Skip to main content

Introduction to Multi-dimensional TCSPC

  • Chapter
  • First Online:
Advanced Time-Correlated Single Photon Counting Applications

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 111))

Abstract

Classic time-correlated single photon counting (TCSPC) detects single photons of a periodic optical signal, determines the times of the photons relative to a reference pulse, and builds up the waveform of the signal from the detection times. The technique achieves extremely high time resolution and near-ideal detection efficiency. The modern implementation of TCSPC is multi-dimensional. For each photon not only the time in the signal period is determined but also other parameters, such as the wavelength of the photons, the time from the start of the experiment, the time after a stimulation of the sample, the time within the period of an additional modulation of the excitation light source, spatial coordinates within an image area, or other parameters which can either vary randomly or are actively be modulated in the external experiment setup. The recording process builds up a photon distribution over these parameters. The result can be interpreted as a (usually large) number of optical waveforms for different combination of the parameters. The advantage of multi-dimensional TCSPC is that the recording process does not suppress any photons, and that it works even when the parameters vary faster than the photon detection rate. Typical multi-dimensional TCSPC implementations are multi-wavelength recording, recording at different excitation wavelengths, time-series recording, combined fluorescence and phosphorescence decay recording, fluorescence lifetime imaging, and combinations of these techniques. Modern TCSPC also delivers parameter-tagged data of the individual photons. These data can be used to build up fluorescence correlation and cross-correlation spectra (FCS and FCCS), to record fluorescence data from single molecules, or to record time-traces of photon bursts originating from single molecules diffusing through a small detection volume. These data are used to derive multi-dimensional histograms of the changes in the fluorescence signature of a single molecules over time or over a large number of different molecules passing the detection volume. The chapter describes the technical principles of the various multi-dimensional TCSPC configurations and gives examples of typical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Al-Soufi, B. Reija, M. Novo, Suren Felekyan, R. Kühnemuth, C.A.M. Seidel, Fluorescence correlation spectroscopy, a tool to investigate supramolecular dynamics: inclusion complexes of pyronines with cyclodextrin. J. Am. Chem. Soc. 127, 8775–8784 (2005)

    Google Scholar 

  2. N. Anthony, K. Berland, Global Analysis in Fluorescence Correlation Spectroscopy and Fluorescence Lifetime Microscopy, in Methods in Enzymology 518, Fluorescence Fluctuation Spectroscopy (FFS), Part A, ed. by S.Y. Tetin (Academic Press, San Diego, 2013)

    Google Scholar 

  3. N.R. Anthony, K.M. Berland, Global analysis enhances resolution and sensitivity in fluorescence fluctuation measurements. PLoS ONE 9, e90456, www.plosone.ord

  4. E. Baggaley, M.R. Gill, N.H. Green, D. Turton, I.V. Sazanovich, S.W. Botchway, C. Smythe, J.W. Haycock, J.A. Weinstein, J.A. Thomas, Dinuclear Ruthenium(II) complexes as two-photon, time-resolved emission microscopy probes for cellular DNA. Angew. Chem. Int. Ed. Engl. 53, 3367–3371 (2014)

    Article  CAS  Google Scholar 

  5. E. Baggaley, S.W. Botchway, J.W. Haycock, H. Morris, I.V. Sazanovich, J.A.G. Williams, J.A. Weinstein, Long-lived metal complexes open up microsecond lifetime imaging microscopy under multiphoton excitation: from FLIM to PLIM and beyond. Chem. Sci. 5, 879–886 (2014)

    Article  CAS  Google Scholar 

  6. Becker & Hickl GmbH, DCS-120 Confocal Scanning FLIM Systems, user handbook, edition 2012, www.becker-hickl.com

  7. Becker & Hickl GmbH, Modular FLIM systems for Zeiss LSM 510 and LSM 710 family laser scanning microscopes. User handbook, 5th edition. www.becker-hickl.com

  8. W. Becker, H. Stiel, Verfahren zur mehrdimensionalen zeitaufgelösten Messung von Lichtsignalen durch Photonenzählung, Patent WP 282 518, G01 J/327 7903 (1998)

    Google Scholar 

  9. W. Becker, H. Stiel, E. Klose, Flexible Instrument for time-correlated single photon counting. Rev. Sci. Instrum. 62, 2991–2996 (1991)

    Article  CAS  Google Scholar 

  10. W. Becker, Verfahren und Vorrichtung zur zeitkorrelierten Einzelphotonenzählung mit hoher Registrierrate, Patent DE 43 39 784 (1993)

    Google Scholar 

  11. W. Becker, Verfahren und Vorrichtung zur Messung von Lichtsignalen mit zeitlicher und räumlicher Auflösung, Patent DE 43 39 787 (1993)

    Google Scholar 

  12. W. Becker, H. Hickl, C. Zander, K.H. Drexhage, M. Sauer, S. Siebert, J. Wolfrum, Time-resolved detection and identification of single analyte molecules in microcapillaries by time-correlated single photon counting. Rev. Sci. Instrum. 70, 1835–1841 (1999)

    Article  CAS  Google Scholar 

  13. W. Becker, K. Benndorf, A. Bergmann, C. Biskup, K. König, U. Tirlapur, T. Zimmer, FRET measurements by TCSPC laser scanning microscopy. Proc. SPIE 4431, 94–98 (2001)

    Article  Google Scholar 

  14. W. Becker, A. Bergmann, K. König, U. Tirlapur, Picosecond fluorescence lifetime microscopy by TCSPC imaging. Proc. SPIE 4262, 414–419 (2001)

    Article  CAS  Google Scholar 

  15. W. Becker, A. Bergmann, C. Biskup, T. Zimmer, N. Klöcker, K. Benndorf, Multi-wavelength TCSPC lifetime imaging. Proc. SPIE 4620, 79–84 (2002)

    Article  Google Scholar 

  16. W. Becker, A. Bergmann, G. Weiss, Lifetime Imaging with the Zeiss LSM-510. Proc. SPIE 4620, 30–35 (2002)

    Article  Google Scholar 

  17. W. Becker, A. Bergmann, M.A. Hink, K. König, K. Benndorf, C. Biskup, Fluorescence lifetime imaging by time-correlated single photon counting. Micr. Res. Techn. 63, 58–66 (2004)

    Article  CAS  Google Scholar 

  18. W. Becker, A. Bergmann, G. Biscotti, K. Koenig, I. Riemann, L. Kelbauskas, C. Biskup, High-speed FLIM data acquisition by time-correlated single photon counting. Proc. SPIE 5323, 27–35 (2004)

    Article  Google Scholar 

  19. W. Becker, Advanced Time-Correlated Single-Photon Counting Techniques (Springer, Berlin, 2005)

    Book  Google Scholar 

  20. W. Becker, A. Bergmann, C. Biskup, Multi-spectral fluorescence lifetime imaging by TCSPC. Micr. Res. Tech. 70, 403–409 (2007)

    Article  CAS  Google Scholar 

  21. W. Becker, B. Su, A. Bergmann, Fast-acquisition multispectral FLIM by parallel TCSPC. Proc. SPIE 7183, 718305 (2009)

    Google Scholar 

  22. W. Becker, The bh TCSPC handbook. 6th edition. Becker & Hickl GmbH (2015), www.becker-hickl.com, Printed copies available from Becker & Hickl GmbH

  23. W. Becker, B. Su, A. Bergmann, Spatially resolved recording of transient fluorescence lifetime effects by line-scanning TCSPC. Proc. SPIE 8226, 82260C-1–82260C-6 (2012)

    Google Scholar 

  24. W. Becker, Fluorescence lifetime imaging—techniques and applications. J. Microsc. 247, 119–136 (2012)

    Article  CAS  Google Scholar 

  25. W. Becker, V. Shcheslavkiy, S. Frere, I. Slutsky, Spatially resolved recording of transient fluorescence-lifetime effects by line-scanning TCSPC. Microsc. Res. Techn. 77, 216–224 (2014)

    Article  CAS  Google Scholar 

  26. M.Y. Berezin, S. Achilefu, Fluorescence lifetime measurement and biological imaging. Chem. Rev. 110, 2641–2684 (2010)

    Article  CAS  Google Scholar 

  27. D.J.S. Birch, A.S. Holmes, R.E. Imhof, B.Z. Nadolski, K. Suhling, Multiplexed array fluorometry. J. Phys. E. Sci Instrum. 21, 415 (1988)

    Article  CAS  Google Scholar 

  28. D.K. Bird, K.W. Eliceiri, C.-H. Fan, J.G. White, Simultaneous two-photon spectral and lifetime fluorescence microscopy. Appl. Opt. 43, 5173–5182 (2004)

    Article  Google Scholar 

  29. D.K. Bird, L. Yan, K.M. Vrotsos, K.E. Eliceiri, E.M. Vaughan, Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of coenzyme NADH. Cancer Res. 65, 8766–8773 (2005)

    Article  CAS  Google Scholar 

  30. C. Biskup, T. Zimmer, L. Kelbauskas, B. Hoffmann, N. Klöcker, W. Becker, A. Bergmann, K. Benndorf, Multi-dimensional fluorescence lifetime and FRET measurements. Micr. Res. Tech. 70, 403–409 (2007)

    Article  Google Scholar 

  31. C. Biskup, B. Hoffmann, K. Benndorf, A. Rueck, Spectrally Resolved Lifetime Imaging Microscopy, in FLIM Microscopy in Biology and Medicine, ed. by A. Periasamy, R.M. Clegg (CRC Press, Boca Raton, 2009)

    Google Scholar 

  32. T.S. Blacker, Z.F. Mann, J.E. Gale, M. Ziegler, A.J. Bain, G. Szabadkai, M.R. Duchen, Separating NADH and NADPH fluorescence in live cells and tissues using FLIM. Nat. Commun. 5, 3936-1–3936-6 (2014)

    Google Scholar 

  33. M. Böhmer, M. Wahl, H.-J. Rahn, R. Erdmann, J. Enderlein, Time-resolved fluorescence correlation spectroscopy. Chem. Phys. Lett. 353, 439–445 (2002)

    Article  Google Scholar 

  34. L.M. Bollinger, G.E. Thomas, Measurement of the time dependence of scintillation intensity by a delayed coincidence method. Rev. Sci. Instrum. 32, 1044–1050 (1961)

    Article  CAS  Google Scholar 

  35. J. Bordello, M. Novo, W. Al-Soufi, Exchange dynamics of a neutral hydrophobic dye in micellar solutions studied by fluorescence correlation spectroscopy. J. Colloid Interface Sci. 345, 369–376 (2010)

    Article  CAS  Google Scholar 

  36. J.W. Borst, S.P. Laptenok, A.H. Westphal, R. Kühnemuth, H. Hornen, N.V. Visser, S. Kalinin, J. Aker, A. van Hoek, C.A.M. Seidel, A.J.W.G. Visser, Structural changes of yellow cameleon domains observed by quantitative FRET analysis and polarized fluorescence correlation spectroscopy. Biophys. J. 95, 5399–5411 (2008)

    Article  CAS  Google Scholar 

  37. R. Brandenburg, H.-E. Wagner A. M. Morozov, K. V. Kozlov, Axial and radial development of microdischarges of barrier discharges in N2/O2 mixtures at atmospheric pressure. J. Phys. D: Appl. Phys. 38, 1649–1657 (2005)

    Google Scholar 

  38. R. Brandenburg, H. Grosch, T. Hoder, K.-D. Weltmann, Phase resolved cross-correlation spectroscopy on surface barrier discharges in air at atmospheric pressure. Eur. Phys. J. Appl. Phys. 55, 13813-p1–13813-p6 (2011)

    Google Scholar 

  39. C. Cheung, J.P. Culver, K. Takahashi, J.H. Greenberg, A.G. Yodh, In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies. Phys. Med. Biol. 46(8), 2053–2065 (2001)

    Article  CAS  Google Scholar 

  40. D. Chorvat, A. Chorvatova, Spectrally resolved time-correlated single photon counting: a novel approach for characterization of endogenous fluorescence in isolated cardiac myocytes. Eur. Biophys. J. 36, 73–83 (2006)

    Article  Google Scholar 

  41. D. Chorvat, A. Mateasik, J. Kirchnerova, A. Chorvatova, Application of spectral unmixing in multi-wavelength time-resolved spectroscopy. Proc. SPIE 6771, 677105-1–677105-12 (2007)

    Google Scholar 

  42. D. Chorvat, A. Chorvatova, Multi-wavelength fluorescence lifetime spectroscopy: a new approach to the study of endogenous fluorescence in living cells and tissues. Laser Phys. Lett. 6, 175–193 (2009)

    Article  CAS  Google Scholar 

  43. D. Chorvat Jr., A. Mateasik, Y.g Cheng, N.y Poirier, J. Miro, N.S. Dahdah, A. Chorvatova, Rejection of transplanted hearts in patients evaluated by the component analysis of multi-wavelength NAD(P)H fluorescence lifetime spectroscopy. J. Biophotonics 3, 646–652 (2010)

    Google Scholar 

  44. A. Chorvatova, F. Elzwiei, A. Mateasik, D. Chorvat, Effect of ouabain on metabolic oxidative state in living cardiomyocytes evaluated by time-resolved spectroscopy of endogenous NAAD(P)H fluorescence. J. Biomed. Opt. 17(10), 101505-1–101505-7 (2012)

    Google Scholar 

  45. A. Chorvatova, S. Aneba, A. Mateasik, D. Chorvat Jr., B. Comte, Time-resolved fluorescence spectroscopy investigation of the effect of 4-hydroxynonenal on endogenous NAD(P)H in living cardiac myocytes. J. Biomed. Opt. 18(6), 067009-1–067009-11 (2013)

    Google Scholar 

  46. A. Chorvatova, A. Mateasik, D. Chorvat Jr, Spectral decomposition of NAD(P)H fluorescence components recorded by multi-wavelength fluorescence lifetime spectroscopy in living cardiac cells. Laser Phys. Lett. 10, 125703-1–125703-10 (2013)

    Google Scholar 

  47. S. Coda, A.J. Thompson,1,5 G.T. Kennedy, K.L. Roche, L. Ayaru, D.S. Bansi, G.W. Stamp, A.V. Thillainayagam, P.M.W. French, C. Dunsby, Fluorescence lifetime spectroscopy of tissue autofluorescence in normal and diseased colon measured ex vivo using a fiber-optic probe. Biomed. Opt. Expr. 5, 515–538 (2014)

    Google Scholar 

  48. D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, F. Paglia, R. Cubeddu, Multi-channel time-resolved system for functional near infrared spectroscopy. Opt. Express 14, 5418–5432 (2006)

    Article  Google Scholar 

  49. R.J. Cooper, E. Magee, N. Everdell, S. Magazov, M. Varela, D. Airantzis, A.P. Gibson, J.C. Hebden, MONSTIR II: a 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging. Rev. Sci. Instrum. 85(5), 0531052014 (2014)

    Article  Google Scholar 

  50. S. Cova, M. Bertolaccini, C. Bussolati, The measurement of luminescence waveforms by single-photon techniques. Phys. Stat. Sol. 18, 11–61 (1973)

    Article  CAS  Google Scholar 

  51. P.A.A. De Beule, C. Dunsby, N.P. Galletly, G.W. Stamp, A.C. Chu, U. Anand, P. Anand, C.D. Benham A. Naylor, P.M.W. French, A hyperspectral fluorescence lifetime probe for skin cancer diagnosis. Rev. Sci. Instrum. 78, 123101 (2007)

    Google Scholar 

  52. M. Diez, B. Zimmermann, M. Börsch, M. König, E. Schweinberger, S. Steigmiller, R. Reuter, S. Fe-lekyan, V. Kudryavtchev, C.A.M. Seidel, P. Gräber, Proton-powered subunit rotation in single membrane-bound F0F1-ATP synthase. Nat. Struct. Mol. Biol. 11(2), 135–141 (2004)

    Google Scholar 

  53. R.I. Dmitriev, A.V. Zhdanov, Y.M. Nolan, D.B. Papkovsky, Imaging of neurosphere oxygenation with phosphorescent probes. Biomaterials 34, 9307–9317 (2013)

    Article  CAS  Google Scholar 

  54. R.I. Dmitriev, A.V. Kondrashina, K. Koren, I. Klimant, A.V. Zhdanov, J.M.P. Pakan, K.W. McDermott, D.B. Papkovsky, Small molecule phosphorescent probes for O2 imaging in 3D tissue models. Biomater. Sci. 2, 853–866 (2014)

    Article  CAS  Google Scholar 

  55. E. Dimitrow, I. Riemann, A. Ehlers, M.J. Koehler, J. Norgauer, P. Elsner, K. König, M. Kaatz, Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis. Exp. Dermatol. 18, 509–515 (2009)

    Article  Google Scholar 

  56. K. Drozdowicz-Tomsia, A.G. Anwer, M.A. Cahill, K.N. Madlum, A.M. Maki, M.S. Baker, E.M. Goldys, Multiphoton fluorescence lifetime imaging microscopy reveals free-to-bound NADH ratio changes associated with metabolic inhibition. J. Biomed. Opt. 19, 08601 (2014)

    Article  Google Scholar 

  57. M. Düser, Y. Bi, N. Zarrabi, S.D. Dunn, M. Börsch, The proton-translocating a subunit of F0F1-ATP synthase is allocated asymmetrically to the peripheral stalk. J. Biol. Chem. 48, 33602–33610 (2008)

    Google Scholar 

  58. M. Düser, N.d Zarrabi, D.J. Cipriano, S. Ernst, G.D. Glick, S.D. Dunn, M. Börsch, 36° step size of proton-driven c-ring rotation in FoF1-ATP synthase. EMBO J. 28, 2689–2696 (2009)

    Google Scholar 

  59. C. Dysli, G. Quellec, M Abegg, M.N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A.B. Leichtle, S. Wolf, M.S. Zinkernagel, Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects. IOVS 55, 2107–2113 (2014)

    Google Scholar 

  60. S. Felekyan, R. Kühnemuth, V. Kudryavtsev, C. Sandhagen, W. Becker, C.A.M. Seidel, Full correlation from picoseconds to seconds by time-resolved and time-correlated single photon detection. Rev. Sci. Instrum. 76, 083104 (2005)

    Article  Google Scholar 

  61. S. Felekyan, Software package for multiparameter fluorescence spectroscopy, full correlation and multiparameter imaging. www.mpc.uni-duesseldorf.de/seidel/software.htm

  62. S. Felekyan, S. Kalinin, A. Valeri, C.A.M. Seidel, Filtered FCS and species cross correlation function. Proc. SPIE 7183, 71830D (2009)

    Article  Google Scholar 

  63. Th. Förster, Zwischenmolekulare Energiewanderung und Fluoreszenz, Ann. Phys. (Serie 6) 2, 55–75 (1948)

    Google Scholar 

  64. Th. Förster, Energy migration and fluorescence. Translated by Klaus Suhling. J. Biomed. Opt. 17, 011002-1–011002-10

    Google Scholar 

  65. K. Funk, A. Woitecki, C. Franjic-Würtz, Th Gensch, F. Möhrlein, S. Frings, Modulation of chloride homeostasis by inflammatory mediators in dorsal ganglion neurons. Mol. Pain 4, 32 (2008)

    Article  Google Scholar 

  66. C.D. Geddes, H. Cao, I. Gryczynski, J. Fang, J.R. Lakowicz, Metal-enhanced fluorescence (MEF) due to silver colloids on a planar surface: Potential applications of indocyanine green to in vivo imaging. J. Phys. Chem. A 107, 3443–3449 (2003)

    Article  CAS  Google Scholar 

  67. V. Ghukassian, F.-J. Kao, Monitoring cellular metabolism with fluorescence lifetime of reduced nicotinamide adenine dinucleotide. J. Phys. Chem. C 113, 11532–11540 (2009)

    Article  Google Scholar 

  68. D. Gilbert, C. Franjic-Würtz, K. Funk, T. Gensch, S. Frings, F. Möhrlen, Differential maturation of chloride homeostasis in primary afferent neurons of the somatosensory system. Int. J. Devl. Neurosci. 25, 479–489 (2007)

    Article  CAS  Google Scholar 

  69. R. Govindjee, Sixty-three years since Kautsky: chlorophyll α fluorescence, Aust. J. Plant Physiol. 22, 131–160 (1995)

    Google Scholar 

  70. D. Granadero, J. Bordello, M.J. Perez-Alvite, M. Novo, W. Al-Soufi, Host-guest complexation studied by fluorescence correlation spectroscopy: adamantane-cyclodextrin inclusion. Int. J. Mol. Sci. 11, 173–188 (2010)

    Article  CAS  Google Scholar 

  71. H. Grosch, T. Hoder, K.-D. Weltmann, R. Brandenburg, Spatio-temporal development of microdischarges in a surface barrier discharge arrangement in air at atmospheric pressure. Eur. Phys. J. D 60, 547–553 (2010)

    Article  CAS  Google Scholar 

  72. R. Hanbury-Brown, R.Q. Twiss, Nature 177, 27–29 (1956)

    Article  Google Scholar 

  73. K.M. Hanson, M.J. Behne, N.P. Barry, T.M. Mauro, E. Gratton, Two-photon fluorescence imaging of the skin stratum corneum pH gradient. Biophys. J. 83, 1682–1690 (2002)

    Article  CAS  Google Scholar 

  74. T. Hoder, R. Brandenburg, R. Basner1, K.-D. Weltmann, K.V. Kozlov, H.-E. Wagner, A comparative study of three different types of barrier discharges in air at atmospheric pressure by cross-correlation spectroscopy. J. Phys. D: Appl. Phys. 43, 124009-1–124009-8 (2010)

    Google Scholar 

  75. T. Hoder, M. Cernak, J. Paillol, D. Loffhagen, R. Brandenburg, High-resolution measurements of the electric field at the streamer arrival to the cathode: A unification of the streamer-initiated gas-breakdown mechanism. Phys. Rev. E 86, 055401-1–055401-5 (2012)

    Google Scholar 

  76. M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, R. Maniewski, Time-resolved optical imager for assessment of cerebral oxygenation. J. Biomed. Opt. 12, 034019-1–034019-14 (2007)

    Google Scholar 

  77. H. Kaneko, I. Putzier, S. Frings, U.B. Kaupp, Th Gensch, Chloride accumulation in mammalian olfactory sensory neurons. J. Neurosci. 24(36), 7931–7938 (2004)

    Article  CAS  Google Scholar 

  78. S.R. Kantelhardt, J. Leppert, J. Krajewski, N. Petkus, E. Reusche, V. M. Tronnier, G. Hüttmann, A. Giese, Imaging of brain and brain tumor specimens by time-resolved multiphoton excitation microscopy ex vivo. Neuro-Onkology 9, 103–112 (2007)

    Google Scholar 

  79. V. Katsoulidou, A. Bergmann, W. Becker, How fast can TCSPC FLIM be made? Proc. SPIE 6771, 67710B-1–67710B-7 (2007)

    Google Scholar 

  80. L. Kelbauskas, W. Dietel, Internalization of aggregated photosensitizers by tumor cells: Subcellular time-resolved fluorescence spectroscopy on derivatives of pyropheophorbide-a ethers and chlorin e6 under femtosecond one- and two-photon excitation. Photochem. Photobiol. 76, 686–694 (2002)

    Article  CAS  Google Scholar 

  81. S. Khoon Teh, W. Zheng, S. Li, D. Li, Y. Zeng, Y. Yang, J. Y. Qu, Multimodal nonlinear optical microscopy improves the accuracy of early diagnosis of squamous intraepithelial neoplasia. J. Biomed. Opt. 18(3), 036001-1–036001-11 (2013)

    Google Scholar 

  82. P. Kloc, H.-E. Wagner, D. Trunec, Z. Navratil, G. Fedosev, An investigation of dieclectric barrier dis-charge in Ar and Ar/NH3 mixture using cross-correlation spectroscopy. J. Phys. D Appl. Phys. 43, 34514–345205 (2010)

    Article  Google Scholar 

  83. M. Köllner, J. Wolfrum, How many photons are necessary for fluorescence-lifetime measurements? Phys. Chem. Lett. 200, 199–204 (1992)

    Article  Google Scholar 

  84. K. König, Clinical multiphoton tomography. J. Biophoton. 1, 13–23 (2008)

    Article  Google Scholar 

  85. K. Koenig, A. Uchugonova, in Multiphoton Fluorescence Lifetime Imaging at the Dawn of Clinical Application, ed by A. Periasamy, R.M. Clegg, FLIM Microscopy in Biology and Medicine (CRC Press, Boca Raton, 2009)

    Google Scholar 

  86. K. König, A. Uchugonova, E. Gorjup, Multiphoton fluorescence lifetime imaging of 3D-stem cell spheroids during differentiation. Microsc. Res. Techn. 74, 9–17 (2011)

    Article  Google Scholar 

  87. K.V. Kozlov, R. Brandenburg, H.-E. Wagner, A.M. Morozov, P. Michel, Investigation of the filamentary and diffuse mode of barrier discharges in N2/O2 mixtures at atmospheric pressure by cross-correlation spectroscopy. J. Phys. D Appl. Phys. 38, 518–529 (2005)

    Article  CAS  Google Scholar 

  88. K.V. Kuchibhotla, C.R. Lattarulo, B. Hyman, B. J. Bacskai, Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science 323, 1211–1215 (2009)

    Google Scholar 

  89. M.K. Kuimova, G. Yahioglu, J.A. Levitt, K. Suhling, Molecular rotor measures viscosity of live cells via fluorescence lifetime imaging. J. Am. Chem. Soc. 130, 6672–6673 (2008)

    Article  CAS  Google Scholar 

  90. J.R. Lakowicz, H. Szmacinski, M.L. Johnson, Calcium imaging using fluorescence lifetimes an long-wavelength probes. J. Fluoresc. 2, 47–62 (1992)

    Article  CAS  Google Scholar 

  91. J.R. Lakowicz, H. Szmacinski, K. Nowaczyk, M.L. Johnson, Fluorescence lifetime imaging of free and protein-bound NADH. PNAS 89, 1271–1275 (1992)

    Article  CAS  Google Scholar 

  92. J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edn. (Springer, Berlin, 2006)

    Book  Google Scholar 

  93. G.S. Lakshmikanth, G. Krishnamoorthy, Solvent-exposed tryptophans probe the dynamics at protein surfaces. Biophys. J. 77, 1100–1106 (1999)

    Article  CAS  Google Scholar 

  94. G.S. Lakshmikanth, K. Sridevi, G. Krishnamoorthy, J.B. Udgaonkar, Structure is lost incrementally during the unfolding of barstar. Nat. Struct. Biol. 8, 799–804 (2001)

    Article  CAS  Google Scholar 

  95. J. Leppert, J. Krajewski, S.R. Kantelhardt, S. Schlaffer, N. Petkus, E. Reusche, G. Hüttmann, A. Giese, Multiphoton excitation of autofluorescence for microscopy of glioma tissue. Neurosurgery 58, 759–767 (2006)

    Article  Google Scholar 

  96. B. Leskovar, C.C. Lo, Photon counting system for subnanosecond fluorescence lifetime measurements. Rev. Sci. Instrum. 47, 1113–1121 (1976)

    Article  Google Scholar 

  97. C. Lewis, W.R. Ware, The measurement of short-lived fluorescence decay using the single photon counting method. Rev. Sci. Instrum. 44, 107–114 (1973)

    Article  CAS  Google Scholar 

  98. D. Li, W. Zheng, J.Y. Qu, Time-resolved spectroscopic imaging reveals the fundamentals of cellular NADH fluorescence. Opt. Lett. 33, 2365–2367 (2008)

    Google Scholar 

  99. D. Li, M.S. Yang, W. Zheng, J.Y. Qu, Study of cadmium-induced cytotoxicity using two-photon excitation endogenous fluorescence microscopy. J. Biomed. Opt. 14(5), 054028-1–054028-8 (2009)

    Google Scholar 

  100. D. Li, W. Zheng, .J.Y. Qu, Two-photon autofluorescence microscopy of multicolor excitation. Opt. Lett. 34, 202–204 (2009)

    Google Scholar 

  101. D. Li, W. Zheng, .J.Y. Qu, Imaging of epithelial tissue in vivo based on excitation of multiple endogenous nonlinear optical signals. Letter 34, 2853–2855 (2009)

    Google Scholar 

  102. D. Li, W. Zheng, Y. Zeng, and J. Y. Qu, In vivo and simultaneous multimodal imaging: Integrated multiplex coherent anti-Stokes Raman scattering and two-photon microscopy. Appl. Phys. Lett 97, 223702-1–223702-3 (2010)

    Google Scholar 

  103. D. Li, W. Zheng, Y. Zeng, Y. Luo, J.Y. Qu, Two-photon excited hemoglobin fluorescence provides contrast mechanism for label-free imaging of microvasculature in vivo. Opt. Lett. 36, 834–836 (2011)

    Article  Google Scholar 

  104. D. Li, W. Zheng, W. Zhang, S. Khoon Teh, Y. Zeng, Y. Luo, J.Y. Qu, Time-resolved detection enables standard two-photon fluorescence microscopy for in vivo label-free imaging of microvasculature in tissue. Opt. Lett. 36, 2638–2640 (2011)

    Google Scholar 

  105. A. Liebert, H. Wabnitz, M. Möller, A. Walter, R. Macdonald, H. Rinneberg, H. Obrig, I. Steinbrink, Time-Resolved Diffuse NIR-Reflectance Topography of the Adult Head During Motor Stimulation, in OSA Biomedical Optics Topical Meetings on CD ROM (The Optical Society of America, Washington, DC, WF34 2004)

    Google Scholar 

  106. A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, H. Rinneberg, Time-resolved multidistance near-infrared spectroscopy at the human head: Intra- and extracerebral absorption changes from moments of distribution of times of flight of photons. Appl. Opt. 43, 3037–3047 (2004)

    Article  Google Scholar 

  107. A. Liebert, H. Wabnitz, J. Steinbrink, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, H. Obrig, Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance. NeuroImage 24, 426–435 (2005)

    Article  CAS  Google Scholar 

  108. A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Krolicki, R. Maniewski, Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation. J. Biomed. Opt. 16(4), 046011-1–046011-7 (2011)

    Google Scholar 

  109. J. Malicka, I. Gryczynski, C.D. Geddes, J.R. Lakowicz, Metal-enhanced emission from indocyanine green: a new approach to in vivo imaging. J. Biomed. Opt. 8, 472–478 (2003)

    Article  CAS  Google Scholar 

  110. W. Meiling, F. Stary, Nanosecond Pulse Techniques (Akademie-Verlag, Berlin, 1963)

    Google Scholar 

  111. D. Milej, A. Gerega, N. Zolek, W. Weigl, M. Kacprzak, P. Sawosz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Krolicki, R. Maniewski, A. Liebert, Time-resolved detection of fluorescent light during inflow of ICG to the brain—a methodological study. Phys. Med. Biol. 57, 6725–6742 (2012)

    Article  Google Scholar 

  112. A. Minta, J.P.Y. Kao, R.Y. Tsien, Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J. Biol. Chem. 264, 8171–8178 (1989)

    CAS  Google Scholar 

  113. H.S. Muddana, T.T. Morgan, J.H. Adair, P.J. Butler, Photophysics of Cy3-encapsulated calcium phosphate nanoparticles. Nano Lett. 9(4), 1556–1559 (2009)

    Article  Google Scholar 

  114. S. Mukhopadhyay, P.K. Nayak, J.B. Udgaonkar, G. Krishnamoorthy, Characterization of the formation of amyloid Protofibrils from Barstar by mapping residue-specific fluorescence dynamics. J. Mol. Biol. 358, 935–942 (2006)

    Article  CAS  Google Scholar 

  115. T.A. Nguyen, P. Sarkar, J.V. Veetil, S.V. Koushik, S.S. Vogel, Fluorescence polarization and fluctuation analysis monitors subunit proximity, stoichiometry, and protein complex hydrodynamics. PLoS ONE 7, e38209-1–e38209-13 (2012)

    Google Scholar 

  116. M. Novo, S. Felekyan, C.A.M. Seidel, W. Al-Soufi, Dye-exchange dynamics in micellar solutions studied by fluorescence correlation spectroscopy. J. Phys. Chem. B 111, 3614–3624 (2007)

    Article  CAS  Google Scholar 

  117. D.V. O’Connor, D. Phillips, Time-Correlated Single Photon Counting (Academic Press, London, 1984)

    Google Scholar 

  118. S. Pallikkuth, D.J. Blackwell, Z. Hu, Z. Hou, D.T. Zieman, B. Svensson, D.D. Thomas, S.L. Robia, Phosphorylated phospholamban stabilizes a compact conformation of the cardiac calcium-ATPase. Biophys. J. 105, 1812–1821 (2013)

    Article  CAS  Google Scholar 

  119. R.J. Paul, H. Schneckenburger, Oxygen concentration and the oxidation-reduction state of yeast: determination of free/bound NADH and flavins by time-resolved spectroscopy. Naturwissenschaften 83, 32–35 (1996)

    Article  CAS  Google Scholar 

  120. J.P. Philip, K. Carlsson, Theoretical investigation of the signal-to-noise ratio in fluorescence lifetime imaging. J. Opt. Soc. Am. A20, 368–379 (2003)

    Article  Google Scholar 

  121. M. Prummer, C. Hübner, B. Sick, B. Hecht, A. Renn, U.P. Wild, Single-molecule identification by spectrally and time-resolved fluorescence detection. Anal. Chem. 72, 433–447 (2000)

    Article  Google Scholar 

  122. R. Re, D. Contini, M. Caffini, R. Cubeddu, L. Spinelli, A. Torricelli, A compact time-resolved system for near infrared spectroscopy based on wavelength space multiplexing. Rev. Sci. Instrum. 81, 113101 (2010)

    Article  Google Scholar 

  123. R. Rigler, E.S. Elson (eds.), Fluorescence Correlation Spectroscopy (Springer, Berlin, 2001)

    Google Scholar 

  124. T. Ritman-Meer, N.I. Cade, D. Richards, Spatial imaging of modifications to fluorescence lifetime and intensity by individual Ag nanoparticles. Appl. Phys. Lett. 91, 123122 (2007)

    Article  Google Scholar 

  125. M.S. Roberts, Y. Dancik, T.W. Prow, C.A. Thorling, L. Li, J.E. Grice, T.A. Robertson, K. König, W. Becker, Non-invasive imaging of skin physiology and percutaneous penetration using fluorescence spectral and lifetime imaging with multiphoton and confocal microscopy. Eur. J. Pharm. Biopharm. 77, 469–488 (2011)

    Article  CAS  Google Scholar 

  126. A. Rück, F. Dolp, C. Hülshoff, C. Hauser, C. Scalfi-Happ, Fluorescence lifetime imaging in PDT. An overview. Med. Laser Appl. 20, 125–129 (2005)

    Article  Google Scholar 

  127. A. Rück, Ch. Hülshoff, I. Kinzler, W. Becker, R. Steiner, SLIM: a new method for molecular imaging. Micr. Res. Tech. 70, 403–409 (2007)

    Article  Google Scholar 

  128. A. Rück, C. Hauser, S. Mosch, S. Kalinina, Spectrally resolved fluorescence lifetime imaging to investigate cell metabolism in malignant and nonmalignant oral mucosa cells. J. Biomed. Opt. 19(9), 096005-1–096005-9 (2014)

    Google Scholar 

  129. S. Sakadžic, E. Roussakis, M.A. Yaseen, E.T. Mandeville, V.J. Srinivasan1, K. Arai, S. Ruvinskaya, A. Devor, E.H. Lo, S.A. Vinogradov, D.A. Boas, Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue. Nat. Methods 7(9), 755–759 (2010)

    Google Scholar 

  130. R. Sanders, A. Draaijer, H.C. Gerritsen, P.M. Houpt, Y.K. Levine, Quantitative pH Imaging in cells using confocal fluorescence lifetime imaging microscopy. Anal. Biochem. 227, 302–308 (1995)

    Article  CAS  Google Scholar 

  131. W.Y. Sanchez, T.W. Prow, W.H. Sanchez, J.E. Grice, M.S. Roberts, Analysis of the metaboloic deterioration of ex-vivo skin, from ischemic necrosis, through the imaging of intracellular NAD(P)H by multiphoton tomography and fluorescence lifetime imaging microscopy (MPT-FLIM). J. Biomed. Opt. 09567RR in press (2010)

    Google Scholar 

  132. A.M. Saxena, J.B. Udgaonkar, G. Krishnamoorthy, Characterization of intra-molecule distances ans site-specific dynamics in chemically unfolded barstar: Evidence for denaturant-dependent non-random structure. J. Mol. Biol. 359, 174–189 (2006)

    Article  CAS  Google Scholar 

  133. R. Schuyler, I. Isenberg, A monophoton fluorometer with energy discrimination. Rev. Sci. Instrum. 42, 813–817 (1971)

    Article  CAS  Google Scholar 

  134. D. Schweitzer, A. Kolb, M. Hammer, E. Thamm, Basic investigations for 2-dimensional time-resolved fluorescence measurements at the fundus. Int. Ophthalmol. 23, 399–404 (2001)

    Article  CAS  Google Scholar 

  135. D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, Towards metabolic mapping of the human retina. Micr. Res. Tech. 70, 403–409 (2007)

    Article  Google Scholar 

  136. D. Schweitzer, Metabolic Mapping, in Medical Retina, Essential in Opthalmology, ed. by F.G. Holz, R.F. Spaide (Springer, New York, 2010)

    Google Scholar 

  137. M.C. Skala, K.M. Riching, D.K. Bird, A. Dendron-Fitzpatrick, J. Eickhoff, K.W. Eliceiri, P.J. Keely, N. Ramanujam, In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia. J. Biomed. Opt. 12, 02401-1–02401-10 (2007)

    Google Scholar 

  138. M.C. Skala, K.M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K.W. Eliceiri, J.G. White, N. Ramanujam, In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. PNAS 104, 19494–19499 (2007)

    Article  CAS  Google Scholar 

  139. H. Studier, W. Becker, Megapixel FLIM. Proc. SPIE 8948, 89481K (2014)

    Google Scholar 

  140. K. Suhling, D. McLoskey, D.J.S. Birch, Multiplexed single-photon counting. II. The statistical theory of time-correlated measurements. Rev. Sci. Instrum. 67, 2230–2246 (1996)

    Article  Google Scholar 

  141. Q. Sun, Y. Li, S. He, C. Situ, Z. Wu, J.Y. Qu, Label-free multimodal nonlinear optical microscopy reveals fundamental insights of skeletal muscle development. Biomed. Opt. Expr. 5, 158–166 (2013)

    Article  Google Scholar 

  142. C. Thaler, S.V. Koushik, H.L. Puhl, P.S. Blank, S.S. Vogel, Structural rearrangement of CaMKIIα catalytic domains encodes activation. PNAS 106, 6369–6374 (2009) doi:10.1073/pnas.0901913106

    Google Scholar 

  143. Tregido, J.A. Levitt, K. Suhling, Effect of refractive index on the fluorescence lifetime of green fluorescent protein. J. Biomed. Opt. 13(3), 031218-1–031218-8 (2008)

    Google Scholar 

  144. S.S. Vogel, C. Thaler, P.S. Blank, S.V. Koushik, Time-Resolved Fluorescence Anisotropy, ed by A. Periasamy, R.M. Clegg, FLIM Microscopy in Biology and Medicine (CRC Press, Taylor & Francis, Boca Raton, 2010)

    Google Scholar 

  145. H.E. Wagner, R. Brandenburg, K.V. Kozlov, Progress in the visualisation of filamentary gas discharges, part1: milestones and diagnostics of dielectric-barrier discharges by cross-correlation. J. Adv. Oxid. Technol. 7, 11–19 (2004)

    CAS  Google Scholar 

  146. A.J. Walsh, R.S. Cook, H.C. Manning, D.J. Hicks, A. Lafontant, C.L. Arteaga, M.C. Skala, Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer. Cancer Res. 73, 6164–6174 (2013)

    Article  CAS  Google Scholar 

  147. A.J. Walsh, R.S. Cook, M.E. Sanders, L. Aurisicchio, G. Ciliberto, C.L. Arteaga, M.C. Skala, Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer. Cancer Res. 74, OF1-OF11 (2014)

    Google Scholar 

  148. H-W. Wang, V. Ghukassyan, C.T. Chen, Y.H. Wei, H.W. Guo, J.S. Yu, F.J. Kao, Differentiation of apoptosis from necrosis by dynamic changes of reduced nicotinamide adenine dinucleotide fluorescence lifetime in live cells. J. Biomed. Opt. 13(5), 054011-1–054011-9 (2008)

    Google Scholar 

  149. J. Widengren, V. Kudryavtsev, M. Antonik, S. Berger. M. Gerken, C.A.M. Seidel, Single-molecule detection and identification of multiple species by multiparameter fluorescence detection. Anal. Chem. 78, 2039–2050 (2006)

    Google Scholar 

  150. M.S. Yang, D. Li, T, Lin, J.J. Zheng, W. Zheng, J.Y. Qu, Increase in intracellular free/bound NAD[P]H as a cause of Cd-induced oxidative stress in the HepG2 cells. Toxicology 247, 6–10 (2008)

    Google Scholar 

  151. J. Yguerabide, Nanosecond fluorescence spectroscopy of macromolecules. Meth. Enzymol. 26, 498–578 (1972)

    Article  CAS  Google Scholar 

  152. Y. Zeng, B. Yan, Q. Sun, S. Khoon Teh, W. Zhang, Z. Wen, Jianan Y. Qu, Label-free in vivo imaging of human leukocytes using two-photon excited endogenous fluorescence. J. Biomed. Opt. 18(4), 040103-1–040103-3 (2013)

    Google Scholar 

  153. W. Zheng, D. Li, J.Y. Qu, Monitoring changes of cellular metabolism and microviscosity in vitro based on time-resolved endogenous fluorescence and its anisotropy decay dynamics. J. Biomed. Opt. 15(3), 037013-1–037013-11 (2010)

    Google Scholar 

  154. W. Zheng, D. Li, Y. Zeng, Y. Luo, J.Y. Qu, Two-photon excited hemoglobin fluorescence. Biomed. Opt. Expr. 2, 71–79 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Becker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Becker, W. (2015). Introduction to Multi-dimensional TCSPC. In: Becker, W. (eds) Advanced Time-Correlated Single Photon Counting Applications. Springer Series in Chemical Physics, vol 111. Springer, Cham. https://doi.org/10.1007/978-3-319-14929-5_1

Download citation

Publish with us

Policies and ethics