Skip to main content

Organic Cathode Materials for Rechargeable Batteries

  • Chapter
  • First Online:
Rechargeable Batteries

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

This chapter will review the recent advances on the development of organic electrode materials for their applications in three main areas, including rechargeable lithium batteries, sodium batteries and redox flow batteries. Four kinds of organic cathode materials, including conjugated carbonyl compounds, conducting polymers, organosulfides and free radical polymers, will be discussed in terms of their electrochemical performances in these three battery systems. Fundamental issues related to the synthesis-structure-activity correlations of these organic cathodes, as well as the working principles in these energy storage systems and their capacity fading mechanisms will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yoshino A (2012) The birth of the lithium-ion battery. Angew Chem Int Ed 51(24):5798–5800

    Google Scholar 

  2. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104(10):4271–4302

    Google Scholar 

  3. Goodenough JB, Kim Y (2009) Challenges for rechargeable Li batteries†. Chem Mater 22(3):587–603

    Google Scholar 

  4. Manthiram A (2011) Materials challenges and opportunities of lithium ion batteries. J Phys Chem Lett 2(3):176–184

    Google Scholar 

  5. Lu Z, Dahn JR (2002) Understanding the anomalous capacity of Li/Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies. J Electrochem Soc 149(7):A815–A822

    Google Scholar 

  6. Thackeray MM, Johnson CS, Vaughey JT et al (2005) Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries. J Mater Chem 15(23):2257–2267

    Google Scholar 

  7. Thackeray MM, Kang S-H, Johnson CS et al (2007) Li2MnO3-stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem 17(30):3112–3125

    Google Scholar 

  8. Sun Y-K, Lee M-J, Yoon CS et al (2012) The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries. Adv Mater 24(9):1192–1196

    Google Scholar 

  9. Choi N-S, Chen Z, Freunberger SA et al (2012) Challenges facing lithium batteries and electrical double-layer capacitors. Angew Chem Int Ed 51(40):9994–10024

    Google Scholar 

  10. Yu H, Zhou H (2013) High-energy cathode materials (Li2MnO3–LiMO2) for lithium-ion batteries. J Phys Chem Lett 4(8):1268–1280

    Google Scholar 

  11. Zheng J, Gu M, Xiao J et al (2013) Corrosion/Fragmentation of layered composite cathode and related capacity/voltage fading during cycling process. Nano Lett 13(8):3824–3830

    Google Scholar 

  12. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367

    Google Scholar 

  13. Hong SY, Kim Y, Park Y et al (2013) Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ Sci 6(7):2067–2081

    Google Scholar 

  14. Renault S, Gottis S, Barres A-L et al (2013) A green Li-organic battery working as a fuel cell in case of emergency. Energy Environ Sci 6(7):2124–2133

    Google Scholar 

  15. Jeong G, Kim Y-U, Kim H et al (2011) Prospective materials and applications for Li secondary batteries. Energy Environ Sci 4(6):1986–2002

    Google Scholar 

  16. Nyholm L, Nyström G, Mihranyan A et al (2011) Toward flexible polymer and paper-based energy storage devices. Adv Mater 23(33):3751–3769

    Google Scholar 

  17. Gwon H, Hong J, Kim H et al (2014) Recent progress on flexible lithium rechargeable batteries. Energy Environ Sci 7(2):538–551

    Google Scholar 

  18. Williams DL, Byrne JJ, Driscoll JS (1969) A high energy density lithium/dichloroisocyanuric acid battery system. J Electrochem Soc 116(1):2–4

    Google Scholar 

  19. Novák P, Müller K, Santhanam KSV et al (1997) Electrochemically active polymers for rechargeable batteries. Chem Rev 97(1):207–282

    Google Scholar 

  20. Stolar M, Baumgartner T (2013) Organic n-type materials for charge transport and charge storage applications. PCCP 15(23):9007–9024

    Google Scholar 

  21. Song Z, Zhou H (2013) Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energy Environ Sci 6(8):2280–2301

    Google Scholar 

  22. Liang Y, Tao Z, Chen J (2012) Organic electrode materials for rechargeable lithium batteries. Adv Energ Mater 2(7):742–769

    Google Scholar 

  23. Shirakawa H, Louis EJ, MacDiarmid AG et al (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J Chem Soc, Chem Commun 16:578–580

    Google Scholar 

  24. Ratnakumar BV, Stefano S, Williams RM et al (1990) Organic cathode materials in sodium batteries. J Appl Electrochem 20(3):357–364

    Google Scholar 

  25. Dai Y, Zhang Y, Gao L et al (2010) A sodium ion based organic radical battery. Electrochem Solid-State Lett 13(3):A22–A24

    Google Scholar 

  26. Abouimrane A, Weng W, Eltayeb H et al (2012) Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells. Energy Environ Sci 5(11):9632–9638

    Google Scholar 

  27. Park Y, Shin D-S, Woo SH et al (2012) Sodium terephthalate as an organic anode material for sodium ion batteries. Adv Mater 24(26):3562–3567

    Google Scholar 

  28. Zhao L, Zhao J, Hu Y-S et al (2012) Disodium terephthalate (Na2C8H4O4) as high performance anode material for low-cost room-temperature sodium-ion battery. Adv Energ Mater 2(8):962–965

    Google Scholar 

  29. Chihara K, Chujo N, Kitajou A et al (2013) Cathode properties of Na2C6O6 for sodium-ion batteries. Electrochim Acta 110:240–246

    Google Scholar 

  30. Palomares V, Casas-Cabanas M, Castillo-Martinez E et al (2013) Update on Na-based battery materials. A growing research path. Energy Environ Sci 6(8):2312–2337

    Google Scholar 

  31. Wang H-G, Yuan S, Ma D-l et al (2014) Tailored aromatic carbonyl derivative polyimides for high-power and long-cycle sodium-organic batteries. Adv Energ Mater 4(7):1301651

    Google Scholar 

  32. Chen H, Armand M, Demailly G et al (2008) From biomass to a renewable LiXC6O6 organic electrode for sustainable Li-ion batteries. ChemSusChem 1(4):348–355

    Google Scholar 

  33. Alt H, Binder H, Köhling A et al (1972) Investigation into the use of quinone compounds-for battery cathodes. Electrochim Acta 17(5):873–887

    Google Scholar 

  34. Ohzuku T, Wakamatsu H, Takehara Z et al (1979) Nonaqueous lithium/pyromellitic dianhydride cell. Electrochim Acta 24(6):723–726

    Google Scholar 

  35. Si Tobishima, Ji Yamaki, Yamaji A (1984) Cathode characteristics of organic electron acceptors for lithium batteries. J Electrochem Soc 131(1):57–63

    Google Scholar 

  36. Pasquali M, Pistoia G, Boschi T et al (1987) Redox mechanism and cycling behaviour of nonylbenzo-hexaquinone electrodes in Li cells. Solid State Ionics 23(4):261–266

    Google Scholar 

  37. Han X, Chang C, Yuan L et al (2007) Aromatic carbonyl derivative polymers as high-performance Li-ion storage materials. Adv Mater 19(12):1616–1621

    Google Scholar 

  38. Geng J, Bonnet J-P, Renault S et al (2010) Evaluation of polyketones with N-cyclic structure as electrode material for electrochemical energy storage: case of tetraketopiperazine unit. Energy Environ Sci 3(12):1929–1933

    Google Scholar 

  39. Walker W, Grugeon S, Mentre O et al (2010) Ethoxycarbonyl-based organic electrode for Li-batteries. J Am Chem Soc 132(18):6517–6523

    Google Scholar 

  40. Liang Y, Zhang P, Chen J (2013) Function-oriented design of conjugated carbonyl compound electrodes for high energy lithium batteries. Chem Sci 4(3):1330–1337

    Google Scholar 

  41. Hernández-Burgos K, Burkhardt SE, Rodríguez-Calero GG et al (2014) Theoretical studies of carbonyl-based organic molecules for energy storage applications: the heteroatom and substituent effect. J Phys Chem C 118(12):6046–6051

    Google Scholar 

  42. Poizot P, Dolhem F (2011) Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices. Energy Environ Sci 4(6):2003–2019

    Google Scholar 

  43. Boschi T, Pappa R, Pistoia G et al (1984) On the use of nonylbenzo-hexaquinone as a substitute for monomeric quinones in non-aqueous cells. J Electroanal Chem Interfacial Electrochem 176(1–2):235–242

    Google Scholar 

  44. Lei Z, Wei-kun W, An-bang W et al (2011) A MC/AQ parasitic composite as cathode material for lithium battery. J Electrochem Soc 158(9):A991–A996

    Google Scholar 

  45. Xu W, Read A, Koech PK et al (2012) Factors affecting the battery performance of anthraquinone-based organic cathode materials. J Mater Chem 22(9):4032–4039

    Google Scholar 

  46. Häringer D, Novák P, Haas O et al (1999) Poly(5-amino-1,4-naphthoquinone), a novel lithium-inserting electroactive polymer with high specific charge. J Electrochem Soc 146(7):2393–2396

    Google Scholar 

  47. Song Z, Zhan H, Zhou Y (2010) Polyimides: promising energy-storage materials. Angew Chem Int Ed 49(45):8444–8448

    Google Scholar 

  48. Nokami T, Matsuo T, Inatomi Y et al (2012) Polymer-bound pyrene-4,5,9,10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity. J Am Chem Soc 134(48):19694–19700

    Google Scholar 

  49. Genorio B, Pirnat K, Cerc-Korosec R et al (2010) Electroactive organic molecules immobilized onto solid nanoparticles as a cathode material for lithium-ion batteries. Angew Chem Int Ed 49(40):7222–7224

    Google Scholar 

  50. Lee M, Hong J, Kim H et al (2014) Organic nanohybrids for fast and sustainable energy storage. Adv Mater 26(16):2558–2565

    Google Scholar 

  51. Wu H, Shevlin SA, Meng Q et al (2014) Flexible and binder-free organic cathode for high-performance lithium-ion batteries. Adv Mater 26(20):3338–3343

    Google Scholar 

  52. Burkhardt SE, Bois J, Tarascon J-M et al (2012) Li-carboxylate anode structure-property relationships from molecular modeling. Chem Mater 25(2):132–141

    Google Scholar 

  53. Xiang J, Chang C, Li M et al (2007) A novel coordination polymer as positive electrode material for lithium ion battery. Cryst Growth Des 8(1):280–282

    Google Scholar 

  54. Chen H, Armand M, Courty M et al (2009) Lithium salt of tetrahydroxybenzoquinone: toward the development of a sustainable Li-ion battery. J Am Chem Soc 131(25):8984–8988

    Google Scholar 

  55. R-h Zeng, X-p Li, Y-c Qiu et al (2010) Synthesis and properties of a lithium-organic coordination compound as lithium-inserted material for lithium ion batteries. Electrochem Commun 12(9):1253–1256

    Google Scholar 

  56. Armand M, Grugeon S, Vezin H et al (2009) Conjugated dicarboxylate anodes for Li-ion batteries. Nat Mater 8(2):120–125

    Google Scholar 

  57. Walker W, Grugeon S, Vezin H et al (2011) Electrochemical characterization of lithium 4,4[prime or minute]-tolane-dicarboxylate for use as a negative electrode in Li-ion batteries. J Mater Chem 21(5):1615–1620

    Google Scholar 

  58. Renault S, Geng J, Dolhem F et al (2011) Evaluation of polyketones with N-cyclic structure as electrode material for electrochemical energy storage: case of pyromellitic diimide dilithium salt. Chem Commun 47(8):2414–2416

    Google Scholar 

  59. Kim DJ, Je SH, Sampath S et al (2012) Effect of N-substitution in naphthalenediimides on the electrochemical performance of organic rechargeable batteries. RSC Adv 2(21):7968–7970

    Google Scholar 

  60. Zhu X-Q, Wang C-H (2010) Accurate estimation of the one-electron reduction potentials of various substituted quinones in DMSO and CH3CN. J Org Chem 75(15):5037–5047

    Google Scholar 

  61. Gottis S, Barrès A-L, Dolhem F et al (2014) Voltage gain in lithiated enolate-based organic cathode materials by isomeric effect. ACS Appl Mat Interfaces 6(14):10870–10876

    Google Scholar 

  62. Wan W, Lee H, Yu X et al (2014) Tuning the electrochemical performances of anthraquinone organic cathode materials for Li-ion batteries through the sulfonic sodium functional group. RSC Adv 4(38):19878–19882

    Google Scholar 

  63. Lee SW, Yabuuchi N, Gallant BM et al (2010) High-power lithium batteries from functionalized carbon-nanotube electrodes. Nat Nano 5(7):531–537

    Google Scholar 

  64. Lee SW, Gallant BM, Lee Y et al (2012) Self-standing positive electrodes of oxidized few-walled carbon nanotubes for light-weight and high-power lithium batteries. Energy Environ Sci 5(1):5437–5444

    Google Scholar 

  65. Byon HR, Gallant BM, Lee SW et al (2013) Role of oxygen functional groups in carbon nanotube/graphene freestanding electrodes for high performance lithium batteries. Adv Funct Mater 23(8):1037–1045

    Google Scholar 

  66. Georgakilas V, Otyepka M, Bourlinos AB et al (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112(11):6156–6214

    Google Scholar 

  67. Ambrosi A, Chua CK, Bonanni A et al (2014) Electrochemistry of graphene and related materials. Chem Rev 114(14):7150–7188

    Google Scholar 

  68. Chua CK, Pumera M (2013) Covalent chemistry on graphene. Chem Soc Rev 42(8):3222–3233

    Google Scholar 

  69. Hicks RG (2007) What’s new in stable radical chemistry? Org Biomol Chem 5(9):1321–1338

    Google Scholar 

  70. Nakahara K, Iwasa S, Satoh M et al (2002) Rechargeable batteries with organic radical cathodes. Chem Phys Lett 359(5–6):351–354

    Google Scholar 

  71. Nishide H, Iwasa S, Pu Y-J et al (2004) Organic radical battery: nitroxide polymers as a cathode-active material. Electrochim Acta 50(2–3):827–831

    Google Scholar 

  72. Janoschka T, Hager MD, Schubert US (2012) Powering up the future: radical polymers for battery applications. Adv Mater 24(48):6397–6409

    Google Scholar 

  73. Katsumata T, Satoh M, Wada J et al (2006) Polyacetylene and polynorbornene derivatives carrying TEMPO. Synthesis and properties as organic radical battery materials. Macromol Rapid Commun 27(15):1206–1211

    Google Scholar 

  74. Suga T, Yoshimura K, Nishide H (2006) Nitroxide-substituted polyether as a new material for batteries. Macromol Symp 245–246(1):416–422

    Google Scholar 

  75. Lee SH, Kim J-K, Cheruvally G et al (2008) Electrochemical properties of new organic radical materials for lithium secondary batteries. J Power Sources 184(2):503–507

    Google Scholar 

  76. Bugnon L, Morton CJH, Novak P et al (2007) Synthesis of poly(4-methacryloyloxy-TEMPO) via group-transfer polymerization and its evaluation in organic radical battery. Chem Mater 19(11):2910–2914

    Google Scholar 

  77. Qu J, Morita R, Satoh M et al (2008) Synthesis and properties of DNA complexes containing 2,2,6,6-tetramethyl-1-piperidinoxy (TEMPO) moieties as organic radical battery materials. Chem Eur J 14(11):3250–3259

    Google Scholar 

  78. Kim J-K, Matic A, Ahn J-H et al (2012) Preparation and application of TEMPO-based di-radical organic electrode with ionic liquid-based polymer electrolyte. RSC Adv 2(27):10394–10399

    Google Scholar 

  79. Xu L, Yang F, Su C et al (2014) Synthesis and properties of novel TEMPO-contained polypyrrole derivatives as the cathode material of organic radical battery. Electrochim Acta 130:148–155

    Google Scholar 

  80. Oyaizu K, Kawamoto T, Suga T et al (2010) Synthesis and charge transport properties of redox-active nitroxide polyethers with large site density. Macromolecules 43(24):10382–10389

    Google Scholar 

  81. Qu J, Khan FZ, Satoh M et al (2008) Synthesis and charge/discharge properties of cellulose derivatives carrying free radicals. Polymer 49(6):1490–1496

    Google Scholar 

  82. Oyaizu K, Suga T, Yoshimura K et al (2008) Synthesis and characterization of radical-bearing polyethers as an electrode-active material for organic secondary batteries. Macromolecules 41(18):6646–6652

    Google Scholar 

  83. Nakahara K, Iriyama J, Iwasa S et al (2007) High-rate capable organic radical cathodes for lithium rechargeable batteries. J Power Sources 165(2):870–873

    Google Scholar 

  84. Nakahara K, Iriyama J, Iwasa S et al (2007) Cell properties for modified PTMA cathodes of organic radical batteries. J Power Sources 165(1):398–402

    Google Scholar 

  85. Suguro M, Iwasa S, Kusachi Y et al (2007) Cationic polymerization of poly(vinyl ether) bearing a TEMPO radical: a new cathode-active material for organic radical batteries. Macromol Rapid Commun 28(18–19):1929–1933

    Google Scholar 

  86. Suga T, Konishi H, Nishide H (2007) Photocrosslinked nitroxide polymer cathode-active materials for application in an organic-based paper battery. Chem Commun 17:1730–1732

    Google Scholar 

  87. Oyaizu K, Ando Y, Konishi H et al (2008) Nernstian adsorbate-like bulk layer of organic radical polymers for high-density charge storage purposes. J Am Chem Soc 130(44):14459–14461

    Google Scholar 

  88. Suga T, Ohshiro H, Sugita S et al (2009) Emerging N-type redox-active radical polymer for a totally organic polymer-based rechargeable battery. Adv Mater 21(16):1627–1630

    Google Scholar 

  89. Ibe T, Frings RB, Lachowicz A et al (2010) Nitroxide polymer networks formed by Michael addition: on site-cured electrode-active organic coating. Chem Commun 46(20):3475–3477

    Google Scholar 

  90. Yoshihara S, Isozumi H, Kasai M et al (2010) Improving charge/discharge properties of radical polymer electrodes influenced strongly by current collector/carbon fiber interface. J Phys Chem B 114(25):8335–8340

    Google Scholar 

  91. Choi W, Ohtani S, Oyaizu K et al (2011) Radical polymer-wrapped SWNTs at a molecular level: High-rate redox mediation through a percolation network for a transparent charge-storage material. Adv Mater 23(38):4440–4443

    Google Scholar 

  92. Oyaizu K, Sukegawa T, Nishide H (2011) Dual dopable poly(phenylacetylene) with nitronyl nitroxide pendants for reversible ambipolar charging and discharging. Chem Lett 40(2):184–185

    Google Scholar 

  93. Suga T, Sugita S, Ohshiro H et al (2011) p- and n-type bipolar redox-active radical polymer: toward totally organic polymer-based rechargeable devices with variable configuration. Adv Mater 23(6):751–754

    Google Scholar 

  94. Suga T, Takeuchi S, Nishide H (2011) Morphology-driven modulation of charge transport in radical/ion-containing, self-assembled block copolymer platform. Adv Mater 23(46):5545–5549

    Google Scholar 

  95. Yoshihara S, Katsuta H, Isozumi H et al (2011) Designing current collector/composite electrode interfacial structure of organic radical battery. J Power Sources 196(18):7806–7811

    Google Scholar 

  96. Takeo S, Hiroyuki N (2012) Redox-active radical polymers for a totally organic rechargeable battery. In: Polymers for energy storage and delivery: polyelectrolytes for batteries and fuel cells, vol 1096. ACS symposium series. American Chemical Society, pp 45–53

    Google Scholar 

  97. Chae IS, Koyano M, Oyaizu K et al (2013) Self-doping inspired zwitterionic pendant design of radical polymers toward a rocking-chair-type organic cathode-active material. J Mater Chem A 1(4):1326–1333

    Google Scholar 

  98. Chae IS, Koyano M, Sukegawa T et al (2013) Redox equilibrium of a zwitterionic radical polymer in a non-aqueous electrolyte as a novel Li+ host material in a Li-ion battery. J Mater Chem A 1(34):9608–9611

    Google Scholar 

  99. Choi W, Endo S, Oyaizu K et al (2013) Robust and efficient charge storage by uniform grafting of TEMPO radical polymer around multi-walled carbon nanotubes. J Mater Chem A 1(9):2999–3003

    Google Scholar 

  100. Sukegawa T, Kai A, Oyaizu K et al (2013) Synthesis of pendant nitronyl nitroxide radical-containing poly(norbornene)s as ambipolar electrode-active materials. Macromolecules 46(4):1361–1367

    Google Scholar 

  101. Nakahara K, Iriyama J, Iwasa S et al (2007) Al-laminated film packaged organic radical battery for high-power applications. J Power Sources 163(2):1110–1113

    Google Scholar 

  102. Kim J-K, Cheruvally G, Choi J-W et al (2007) Effect of radical polymer cathode thickness on the electrochemical performance of organic radical battery. Solid State Ionics 178(27–28):1546–1551

    Google Scholar 

  103. Guo W, Yin Y-X, Xin S et al (2012) Superior radical polymer cathode material with a two-electron process redox reaction promoted by graphene. Energy Environ Sci 5(1):5221–5225

    Google Scholar 

  104. Kim Y, Jo C, Lee J et al (2012) An ordered nanocomposite of organic radical polymer and mesocellular carbon foam as cathode material in lithium ion batteries. J Mater Chem 22(4):1453–1458

    Google Scholar 

  105. Lin H-C, Li C-C, Lee J-T (2011) Nitroxide polymer brushes grafted onto silica nanoparticles as cathodes for organic radical batteries. J Power Sources 196(19):8098–8103

    Google Scholar 

  106. Hung M-K, Wang Y-H, Lin C-H et al (2012) Synthesis and electrochemical behaviour of nitroxide polymer brush thin-film electrodes for organic radical batteries. J Mater Chem 22(4):1570–1577

    Google Scholar 

  107. López-Peña HA, Hernández-Muñoz LS, Cardoso J et al (2009) Electrochemical and spectroelectrochemical properties of nitroxyl radical species in PTMA, an organic radical polymer. Influence of the microstructure. Electrochem Commun 11(7):1369–1372

    Google Scholar 

  108. Qu J, Katsumata T, Satoh M et al (2007) Synthesis and charge/discharge properties of polyacetylenes carrying 2,2,6,6-tetramethyl-1-piperidinoxy radicals. Chem Eur J 13(28):7965–7973

    Google Scholar 

  109. Katsumata T, Qu J, Shiotsuki M et al (2008) Synthesis, characterization, and charge/discharge properties of polynorbornenes carrying 2,2,6,6-tetramethylpiperidine-1-oxy radicals at high density. Macromolecules 41(4):1175–1183

    Google Scholar 

  110. Dai Y, Zhang Y, Gao L et al (2011) Electrochemical performance of organic radical cathode with ionic liquid based electrolyte. J Electrochem Soc 158(3):A291–A295

    Google Scholar 

  111. Koshika K, Sano N, Oyaizu K et al (2009) An aqueous, electrolyte-type, rechargeable device utilizing a hydrophilic radical polymer-cathode. Macromol Chem Phys 210(22):1989–1995

    Google Scholar 

  112. Koshika K, Sano N, Oyaizu K et al (2009) An ultrafast chargeable polymer electrode based on the combination of nitroxide radical and aqueous electrolyte. Chem Commun 7:836–838

    Google Scholar 

  113. Suga T, Pu Y-J, Kasatori S et al (2007) Cathode- and anode-active poly(nitroxylstyrene)s for rechargeable batteries: p- and n-type redox switching via substituent effects. Macromolecules 40(9):3167–3173

    Google Scholar 

  114. Nigrey PJ, MacInnes D, Nairns DP et al (1981) Lightweight rechargeable storage batteries using polyacetylene, (CH)x as the cathode-active material. J Electrochem Soc 128(8):1651–1654

    Google Scholar 

  115. Mike JF, Lutkenhaus JL (2013) Electrochemically active polymers for electrochemical energy storage: opportunities and challenges. ACS Macro Letters 2(9):839–844

    Google Scholar 

  116. Jeon J-W, Ma Y, Mike JF et al (2013) Oxidatively stable polyaniline:polyacid electrodes for electrochemical energy storage. PCCP 15(24):9654–9662

    Google Scholar 

  117. Cheng F, Tang W, Li C et al (2006) Conducting poly(aniline) nanotubes and nanofibers: controlled synthesis and application in lithium/poly(aniline) rechargeable batteries. Chem Eur J 12(11):3082–3088

    Google Scholar 

  118. Zhao R-R, Zhu L-M, Qian J-F, Yang H-X (2012) Poly(aniline/o-nitroaniline): a high capacity cathode material for lithium ion batteries. J Electrochem 18(4):310–313

    Google Scholar 

  119. Zhang H, Cao G, Wang Z et al (2008) High-rate lithium-ion battery cathodes using nanostructured polyaniline/carbon nanotube array composites. Electrochem Solid-State Lett 11(12):A223–A225

    Google Scholar 

  120. Jeon J-W, O’Neal J, Shao L et al (2013) Charge storage in polymer acid-doped polyaniline-based layer-by-layer electrodes. ACS Appl Mat Interfaces 5(20):10127–10136

    Google Scholar 

  121. Ge D, Yang L, Honglawan A et al (2014) In situ synthesis of hybrid aerogels from single-walled carbon nanotubes and polyaniline nanoribbons as free-standing, flexible energy storage electrodes. Chem Mater 26(4):1678–1685

    Google Scholar 

  122. Park KS, Schougaard SB, Goodenough JB (2007) Conducting-polymer/iron-redox-couple composite cathodes for lithium secondary batteries. Adv Mater 19(6):848–851

    Google Scholar 

  123. Zhou M, Qian J, Ai X et al (2011) Redox-active Fe(CN) 4−6 -doped conducting polymers with greatly enhanced capacity as cathode materials for Li-ion batteries. Adv Mater 23(42):4913–4917

    Google Scholar 

  124. Guo B, Kong Q, Zhu Y et al (2011) Electrochemically fabricated polypyrrole–cobalt–oxygen coordination complex as high-performance sithium-storage materials. Chem Eur J 17(52):14878–14884

    Google Scholar 

  125. Mao Y, Kong Q, Guo B et al (2011) Polypyrrole-iron-oxygen coordination complex as high performance lithium storage material. Energy Environ Sci 4(9):3442–3447

    Google Scholar 

  126. Arcila-Velez MR, Roberts ME (2014) Redox solute doped polypyrrole for high-charge capacity polymer electrodes. Chem Mater 26(4):1601–1607

    Google Scholar 

  127. Visco SJ, DeJonghe LC (1988) Ionic conductivity of organosulfur melts for advanced storage electrodes. J Electrochem Soc 135(12):2905–2909

    Google Scholar 

  128. Liu M, Visco SJ, De Jonghe LC (1990) Electrode kinetics of organodisulfide cathodes for storage batteries. J Electrochem Soc 137(3):750–759

    Google Scholar 

  129. Liu M, Visco SJ, De Jonghe LC (1991) Novel solid redox polymerization electrodes: all-solid-state, thin-film, rechargeable lithium batteries. J Electrochem Soc 138(7):1891–1895

    Google Scholar 

  130. Liu M, Visco SJ, De Jonghe LC (1991) Novel solid redox polymerization electrodes: electrochemical properties. J Electrochem Soc 138(7):1896–1901

    Google Scholar 

  131. Sotomura T, Uemachi H, Takeyama K et al (1992) New organodisulfide—polyaniline composite cathode for secondary lithium battery. Electrochim Acta 37(10):1851–1854

    Google Scholar 

  132. Oyama N, Tatsuma T, Sato T et al (1995) Dimercaptan-polyaniline composite electrodes for lithium batteries with high energy density. Nature 373(6515):598–600

    Google Scholar 

  133. Oyama N, Pope JM, Sotomura T (1997) Effects of adding copper(II) salt to organosulfur cathodes for rechargeable lithium batteries. J Electrochem Soc 144(4):L47–L51

    Google Scholar 

  134. Oyama N, Tatsuma T, Sotomura T (1996) Disulfide-polyaniline composite cathodes for rechargeable batteries with high energy density. Macromol Symp 105(1):85–90

    Google Scholar 

  135. Oyama N, Hatozaki O (2000) Lithium polymer battery with high energy density. Macromol Symp 156(1):171–178

    Google Scholar 

  136. Oyama N (2000) Development of polymer-based lithium secondary battery. Macromol Symp 159(1):221–228

    MathSciNet  Google Scholar 

  137. Kiya Y, Hutchison GR, Henderson JC et al (2006) Elucidation of the redox behavior of 2,5-dimercapto-1,3,4-thiadiazole (DMcT) at poly(3,4-ethylenedioxythiophene) (PEDOT)-modified electrodes and application of the DMcT-PEDOT composite cathodes to lithium/lithium ion batteries. Langmuir 22(25):10554–10563

    Google Scholar 

  138. Canobre SC, Davoglio RA, Biaggio SR et al (2006) Performance of a polyaniline(DMcT)/carbon fiber composite as cathode for rechargeable lithium batteries. J Power Sources 154(1):281–286

    Google Scholar 

  139. Kiya Y, Henderson JC, Hutchison GR et al (2007) Synthesis, computational and electrochemical characterization of a family of functionalized dimercaptothiophenes for potential use as high-energy cathode materials for lithium/lithium-ion batteries. J Mater Chem 17(41):4366–4376

    Google Scholar 

  140. Kiya Y, Iwata A, Sarukawa T et al (2007) Poly[dithio-2,5-(1,3,4-thiadiazole)] (PDMcT)–poly(3,4-ethylenedioxythiophene) (PEDOT) composite cathode for high-energy lithium/lithium-ion rechargeable batteries. J Power Sources 173(1):522–530

    Google Scholar 

  141. NuLi Y, Guo Z, Liu H et al (2007) A new class of cathode materials for rechargeable magnesium batteries: organosulfur compounds based on sulfur–sulfur bonds. Electrochem Commun 9(8):1913–1917

    Google Scholar 

  142. T-y Chi, Li H, X-w Li et al (2013) Synthesis and electrochemical performance of hierarchically porous carbon-supported PDMcT–PANI composite for lithium-ion batteries. Electrochim Acta 96:206–213

    Google Scholar 

  143. Rodríguez-Calero GG, Lowe MA, Kiya Y et al (2010) Electrochemical and computational studies on the electrocatalytic effect of conducting polymers toward the redox reactions of thiadiazole-based thiolate compounds. J Phys Chem C 114(13):6169–6176

    Google Scholar 

  144. Gao J, Lowe MA, Conte S et al (2012) Poly(2,5-dimercapto-1,3,4-thiadiazole) as a cathode for rechargeable lithium batteries with dramatically improved performance. Chem Eur J 18(27):8521–8526

    Google Scholar 

  145. Rodríguez-Calero GG, Lowe MA, Burkhardt SE et al (2011) Electrocatalysis of 2,5-dimercapto-1,3,5-thiadiazole by 3,4-ethylenedioxy-substituted conducting polymers. Langmuir 27(22):13904–13909

    Google Scholar 

  146. Naoi K, Ki Kawase, Mori M et al (1997) Electrochemistry of poly(2,2′-dithiodianiline): a new class of high energy conducting polymer interconnected with S-S bonds. J Electrochem Soc 144(6):L173–L175

    Google Scholar 

  147. Su Y-Z, Dong W, Zhang J-H et al (2007) Poly[bis(2-aminophenyloxy)disulfide]: a polyaniline derivative containing disulfide bonds as a cathode material for lithium battery. Polymer 48(1):165–173

    Google Scholar 

  148. Su Y-Z, Niu Y-P, Xiao Y-Z et al (2004) Novel conducting polymer poly[bis(phenylamino)disulfide]: synthesis, characterization, and properties. J Polym Sci, Part A: Polym Chem 42(10):2329–2339

    Google Scholar 

  149. Deng S-R, Kong L-B, Hu G-Q et al (2006) Benzene-based polyorganodisulfide cathode materials for secondary lithium batteries. Electrochim Acta 51(13):2589–2593

    Google Scholar 

  150. Li J, Zhan H, Zhou L et al (2004) Aniline-based polyorganodisulfide redox system of high energy for secondary lithium batteries. Electrochem Commun 6(6):515–519

    Google Scholar 

  151. Cho J-S, Sato S, Takeoka S et al (2001) Synthesis of disulfide-containing aniline and copolymerization with aniline. Macromolecules 34(9):2751–2756

    Google Scholar 

  152. Uemachi H, Iwasa Y, Mitani T (2000) Preparation and charge-discharge properties of a novel organosulfur polymer, Poly(p-phenylene thiuret), for battery applications. Chem Lett 29(8):946–947

    Google Scholar 

  153. Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195(9):2419–2430

    Google Scholar 

  154. Pan H, Hu Y-S, Chen L (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 6(8):2338–2360

    Google Scholar 

  155. Yao M, Kuratani K, Kojima T et al (2014) Indigo carmine: an organic crystal as a positive-electrode material for rechargeable sodium batteries. Sci Rep 4

    Google Scholar 

  156. Luo W, Allen M, Raju V et al (2014) An organic pigment as a high-performance cathode for sodium-ion batteries. Adv Energ Mater 4(15):1400554

    Google Scholar 

  157. Kim H, Park Y-U, Park K-Y et al (2014) Novel transition-metal-free cathode for high energy and power sodium rechargeable batteries. Nano Energy 4:97–104

    Google Scholar 

  158. Deng W, Liang X, Wu X et al (2013) A low cost, all-organic Na-ion battery based on polymeric cathode and anode. Sci Rep 3:2671

    Google Scholar 

  159. Wang S, Wang L, Zhu Z et al (2014) All organic sodium-ion batteries with Na4C8H2O6. Angew Chem Int Ed 53(23):5892–5896

    Google Scholar 

  160. Zhao R, Zhu L, Cao Y et al (2012) An aniline-nitroaniline copolymer as a high capacity cathode for Na-ion batteries. Electrochem Commun 21:36–38

    Google Scholar 

  161. Zhou M, Zhu L, Cao Y et al (2012) Fe(CN)6-4-doped polypyrrole: a high-capacity and high-rate cathode material for sodium-ion batteries. RSC Adv 2(13):5495–5498

    Google Scholar 

  162. Zhu L, Shen Y, Sun M et al (2013) Self-doped polypyrrole with ionizable sodium sulfonate as a renewable cathode material for sodium ion batteries. Chem Commun 49(97):11370–11372

    Google Scholar 

  163. Yang Z, Zhang J, Kintner-Meyer MCW et al (2011) Electrochemical energy storage for green grid. Chem Rev 111(5):3577–3613

    Google Scholar 

  164. Dunn B, Kamath H, Tarascon J-M (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928–935

    Google Scholar 

  165. Ponce de León C, Frías-Ferrer A, González-García J et al (2006) Redox flow cells for energy conversion. J Power Sources 160(1):716–732

    Google Scholar 

  166. Skyllas-Kazacos M, Chakrabarti MH, Hajimolana SA et al (2011) Progress in flow battery research and development. J Electrochem Soc 158(8):R55–R79

    Google Scholar 

  167. Leung P, Li X, Ponce de Leon C et al (2012) Progress in redox flow batteries, remaining challenges and their applications in energy storage. RSC Adv 2(27):10125–10156

    Google Scholar 

  168. Weber A, Mench M, Meyers J et al (2011) Redox flow batteries: a review. J Appl Electrochem 41(10):1137–1164

    Google Scholar 

  169. Rugolo J, Aziz MJ (2012) Electricity storage for intermittent renewable sources. Energy Environ Sci 5(5):7151–7160

    Google Scholar 

  170. Huskinson B, Marshak MP, Suh C et al (2014) A metal-free organic-inorganic aqueous flow battery. Nature 505(7482):195–198

    Google Scholar 

  171. Brushett FR, Vaughey JT, Jansen AN (2012) An all-organic non-aqueous lithium-ion redox flow battery. Adv Energ Mater 2(11):1390–1396

    Google Scholar 

  172. Li Z, Li S, Liu S et al (2011) Electrochemical properties of an all-organic redox flow battery using 2,2,6,6-tetramethyl-1-piperidinyloxy and N-methylphthalimide. Electrochem Solid-State Lett 14(12):A171–A173

    Google Scholar 

  173. Zhao Y, Si S, Liao C (2013) A single flow zinc/polyaniline suspension rechargeable battery. J Power Sources 241:449–453

    Google Scholar 

  174. Bachman JE, Curtiss LA, Assary RS (2014) Investigation of the redox chemistry of anthraquinone derivatives using density functional theory. J Phys Chem A 118(38):8852–8860

    Google Scholar 

  175. Liu P, Y-l Cao, Li G-R et al (2013) A solar rechargeable flow battery based on photoregeneration of two soluble redox couples. ChemSusChem 6(5):802–806

    Google Scholar 

  176. Wang W, Luo Q, Li B et al (2013) Recent progress in redox flow battery research and development. Adv Funct Mater 23(8):970–986

    MathSciNet  Google Scholar 

  177. Lu Y, Goodenough JB (2011) Rechargeable alkali-ion cathode-flow battery. J Mater Chem 21(27):10113–10117

    Google Scholar 

  178. Wang W, Xu W, Cosimbescu L et al (2012) Anthraquinone with tailored structure for a nonaqueous metal-organic redox flow battery. Chem Commun 48(53):6669–6671

    Google Scholar 

  179. Lu Y, Goodenough JB, Kim Y (2011) Aqueous cathode for next-generation alkali-on batteries. J Am Chem Soc 133(15):5756–5759

    Google Scholar 

  180. Wang Y, He P, Zhou H (2012) Li-redox flow batteries based on hybrid electrolytes: at the cross road between Li-ion and redox flow batteries. Adv Energ Mater 2(7):770–779

    MathSciNet  Google Scholar 

  181. Zhao Y, Wang L, Byon HR (2013) High-performance rechargeable lithium-iodine batteries using triiodide/iodide redox couples in an aqueous cathode. Nat Commun 4:1896

    Google Scholar 

  182. Fan FY, Woodford WH, Li Z et al (2014) Polysulfide flow batteries enabled by percolating nanoscale conductor networks. Nano Lett 14(4):2210–2218

    Google Scholar 

  183. Zhao Y, Ding Y, Song J et al. (2014) Sustainable electrical energy storage through the ferrocene/ferrocenium redox reaction in aprotic electrolyte. Angew Chem Int Ed 53(41):11036–11040

    Google Scholar 

  184. Wei X, Cosimbescu L, Xu W et al (2015) Towards high-performance nonaqueous redox flow electrolyte via ionic modification of active species. Adv Energ Mater 5(1):1400678

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wu Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cao, R., Qian, J., Zhang, JG., Xu, W. (2015). Organic Cathode Materials for Rechargeable Batteries. In: Zhang, Z., Zhang, S. (eds) Rechargeable Batteries. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-15458-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15458-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15457-2

  • Online ISBN: 978-3-319-15458-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics