium cells. J Power Sources 183:755–760. doi:10.1016/j.jpowsour.2008.05.035

    Google Scholar 

  54. Koch VR, Young JH (1978) The stability of the secondary lithium electrode in tetrahydrofuran-based electrolytes. J Electrochem Soc 125:1371–1377. doi:10.1149/1.2131680

    Google Scholar 

  55. Krause LJ, Lamanna W, Summerfield J, Engle M, Korba G, Loch R, Atanasoski R (1997) Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides: new lithium salts for lithium-ion cells. J Power Sources 68:320–325. doi:10.1016/S0378-7753(97)02517-2

    Google Scholar 

  56. Kraytsberg A, Ein-Eli Y (2012) Higher, stronger, better… a review of 5 volt cathode materials for advanced lithium-ion batteries. Adv Energy Mater 2:922–939. doi:10.1002/aenm.201200068

    Google Scholar 

  57. Kusachi Y, Dong J, Zhang Z, Amine K (2011) Tri(ethylene glycol)-substituted trimethylsilane/lithium bis(oxalate)borate electrolyte for LiMn2O4/graphite system. J Power Sources 196:8301–8306. doi:10.1016/j.jpowsour.2011.06.033

    Google Scholar 

  58. Li S, Zhao W, Cui X, Zhang H, Wang X, Zhong W, Feng H, Liu H (2014) Lithium difluoro(sulfato)borate as a novel electrolyte salt for high-temperature lithium-ion batteries. Electrochim Acta 129:327–333. doi:10.1016/j.electacta.2014.02.090

    Google Scholar 

  59. Li S, Zhao W, Zhou Z, Cui X, Shang Z, Liu H, Zhang D (2014) Studies on electrochemical performances of novel electrolytes for wide-temperature-range lithium-ion batteries. ACS Appl Mater Interfaces 6:4920–4926. doi:10.1021/am405973x

    Google Scholar 

  60. Liu J, Chen Z, Busking S, Amine K (2007) Lithium difluoro(oxalato)borate as a functional additive for lithium-ion batteries. Electrochem Commun 9:475–479. doi:10.1016/j.elecom.2006.10.022

    Google Scholar 

  61. Lu DS, Xu MQ, Zhou L, Garsuch A, Lucht BL (2013) Failure mechanism of graphite/LiNi0.5Mn1.5O4 cells at high voltage and elevated temperature. J Electrochem Soc 160:A3138–A3143. doi:10.1149/2.022305jes

    Google Scholar 

  62. Lux SF, Lucas IT, Pollak E, Passerini S, Winter M, Kostecki R (2012) The mechanism of HF formation in LiPF6 based organic carbonate electrolytes. Electrochem Commun 14:47–50. doi:10.1016/j.elecom.2011.10.026

    Google Scholar 

  63. Mao L, Li B, Cui X, Zhao Y, Xu X, Shi X, Li S, Li F (2012) Electrochemical performance of electrolytes based upon lithium bis(oxalate)borate and sulfolane/alkyl sulfite mixtures for high temperature lithium-ion batteries. Electrochim Acta 79:197–201. doi:10.1016/j.electacta.2012.06.102

    Google Scholar 

  64. Mao LP, Li BC, Cui XL, Zhao YY, Xu XL, Shi XM, Li SY, Li FQ (2012) Electrochemical performance of electrolytes based upon lithium bis(oxalate)borate and sulfolane/alkyl sulfite mixtures for high temperature lithium-ion batteries. Electrochim Acta 79:197–201. doi:10.1016/j.electacta.2012.06.102

    Google Scholar 

  65. Matsuda Y, Morita M, Yamashita T (1984) Conductivity of the lithium tetrafluoroborate (LiBF4) mixed ether electrolytes for secondary lithium cells. J Electrochem Soc 131:2821–2827. doi:10.1149/1.2115416

    Google Scholar 

  66. Matsumoto K, Nakahara K, Inoue K, Iwasa S, Nakano K, Kaneko S, Ishikawa H, Utsugi K, Yuge R (2014) Performance improvement of Li ion battery with non-flammable TMP mixed electrolyte by optimization of lithium salt concentration and SEI preformation technique on graphite anode. J Electrochem Soc 161:A831–A834. doi:10.1149/2.091405jes

