Skip to main content

Biomaterials in Orthopaedics

  • Chapter
  • First Online:
Biomaterials and Medical Devices

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 58))

Abstract

In general knowledge, orthopaedic surgery treats the disease and injuries of musculoskeletal system including bone fractures, anomalies, degenerative disease, tumor, and infection. Significant difference in orthopaedic cases occurs between developed and developing countries. In the latter, the majority of cases are caused by injury and infection. Most surgical treatment needs the use of implants for both traumatic and reconstructive procedures. Orthopedic implants can be selected from metals, polymers and ceramics or their combination. In Indonesia, certain type of orthopaedic implants have been produced locally but still cannot fulfill the high demand. The current technology used by local manufacturers has some limitations in production capacity and product variety mainly for complex implants like arthroplasty. Collaboration in R&D activities on orthopaedic implants is on-going between local manufacturers with universities and government institutions under the assistance of orthopaedic surgeons. This collaboration receives a full support from the Indonesian Government as it aligns with the national programme on supporting local products and the new general health insurance programme which covers every citizen of Indonesia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah, M. R., Goharian, A., Abdul Kadir, M. R. & Wahit, M. U. (2015). Biomechanical and bioactivity concepts of polyetheretherketone composites for use in orthopedic implants-a review. Journal of Biomedical Materials Research Part A, 103, 3689-3702.

    Google Scholar 

  • Ansari, F., Ries, M. D., & Pruitt, L. (2015). Effect of processing, sterilization and crosslinking on UHMWPE fatigue fracture and fatigue wear mechanisms in joint arthroplasty. Journal of the Mechanical Behavior of Biomedical Materials, 53, 329–340.

    Article  Google Scholar 

  • Bose, S., Tarafder, S. & Bandyopadhyay, A. 2015. Hydroxyapatite Coatings for Metallic Implants. In: Mucalo, M. (Ed.), Hydroxyapatite (Hap) for Biomedical Applications. Woodhead Publishing.

    Google Scholar 

  • Buhagiar, J., & Dong, H. (2012). Corrosion properties of S-phase layers formed on medical grade austenitic stainless steel. Journal of Materials Science Materials in Medicine, 23, 271–281.

    Article  Google Scholar 

  • Buhagiar, J., Spiteri, A., Sacco, M., Sinagra, E., & Dong, H. (2012). Augmentation of crevice corrosion resistance of medical grade 316LVM stainless steel by plasma carburising. Corrosion Science, 59, 169–178.

    Article  Google Scholar 

  • Burg, K. J. L., Porter, S., & Kellam, J. F. (2000). Biomaterial developments for bone tissue engineering. Biomaterials, 21, 2347–2359.

    Article  Google Scholar 

  • Chang, J. D. (2014). Future bearing surfaces in total hip arthroplasty. Clinical Orthopaedic Surgery, 6, 110–116.

    Article  Google Scholar 

  • Chen, Q., & Thouas, G. A. (2015). Metallic implant biomaterials. Materials Science and Engineering: R: Reports, 87, 1–57.

    Article  Google Scholar 

  • Cunningham, J. L. (2001). The biomechanics of fracture fixation. Current Orthopaedics, 15, 457–464.

    Article  Google Scholar 

  • Darmawan, J., Valkenburg, H. A., Muirden, K. D., & Wigley, R. D. (1992). Epidemiology of rheumatic diseases in rural and urban populations in Indonesia: A World Health Organisation International League against Rheumatism COPCORD study, stage I, phase 2. Annals of the Rheumatic Diseases, 51, 525–528.

    Article  Google Scholar 

  • Drummond, J., Tran, P., & Fary, C. (2015). Metal-on-metal hip arthroplasty: A review of adverse reactions and patient management. Journal of Functional Biomaterials, 6, 486–499.

    Article  Google Scholar 

  • Duffy, R. K., & Shafritz, A. B. (2011). Bone cement. The Journal of Hand Surgery, 36, 1086–1088.

    Article  Google Scholar 

  • Farraro, K. F., Kim, K. E., Woo, S. L. Y., Flowers, J. R., & McCullough, M. B. (2014). Revolutionizing orthopaedic biomaterials: The potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering. Journal of Biomechanics, 47, 1979–1986.

    Article  Google Scholar 

  • Foran, J. R. H., Mont, M. A., Rajadhyaksha, A. D., Jones, L. C., Etienne, G., & Hungerford, D. S. (2004). Total knee arthroplasty in obese patients: A comparison with a matched control group. The Journal of Arthroplasty, 19, 817–824.

    Article  Google Scholar 

  • Frost, H. M. (1994). Wolff’s Law and bone’s structural adaptations to mechanical usage: An overview for clinicians. The Angle Orthodontist, 64, 175–188.

    Google Scholar 

  • Garino, J. P. (2013). The reliability of modern alumina bearings in total hip arthroplasty—Update to a 2006 report. Seminars in Arthroplasty, 24, 193–201.

    Article  Google Scholar 

  • Gillespie, G. N., & Porteous, A. J. (2007). Obesity and knee arthroplasty. The Knee, 14, 81–86.

    Article  Google Scholar 

  • Goff, T., Kanakaris, N. K., & Giannoudis, P. V. (2013). Use of bone graft substitutes in the management of tibial plateau fractures. Injury, 44, Supplement, 1, S86–S94.

    Google Scholar 

  • Grimm, M. J. 2003. Orthopedic biomaterials. In: Myer, K. (Ed.) Standard handbook of biomedical engineering & design. New York: McGraw Hill.

    Google Scholar 

  • Hartigan, B. J., & Cohen, M. S. (2005). Use of bone graft substitutes and bioactive materials in treatment of distal radius fractures. Hand Clinics, 21, 449–454.

    Article  Google Scholar 

  • Heyse, T. J., Haas, S. B., & Efe, T. (2012). The use of oxidized zirconium alloy in knee arthroplasty. Expert Review of Medical Devices, 9, 409–421.

    Article  Google Scholar 

  • Ito, M., Onodera, T. & Funakoshi, T. 2015. Metallic biomaterials in orthopedic surgery. In: Niinomi, M., Narushima, T. & Nakai, M. (Eds.), Advances in metallic biomaterials. Heidelberg: Springer.

    Google Scholar 

  • Ivanova, E. P., Bazaka, K. & Crawford, R. J. 2014. Metallic biomaterials: Types and advanced applications. In: Ivanova, E. P., Bazaka, K. & Crawford, R. J. (Eds.), New functional biomaterials for medicine and healthcare. Woodhead Publishing.

    Google Scholar 

  • Jacobs, J. J., Gilbert, J. L., & Urban, R. M. (1998). Current concepts review-corrosion of metal orthopaedic implants. The Journal of Bone and Joint Surgery American, 80, 268–282.

    Google Scholar 

  • Kanchanomai, C., Phiphobmongkol, V., & Muanjan, P. (2008). Fatigue failure of an orthopedic implant—A locking compression plate. Engineering Failure Analysis, 15, 521–530.

    Article  Google Scholar 

  • Khanuja, H. S., Vakil, J. J., Goddard, M. S., & Mont, M. A. (2011). Cementless femoral fixation in total hip arthroplasty. The Journal of Bone and Joint Surgery American, 93, 500–509.

    Article  Google Scholar 

  • Knight, S. R., Aujla, R., & Biswas, S. P. (2011). Total Hip Arthroplasty—over 100 years of operative history. Orthopedic Reviews, 3, e16.

    Article  Google Scholar 

  • Koksal, I. (2014). Biomaterials in orthopedics. In: Doral, M. N. & Karlsson, J. (Eds.), Sports Injuries. Heidelberg: Springer.

    Google Scholar 

  • Leong, J. C. Y. & Lu, W. W. (2004). Preface—Biomechanics and biomaterials. In: POITOUT, D. G. (Ed.), Biomechanics and biomaterials in orthopedics. Heidelberg: Springer.

    Google Scholar 

  • Li, C. S., Vannabouathong, C., Sprague, S., & Bhandari, M. (2015). The use of Carbon-Fiber-Reinforced (CFR) PEEK material in orthopedic implants: A systematic review. Clinical Medicine Insights: Arthritis and Musculoskeletal Disorders, 8, 33–45.

    Article  Google Scholar 

  • Macdonald, N., & Bankes, M. (2014). Ceramic on ceramic hip prostheses: A review of past and modern materials. Archives of Orthopaedic and Trauma Surgery, 134, 1325–1333.

    Article  Google Scholar 

  • Mäkelä, K. T., Eskelinen, A., Pulkkinen, P., Paavolainen, P., & Remes, V. (2008). Total hip arthroplasty for primary osteoarthritis in patients fifty-five years of age or older. An analysis of the Finnish arthroplasty registry. The Journal of Bone and Joint Surgery American, 90, 2160–2170.

    Article  Google Scholar 

  • Manivasagam, G., Dhinasekaran, D., & Rajamanickam, A. (2010). Biomedical implants: Corrosion and its prevention-a review. Recent Patents on Corrosion Science, 2, 40–54.

    Article  Google Scholar 

  • Mann, K. A. & Allen, M. J. 2013. Biomaterials in Orthopaedic Practice. In: O’keefe, R. J., Jacobs, J. J., Chu, C. R. & Einhorn, T. A. (Eds.), Orthopaedic basic science: Foundations of clinical practice. (4th ed.) American Academy of Orthopaedic Surgeons.

    Google Scholar 

  • Middleton, J. C., & Tipton, A. J. (2000). Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 21, 2335–2346.

    Article  Google Scholar 

  • Navarro, M., Michiardi, A., Castano, O., & Planell, J. A. (2008). Biomaterials in orthopaedics. The Journal of Royal Society Interface, 5, 1137–1158.

    Article  Google Scholar 

  • Ong, K. L., Lovald, S. & Black, J. (2014). Polymers. CRC Press.

    Google Scholar 

  • Patel, N. R., & Gohil, P. P. (2012). A review on biomaterials: Scope, applications & human anatomy significance. International Journal of Emerging Technology and Advanced Engineering, 2, 91–101.

    Google Scholar 

  • Piconi, C. 2011. Alumina. In: Ducheyne, P. (Ed.), Comprehensive biomaterials. Oxford: Elsevier.

    Google Scholar 

  • Rabbe, P. & Anquez, L. 2013. Fatigue crack initiation. In: Bathias, C. & Pineau, A. (Eds.), Fatigue of materials and structures: Fundamentals. John Wiley & Sons.

    Google Scholar 

  • Rahaman, M. N. (2014). Bioactive ceramics and glasses for tissue engineering. In: Boccaccini, A. R. & Ma, P. X. (Eds.), Tissue engineering using ceramics and polymers (2nd ed.). Woodhead Publishing.

    Google Scholar 

  • Salter, R. B. 1999. Textbook of disorders and injuries of the musculoskeletal system: An introduction to orthopaedics, fractures, and joint injuries, rheumatology, metabolic bone disease, and rehabilitation. Lippincott Williams & Wilkins.

    Google Scholar 

  • Schwitalla, A., & Muller, W. D. (2013). PEEK dental implants: A review of the literature. Journal of Oral Implantology, 39, 743–749.

    Article  Google Scholar 

  • Soeroso, J., Dans, L. F., Amarillo, M. L., Santoso, G. H., & Kalim, H. (2005). Risk factors of symptomatic osteoarthritis of the knee at a hospital in Indonesia. APLAR Journal of Rheumatology, 8, 106–113.

    Article  Google Scholar 

  • Tirtarahardja, G., Setyohadi, B., Weynand, L., Zhou, Q. (2006). ASBMR Lecture: Bone Mineral Density Reference Values for Indonesian Men and Women, American Society for Bone and Mineral Research Annual Meeting.

    Google Scholar 

  • Tsao, A. K., Jones, L. C., & Lewallen, D. G. (2008). What patient and surgical factors contribute to implant wear and osteolysis in total joint arthroplasty? Journal of the American Academy of Orthopaedic Surgeons, 16, S7–S13.

    Google Scholar 

  • Ulery, B. D., Nair, L. S., & Laurencin, C. T. (2011). Biomedical applications of biodegradable polymers. Journal of Polymer Science Part B: Polymer Physics, 49, 832–864.

    Article  Google Scholar 

  • Webb, J. C., & Spencer, R. F. (2007). The role of polymethylmethacrylate bone cement in modern orthopaedic surgery. Journal of Bone and Joint Surgery British, 89, 851–857.

    Article  Google Scholar 

  • Wright, T. M. & Maher, S. A. (2008). Biomaterials. In: Einhorn, T. A., O’keefe, R. J. & Buckwater, J. A. (Eds.), Orthopaedic basic science, foundations of clinical practice. (3rd ed.) American Academy of Orthopaedic Surgeons.

    Google Scholar 

  • Zywiel, M. G., Sayeed, S. A., Johnson, A. J., Schmalzried, T. P., & Mont, M. A. (2011). Survival of hard-on-hard bearings in Total Hip Arthroplasty: A systematic review. Clinical Orthopaedics and Related Research, 469, 1536–1546.

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the supports from Dr. Soetomo General Hospital, Surabaya and the Indonesian Ministry of Health (FM, LW), and the Axis of Regenerative Medicine, CHU de Quebec Research Center at Saint-François d’Assise Hospital, Québec City (HH).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ferdiansyah Mahyudin or Hendra Hermawan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mahyudin, F., Widhiyanto, L., Hermawan, H. (2016). Biomaterials in Orthopaedics. In: Mahyudin, F., Hermawan, H. (eds) Biomaterials and Medical Devices. Advanced Structured Materials, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-319-14845-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14845-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14844-1

  • Online ISBN: 978-3-319-14845-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics