Skip to main content

Perinatal Taurine Depletion Alters the Renal Excretory Effect of the Renin-Angiotensin System in Adult Female Rats

  • Conference paper
Taurine 9

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 803))

Abstract

This study tests the hypothesis that perinatal taurine depletion impairs renal excretory function by increasing renin-angiotensin system (RAS) activity in adult female rats. Female Sprague-Dawley rats were fed normal rat chow and given water alone (C) or water containing 3 % beta-alanine (taurine depletion, TD) from conception until weaning. After weaning, the rats received normal rat chow and tap water with (CG, TDG) or without (CW, TDW) 5 % glucose. At 7–8 weeks of age, renal function at rest and after acute saline load was tested in conscious, restrained female rats with or without an angiotensin converting enzyme inhibitor captopril. Body, heart, and kidney weights were not significantly different among the eight groups. Compared to control, TD did not affect mean arterial pressure (MAP) or heart rate. Although captopril treatment significantly decreased MAP in all groups, the reduction was greatest in TDW. Further, the captopril treatment did not significantly affect renal blood flow, renal vascular resistance, glomerular filtration rate, filtration fraction, sodium and water excretion in TD compared to C groups, but did significantly decrease resting potassium excretion in CG. Fractional sodium and water excretion were markedly and significantly depressed after a saline load in CG, TDW, and TDG compared to CW groups. Captopril treatment depressed these responses in CW but not in CG, TDW, and TDG groups. Compared to the control, potassium excretion was not altered by captopril treatment. These data indicate that in adult female rats, perinatal taurine depletion depresses the renal excretory effect of RAS, independent of high sugar intake.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AT1,1b,2 receptor:

Angiotensin II receptor subtype 1, 1b or 2, respectively

ACEI:

Angiotensin converting enzyme inhibitor

C:

Control

Cap:

Captopril

CG:

Control plus high sugar intake

CW:

Control without high sugar intake

ERBF:

Effective renal blood flow

ERVR:

Effective renal vascular resistance

FEH2O, K, Na :

Fractional water, potassium or sodium excretion, respectively

GFR:

Glomerular filtration rate

HW:

Heart weight

i.p.:

Intraperitoneal

IUGR:

Intrauterine growth restriction

KW:

Kidney weight

MAP:

Mean arterial pressure

PAH:

p-Aminohippuric acid

RAS:

Renin-angiotensin system

TD:

Perinatal taurine depletion

TDG:

TD plus high sugar intake

TDW:

TD without high sugar intake

References

  • Agnoli GC, Borgatti R, Cacciari M, Lenzi P, Marinelli M, Stipo L (2001) Volume-induced natriuresis in healthy women: renal metabolism of prostacyclin and thromboxane, and physiological role of prostanoids. Prostaglandins Leukot Essent Fatty Acids 64:95–103

    Article  CAS  PubMed  Google Scholar 

  • Andersen LJ, Norsk P, Johansen LB, Christensen P, Engstrom T, Bie P (1998) Osmoregulatory control of renal sodium excretion after sodium loading in humans. Am J Physiol 275:R1833–R1842

    CAS  PubMed  Google Scholar 

  • Baum M (2010) Role of the kidney in the prenatal and early postnatal programming of hypertension. Am J Physiol Renal Physiol 298:F235–F247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bogdarina I, Welham S, King PJ, Burns SP, Clark AJ (2007) Epigenetic modification of the renin-angiotensin system in the fetal programming of hypertension. Circ Res 100:520–526

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brands MW (2012) Chronic blood pressure control. Compr Physiol 2:2481–2494

    PubMed  Google Scholar 

  • Cabral EV et al (2012) Perinatal Na+ overload programs raised renal proximal Na+ transport and enalapril-sensitive alterations of Ang II signaling pathways during adulthood. PLoS One 7:e43791

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carey RM, Padia SH (2013) Role of angiotensin AT(2) receptors in natriuresis: intrarenal mechanisms and therapeutic potential. Clin Exp Pharmacol Physiol 40:527–534

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Costa MA, Elesgaray R, Loria A, Balaszczuk AM, Arranz C (2006) Vascular and renal effects of dopamine during extracellular volume expansion: Role of nitric oxide pathway. Life Sci 78:1543–1549

    Article  CAS  PubMed  Google Scholar 

  • Cowley AW Jr, Anderas PR, Skelton MM (1988) Acute saline loading in normal and bilaterally atrial-resected conscious dogs. Am J Physiol 255:H144–H152

    CAS  PubMed  Google Scholar 

  • Cowley AW Jr, Skelton MM (1991) Dominance of colloid osmotic pressure in renal excretion after isotonic volume expansion. Am J Physiol 261:H1214–H1225

    CAS  PubMed  Google Scholar 

  • Dotsch J, Plank C, Amann K, Ingelfinger J (2009) The implications of fetal programming of glomerular number and renal function. J Mol Med (Berl) 87:841–848

    Article  Google Scholar 

  • Fang Z, Sripairojthikoon W, Calhoun DA, Zhu S, Berecek KH, Wyss JM (1999) Interaction between lifetime captopril treatment and NaCl-sensitive hypertension in spontaneously hypertensive rats and Wistar-Kyoto rats. J Hypertens 17:983–991

    Article  CAS  PubMed  Google Scholar 

  • Ferrario CM, Ahmad S, Nagata S, Simington SW, Varagic J, Kon N, Dell'Italia LJ (2014) An evolving story of angiotensin-II-forming pathways in rodents and humans. Clin Sci (Lond) 126:461–469

    Article  CAS  Google Scholar 

  • Hall JE et al (2012) Hypertension: physiology and pathophysiology. Compr Physiol 2:2393–2442

    PubMed  Google Scholar 

  • Hsieh TJ, Zhang SL, Filep JG, Tang SS, Ingelfinger JR, Chan JS (2002) High glucose stimulates angiotensinogen gene expression via reactive oxygen species generation in rat kidney proximal tubular cells. Endocrinology 143:2975–2985

    Article  CAS  PubMed  Google Scholar 

  • Johns EJ, Kopp UC, DiBona GF (2011) Neural control of renal function. Compr Physiol 1:731–767

    PubMed  Google Scholar 

  • Kett MM, Denton KM (2011) Renal programming: cause for concern? Am J Physiol Regul Integr Comp Physiol 300:R791–R803

    Article  CAS  PubMed  Google Scholar 

  • Militante JD, Lombardini JB (2002) Treatment of hypertension with oral taurine: experimental and clinical studies. Amino Acids 23:381–393

    Article  CAS  PubMed  Google Scholar 

  • Moon JY (2013) Recent update of renin-angiotensin-aldosterone system in the pathogenesis of hypertension. Electrolyte Blood Press 11:41–45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roysommuti S, Khongnakha T, Jirakulsomchok D, Wyss JM (2002) Excess dietary glucose alters renal function before increasing arterial pressure and inducing insulin resistance. Am J Hypertens 15:773–779

    Article  CAS  PubMed  Google Scholar 

  • Roysommuti S, Lerdweeraphon W, Malila P, Jirakulsomchok D, Wyss JM (2009a) Perinatal taurine alters arterial pressure control and renal function in adult offspring. Adv Exp Med Biol 643:145–156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roysommuti S, Malila P, Jirakulsomchok D, Wyss JM (2010a) Adult renal function is modified by perinatal taurine status in conscious male rats. J Biomed Sci 17(Suppl 1):S31

    Article  PubMed Central  PubMed  Google Scholar 

  • Roysommuti S, Malila P, Lerdweeraphon W, Jirakulsomchok D, Wyss JM (2010b) Perinatal taurine exposure alters renal potassium excretion mechanisms in adult conscious rats. J Biomed Sci 17(Suppl 1):S29

    Article  PubMed Central  PubMed  Google Scholar 

  • Roysommuti S, Mozaffari MS, Berecek KH, Wyss JM (1999) Lifetime treatment with captopril improves renal function in spontaneously hypertensive rats. Clin Exp Hypertens 21:1315–1325

    Article  CAS  PubMed  Google Scholar 

  • Roysommuti S, Suwanich A, Jirakulsomchok D, Wyss JM (2009b) Perinatal taurine depletion increases susceptibility to adult sugar-induced hypertension in rats. Adv Exp Med Biol 643:123–133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roysommuti S, Wyss JM (2014) Perinatal taurine exposure affects adult arterial pressure control. Amino Acids 46:57–72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sandgaard NC, Andersen JL, Holstein-Rathlou NH, Bie P (2005) Saline-induced natriuresis and renal blood flow in conscious dogs: effects of sodium infusion rate and concentration. Acta Physiol Scand 185:237–250

    Article  CAS  PubMed  Google Scholar 

  • Thaeomor A, Wyss JM, Jirakulsomchok D, Roysommuti S (2010) High sugar intake via the renin-angiotensin system blunts the baroreceptor reflex in adult rats that were perinatally depleted of taurine. J Biomed Sci 17(Suppl 1):S30

    Article  PubMed Central  PubMed  Google Scholar 

  • Vehaskari VM, Stewart T, Lafont D, Soyez C, Seth D, Manning J (2004) Kidney angiotensin and angiotensin receptor expression in prenatally programmed hypertension. Am J Physiol Renal Physiol 287:F262–F267

    Article  CAS  PubMed  Google Scholar 

  • Woods LL, Ingelfinger JR, Nyengaard JR, Rasch R (2001) Maternal protein restriction suppresses the newborn renin-angiotensin system and programs adult hypertension in rats. Pediatr Res 49:460–467

    Article  CAS  PubMed  Google Scholar 

  • Woods LL, Ingelfinger JR, Rasch R (2005) Modest maternal protein restriction fails to program adult hypertension in female rats. Am J Physiol Regul Integr Comp Physiol 289:R1131–R1136

    Article  CAS  PubMed  Google Scholar 

  • Wyss JM, Mozaffari MS, Roysommuti S (1995) Contribution of the sympathetic nervous system to salt-sensitivity in lifetime captopril-treated spontaneously hypertensive rats. J Hypertens 13:1037–1042

    Article  CAS  PubMed  Google Scholar 

  • Wyss JM, Roysommuti S, King K, Kadisha I, Regan CP, Berecek KH (1994) Salt-induced hypertension in normotensive spontaneously hypertensive rats. Hypertension 23:791–796

    Article  CAS  PubMed  Google Scholar 

  • Yamori Y, Taguchi T, Hamada A, Kunimasa K, Mori H, Mori M (2010) Taurine in health and diseases: consistent evidence from experimental and epidemiological studies. J Biomed Sci 17(Suppl 1):S6

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from Khon Kaen University and the King Prajadhipok and Queen Rambhai Barni Memorial Foundation, Thailand

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanya Roysommuti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Lerdweeraphon, W., Wyss, J.M., Boonmars, T., Roysommuti, S. (2015). Perinatal Taurine Depletion Alters the Renal Excretory Effect of the Renin-Angiotensin System in Adult Female Rats. In: Marcinkiewicz, J., Schaffer, S. (eds) Taurine 9. Advances in Experimental Medicine and Biology, vol 803. Springer, Cham. https://doi.org/10.1007/978-3-319-15126-7_54

Download citation

Publish with us

Policies and ethics