    Google Scholar 

  67. McMillan R, Slegr H, Shu ZX, Wang WD (1999) Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes. J Power Sources 81:20–26. doi:10.1016/S0378-7753(98)00201-8

    Google Scholar 

  68. McOwen DW, Seo DM, Borodin O, Vatamanu J, Boyle PD, Henderson WA (2014) Concentrated electrolytes: decrypting electrolyte properties and reassessing Al corrosion mechanisms. Energ Environ Sci 7:416–426. doi:10.1039/c3ee42351d

    Google Scholar 

  69. Morita M, Shibata T, Yoshimoto N, Ishikawa M (2002) Anodic behavior of aluminum in organic solutions with different electrolytic salts for lithium ion batteries. Electrochim Acta 47:2787–2793. doi:10.1016/S0013-4686(02)00164-0

    Google Scholar 

  70. Morita M, Okada Y, Matsuda Y (1987) Lithium cycling efficiency on the aluminum substrate in blended sulfolane-ether systems. J Electrochem Soc 134(11):2665–2669. doi:10.1149/1.2100267

    Google Scholar 

  71. Nakai H, Kubota T, Kita A, Kawashima A (2011) Investigation of the solid electrolyte interphase formed by fluoroethylene carbonate on Si electrodes. J Electrochem Soc 158:A798–A801. doi:10.1149/1.3589300

    Google Scholar 

  72. Neuhold S, Schroeder DJ, Vaughey JT (2012) Effect of surface preparation and R-group size on the stabilization of lithium metal anodes with silanes. J Power Sources 206:295–300. doi:10.1016/j.jpowsour.2012.01.127

    Google Scholar 

  73. Neuhold S, Vaughey JT, Grogger C, Lopez CM (2014) Enhancement in cycle life of metallic lithium electrodes protected with Fp-silanes. J Power Sources 254:241–248. doi:10.1016/j.jpowsour.2013.12.057

    Google Scholar 

  74. Nishikawa D, Nakajima T, Ohzawa Y, Koh M, Yamauchi A, Kagawa M, Aoyama H (2013) Thermal and oxidation stability of organo-fluorine compound-mixed electrolyte solutions for lithium ion batteries. J Power Sources 243:573–580. doi:10.1016/j.jpowsour.2013.06.034

    Google Scholar 

  75. Naoi K, Mori M, Naruoka Y, Lamanna WM, Atanasoski R (1999) The surface film formed on a lithium metal electrode in a new imide electrolyte, lithium bis(perfluoroethylsulfonylimide) [LiN(C2F5SO2)2]. J Electrochem Soc 146:462–469. doi:10.1149/1.1391627

    Google Scholar 

  76. Oh B, Ofer D, Rempel J, Pullen A, Sriramulu S, Barnett B (2010) New and improved nonaqueous electrolyte components fo Li-ion batteries. In: Proceedings of power sources conference 44th, pp 170–173

    Google Scholar 

  77. Oh B, Ofer D, Singh SK, Sriramulu S, Barnett B (2008) Nitrile-based electrolytes for lithium-ion cells. Proceedings of power sources conference 43rd, pp 109–112

    Google Scholar 

  78. Ohmi N, Nakajima T, Ohzawa Y, Koh M, Yamauchi A, Kagawa M, Aoyama H (2013) Effect of organo-fluorine compounds on the thermal stability and electrochemical properties of electrolyte solutions for lithium-ion batteries. J Power Sources 221:6–13. doi:10.1016/j.jpowsour.2012.07.121

    Google Scholar 

  79. Ossola F, Pistoia G, Seeber R, Ugo P (1988) Oxidation potentials of electrolyte solutions for lithium cells. Electrochim Acta 33:47–50. doi:10.1016/0013-4686(88)80030-6

    Google Scholar 

  80. Park C-M, Kim J-H, Kim H, Sohn H-J (2010) Li-alloy based anode materials for Li secondary batteries. Chem Soc Rev 39:3115–3141. doi:10.1039/b919877f

    Google Scholar 

  81. Ping P, Wang Q, Sun J, Feng X, Chen C (2011) Effect of sulfites on the performance of LiBOB/γ-butyrolactone electrolytes. J Power Sources 196:776–783. doi:10.1016/j.jpowsour.2010.07.064

    Google Scholar 

  82. Ratnakumar BV, Smart MC, Huang CK, Perrone D, Surampudi S, Greenbaum SG (2000) Lithium ion batteries for Mars exploration missions. Electrochim Acta 45:1513–1517. doi:10.1016/s0013-4686(99)00367-7

    Google Scholar 

  83. Reddy MV, Subba Rao GV, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev (Washington, DC, US) 113:5364–5457. doi:10.1021/cr3001884

    Google Scholar 

  84. Rollins HW, Harrup MK, Dufek EJ, Jamison DK, Sazhin SV, Gering KL, Daubaras DL (2014) Fluorinated phosphazene co-solvents for improved thermal and safety performance in lithium-ion battery electrolytes. J Power Sources 263:66–74. doi:10.1016/j.jpowsour.2014.04.015

    Google Scholar 

  85. Rossi NAA, West R (2009) Silicon-containing liquid polymer electrolytes for application in lithium ion batteries. Polym Int 58:267–272. doi:10.1002/pi.2523

    Google Scholar 

  86. Rupich MW, Pitts L, Abraham KM (1982) Characterization of reactions and products of the discharge and forced over-discharge of Li/SO2 cells. J Electrochem Soc 129:1857–1861. doi:10.1149/1.2124314

    Google Scholar 

  87. Santhanam R, Rambabu B (2010) Research progress in high voltage spinel LiNi0.5Mn1.5O4 material. J Power Sources 195:5442–5451

    Google Scholar 

  88. Scheers J, Lim D-H, Kim J-K, Paillard E, Henderson WA, Johansson P, Ahn J-H, Jacobsson P (2014) All fluorine-free lithium battery electrolytes. J Power Sources 251:451–458. doi:10.1016/j.jpowsour.2013.11.042

    Google Scholar 

  89. Schroeder G, Gierczyk B, Waszak D, Kopczyk M, Walkowiak M (2006) Vinyl tris-2-methoxyethoxy silane: a new class of film-forming electrolyte components for Li-ion cells with graphite anodes. Electrochem Commun 8:523–527. doi:10.1016/j.elecom.2006.01.021

    Google Scholar 

  90. Schroeder G, Gierczyk B, Waszak D, Walkowiak M (2006) Impact of ethyl tris-2-methoxyethoxy silane on the passivation of graphite electrode in Li-ion cells with PC-based electrolyte. Electrochem Commun 8:1583–1587. doi:10.1016/j.elecom.2006.07.030

    Google Scholar 

  91. Shao N, Sun XG, Dai S, Jiang DE (2011) Electrochemical windows of sulfone-based electrolytes for high-voltage Li-ion batteries. J Phys Chem B 115:12120–12125. doi:10.1021/jp204401t

    Google Scholar 

  92. Sloop SE, Pugh JK, Wang S, Kerr JB, Kinoshita K (2001) Chemical reactivity of PF5 and LiPF6 in ethylene carbonate/dimethyl carbonate solutions. Electrochem Solid-State Lett 4:A42–A44. doi:10.1149/1.1353158

    Google Scholar 

  93. Smart MC, Ratnakumar BV, Ryan-Mowrey VS, Surampudi S, Prakash GKS, Hub J, Cheung I (2003) Improved performance of lithium-ion cells with the use of fluorinated carbonate-based electrolytes. J Power Sources 119:359–367. doi:10.1016/S0378-7753(03)00266-0

    Google Scholar 

  94. Smart MC, Ratnakumar BV, Surampudi S (2002) Use of organic esters as cosolvents in electrolytes for lithium-ion batteries with improved low temperature performance. J Electrochem Soc 149:A361–A370. doi:10.1149/1.1453407

    Google Scholar 

  95. Smith KA, Smart MC, Prakash GKS, Ratnakumar BV (2008) Electrolytes containing fluorinated ester co-solvents for low-temperature Li-ion cells. ECS Trans 11:91–98. doi:10.1149/1.2938911

    Google Scholar 

  96. Song JY, Wang YY, Wan CC (1999) Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 77:183–197. doi:10.1016/s0378-7753(98)00193-1

    Google Scholar 

  97. Sun XG, Angell CA (2004) New sulfone electrolytes: part II. Cyclo alkyl group containing sulfones. Solid State Ionics 175:257–260. doi:10.1016/j.ssi.2003.11.035

    Google Scholar 

  98. Sun XG, Angell CA (2005) New sulfone electrolytes for rechargeable lithium batteries: part I. Oligoether-containing sulfones. Electrochem Commun 7:261–266. doi:10.1016/j.elecom.2005.01.010

    Google Scholar 

  99. Sun XG, Angell CA (2009) Doped sulfone electrolytes for high voltage Li-ion cell applications. Electrochem Commun 11:1418–1421. doi:10.1016/j.elecom.2007.05.020

    Google Scholar 

  100. Takami N, Ohsaki T, Hasebe H, Yamamoto M (2002) Laminated thin Li-ion batteries using a liquid electrolyte. J Electrochem Soc 149:A9–A12. doi:10.1149/1.1420704

    Google Scholar 

  101. Takami N, Sekino M, Ohsaki T, Kanda M, Yamamoto M (2001) New thin lithium-ion batteries using a liquid electrolyte with thermal stability. J Power Sources 97–98:677–680. doi:10.1016/S0378-7753(01)00699-1

    Google Scholar 

  102. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367. doi:10.1038/35104644

    Google Scholar 

  103. Tobishima S, Yamaki J, Yamaji A, Okada T (1984) Dialkoxyethane-propylene carbonate mixed electrolytes for lithium secondary batteries. J Power Sources 13:261–271. doi:10.1016/0378-7753(84)80034-8

    Google Scholar 

  104. Ufheil J, Baertsch MC, Wuersig A, Novak P (2005) Maleic anhydride as an additive to γ-butyrolactone solutions for Li-ion batteries. Electrochim Acta 50:1733–1738. doi:10.1016/j.electacta.2004.10.061

    Google Scholar 

  105. Wang Q, Pechy P, Zakeeruddin SM, Exnar I, Graetzel M (2005) Novel electrolytes for Li4Ti5O12-based high power lithium ion batteries with nitrile solvents. J Power Sources 146:813–816. doi:10.1016/j.jpowsour.2005.03.157

    Google Scholar 

  106. Wang XJ, Lee HS, Li H, Yang XQ, Huang XJ (2010) The effects of substituting groups in cyclic carbonates for stable SEI formation on graphite anode of lithium batteries. Electrochem Commun 12:386–389. doi:10.1016/j.elecom.2007.12.041

    Google Scholar 

  107. Watanabe M, Nagano S, Sanui K, Ogata N (1987) Structure-conductivity relationship in polymer electrolytes formed by network polymers from poly[dimethylsiloxane-g-poly(ethylene oxide)] and lithium perchlorate. J Power Sources 20:327–332. doi:10.1016/0378-7753(87)80131-3

    Google Scholar 

  108. Watanabe Y, Kinoshita S-I, Wada S, Hoshino K, Morimoto H, Tobishima S-I (2008) Electrochemical properties and lithium ion solvation behavior of sulfone–ester mixed electrolytes for high-voltage rechargeable lithium cells. J Power Sources 179:770–779. doi:10.1016/j.jpowsour.2008.01.006

    Google Scholar 

  109. Wu F, Zhu Q, Li L, Chen R, Chen S (2013) A diisocyanate/sulfone binary electrolyte based on lithium difluoro(oxalato)borate for lithium batteries. J Mater Chem A 1:3659–3666. doi:10.1039/c3ta01182h

    Google Scholar 

  110. Wu F, Zhu QZ, Li L, Chen RJ, Chen S (2013) A diisocyanate/sulfone binary electrolyte based on lithium difluoro(oxalate)borate for lithium batteries. J Mater Chem A 1:3659–3666. doi:10.1039/C3TA01182H

    Google Scholar 

  111. Wu H, Cui Y (2012) Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7:414–429. doi:10.1016/j.nantod.2012.08.004

    Google Scholar 

  112. Wu HB, Chen JS, Hng HH, Wen Lou X (2012) Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 4:2526–2542. doi:10.1039/c2nr11966h

    Google Scholar 

  113. Xia J, Sinha NN, Chen LP, Dahn JR (2014) A comparative study of a family of sulfate electrolyte additives. J Electrochem Soc 161:A264–A274. doi:10.1149/2.015403jes

    Google Scholar 

  114. Xiang J, Wu F, Chen RJ, Li L, Yu HG (2013) High voltage and safe electrolytes based on ionic liquid and sulfone for lithium-ion batteries. J Power Sources 233:115–120. doi:10.1016/j.jpowsour.2013.01.123

    Google Scholar 

  115. Xu B, Qian D, Wang Z, Meng YS (2012) Recent progress in cathode materials research for advanced lithium ion batteries. Mater Sci Eng R 73:51–65. doi:10.1016/j.mser.2012.05.003

    Google Scholar 

  116. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4417. doi:10.1021/cr030203g

    Google Scholar 

  117. Xu K (2014) Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 114:11503–11618. doi:10.1021/cr500003w

    Google Scholar 

  118. Xu K (2008) Tailoring electrolyte composition for LiBOB. J Electrochem Soc 155:A733–A738. doi:10.1149/1.2961055

    Google Scholar 

  119. Xu K, Angell CA (2002) Sulfone-based electrolytes for lithium-ion batteries. J Electrochem Soc 149:L7–L7. doi:10.1149/1.1496104

    Google Scholar 

  120. Xu K, von Cresce A (2011) Interfacing electrolytes with electrodes in Li ion batteries. J Mater Chem 21:9849–9864. doi:10.1039/C0JM04309E

    Google Scholar 

  121. Xu K, Zhang S, Poese BA, Jow TR (2002) Lithium bis(oxalato)borate stabilizes graphite anode in propylene carbonate. Electrochem Solid-State Lett 5:A259–A262. doi:10.1149/1.1510322

    Google Scholar 

  122. Xu M, Tsiouvaras N, Garsuch A, Gasteiger HA, Lucht BL (2014) Generation of cathode passivation films via oxidation of lithium bis(oxalato) borate on high voltage spinel (LiNi0.5Mn1.5O4). J Phys Chem C 118:7363–7368. doi:10.1021/jp501970j

    Google Scholar 

  123. Xu M, Xiao A, Li W, Lucht BL (2009) Investigation of lithium tetrafluorooxalatophosphate as a lithium-ion battery electrolyte. Electrochem Solid-State Lett 12:A155–A158. doi:10.1149/1.3134462

    Google Scholar 

  124. Xu M, Xiao A, Li W, Lucht BL (2010) Investigation of lithium tetrafluorooxalatophosphate [LiPF4(C2O4)] as a lithium-ion battery electrolyte for elevated temperature performance. J Electrochem Soc 157:A115–A120. doi:10.1149/1.3258290

    Google Scholar 

  125. Xu M, Xiao A, Yang L, Lucht BL (2009) Novel electrolyte for lithium ion batteries: lithium tetrafluorooxalatophosphate (LiPF4C2O4). ECS Trans 16:3–11. doi:10.1149/1.3123122

    Google Scholar 

  126. Xu MQ, Zhou L, Dong YN, Chen YJ, Garsuch A, Lucht BL (2013) Improving the performance of graphite/LiNi0.5Mn1.5O4 cells at high voltage and elevated temperature with added lithium bis(oxalato) borate (LiBOB). J Electrochem Soc 160:A2005–A2013. doi:10.1149/2.053311jes

    Google Scholar 

  127. Xu W, Angell CA (2001) LiBOB and its derivatives: weakly coordinating anions, and the exceptional conductivity of their nonaqueous solutions. Electrochem Solid-State Lett 4:E1–E4. doi:10.1149/1.1344281

    Google Scholar 

  128. Yamada Y, Furukawa K, Sodeyama K, Kikuchi K, Yaegashi M, Tateyama Y, Yamada A (2014) Unusual stability of acetonitrile-based superconcentratede electrolytes for fast-charging lithium-ion batteries. J Am Chem Soc 136:5039–5046. doi:10.1021/ja412807w

    Google Scholar 

  129. Yang L, Ravdel B, Lucht BL (2010) Electrolyte reactions with the surface of high voltage LiNi0.5Mn1.5O4 cathodes for lithium-ion batteries. Electrochem Solid-State Lett 13:A95–A97. doi:10.1149/1.3428515

    Google Scholar 

  130. Yazami R, Martinent A (2005) Fluorinated anions and electrode/electrolyte stability in lithium batteries. Elsevier, pp 173–194. doi:10.1016/b978-008044472-7/50036-7

  131. Yong T, Wang J, Mai Y, Zhao X, Luo H, Zhang L (2014) Organosilicon compounds containing nitrile and oligo(ethylene oxide) substituents as safe electrolytes for high-voltage lithium-ion batteries. J Power Sources 254:29–32. doi:10.1016/j.jpowsour.2013.12.087

    Google Scholar 

  132. Zhang L, Lyons L, Newhouse J, Zhang Z, Straughan M, Chen Z, Amine K, Hamers RJ, West R (2010) Synthesis and characterization of alkylsilane ethers with oligo(ethylene oxide) substituents for safe electrolytes in lithium-ion batteries. J Mater Chem 20:8224–8226. doi:10.1039/c0jm01596b

    Google Scholar 

  133. Zhang SS (2006) A review on electrolyte additives for lithium-ion batteries. J Power Sources 162:1379–1394. doi:10.1016/j.jpowsour.2006.07.074

    Google Scholar 

  134. Zhang SS (2006) An unique lithium salt for the improved electrolyte of Li-ion battery. Electrochem Commun 8:1423–1428. doi:10.1016/j.elecom.2006.06.016

    Google Scholar 

  135. Zhang SS (2007) Electrochemical study of the formation of a solid electrolyte interface on graphite in a LiBC2O4F2-based electrolyte. J Power Sources 163:713–718. doi:10.1016/j.jpowsour.2006.07.040

    Google Scholar 

  136. Zhang SS (2007) Lithium oxalyldifluoroborate as a salt for the improved electrolytes of Li-ion batteries. ECS Trans 3:59–68. doi:10.1149/1.2793577

    Google Scholar 

  137. Zhang W-J (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196:13–24. doi:10.1016/j.jpowsour.2010.07.020

    Google Scholar 

  138. Zhang Z, Hu L, Wu H, Weng W, Koh M, Redfern PC, Curtiss LA, Amine K (2013) Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energ Environ Sci 6:1806–1810. doi:10.1039/C3EE24414H

    Google Scholar 

  139. Zhang Z, Lu J, Assary RS, Du P, Wang H-H, Sun Y-K, Qin Y, Lau KC, Greeley J, Redfern PC, Iddir H, Curtiss LA, Amine K (2011) Increased stability toward oxygen reduction products for lithium-air batteries with oligoether-functionalized silane electrolytes. J Phys Chem C 115:25535–25542. doi:10.1021/jp2087412

    Google Scholar 

  140. Zhang Z, Dong J, West R, Amine K (2009) Oligo(ethylene glycol)-functionalized disiloxanes as electrolytes for lithium-ion batteries. J Power Sources 195(18):6062–6068. doi:10.1016/j.jpowsour.2007.12.067

    Google Scholar 

  141. Zheng M-S, Chen J-J, Dong Q-F (2012) The research of electrolyte on lithium/sulfur battery. Adv Mater Res (Durnten-Zurich, Switz) 476–478:1763–1766. doi:10.4028/www.scientific.net/AMR.476-478.1763

  142. Zhou L, Lucht BL (2012) Performance of lithium tetrafluorooxalatophosphate (LiFOP) electrolyte with propylene carbonate (PC). J Power Sources 205:439–448. doi:10.1016/j.jpowsour.2012.01.067

    Google Scholar 

  143. Zhu Y, Li Y, Bettge M, Abraham DP (2013) Electrolyte additive combinations that enhance performance of high-capacity Li1.2Ni0.15Mn0.55Co0.1O2-graphite cells. Electrochim Acta 110:191–199. doi:10.1016/j.electacta.2013.03.102

    Google Scholar 

  144. Zinigrad E, Larush-Asraf L, Salitra G, Sprecher M, Aurbach D (2007) On the thermal behavior of Li bis(oxalato)borate LiBOB. Thermochim Acta 457:64–69. doi:10.1016/j.tca.2007.03.00

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengcheng Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hu, L., Zhang, S.S., Zhang, Z. (2015). Electrolytes for Lithium and Lithium-Ion Batteries. In: Zhang, Z., Zhang, S. (eds) Rechargeable Batteries. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-15458-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15458-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15457-2

  • Online ISBN: 978-3-319-15458-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics