Skip to main content

Comparative Epidemiology of Myxozoan Diseases

  • Chapter
  • First Online:
Myxozoan Evolution, Ecology and Development

Abstract

Epidemiological studies are crucial to understand infectious diseases in both captive and free-ranging fish. Such studies on myxozoan fish parasites are rare or incomplete, owing to the complexity of myxozoan life cycles, confounding environmental factors and difficulties of data collection. Here we discuss how epidemiological data can be gathered for myxozoans and then compare the epidemiology of seven economically and/or ecologically important myxozoan species: Myxobolus cerebralis; Ceratonova shasta; Tetracapsuloides bryosalmonae; Henneguya ictaluri; Enteromyxum leei; Kudoa thyrsites; and Parvicapsula pseudobranchicola. These species were selected due to their representation in the literature, breadth of habitats and range in life histories. Specifically, we synthesise epidemiological information in relation to: life cycles; habitat types; distribution; fish host disease characteristics; actinospore and malacospore prevalence in water, infectivity and longevity; parasite transmission modes; infection prevalence and mortality in invertebrate and fish hosts; seasonality and environmental and biotic factors. We also consider available treatment and control strategies and how progress may be made in understanding myxozoan epidemiology by incorporating new research approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Elfattah A, Fontes I, Kumar G, Soliman H, Hartikainen H, Okamura B, El-Matbouli M (2013) Vertical transmission of the Tetracapsuloides bryosalmonae (Myxozoa), the causative agent of proliferative kidney disease. Parasitology: 1–9

    Google Scholar 

  • Abd-Elfattah A, Kumar G, Soliman H, El-Matbouli M (2014) Persistence of Tetracapsuloides bryosalmonae (Myxozoa) in chronically infected brown trout Salmo trutta. Dis Aquat Org 111(1):41–49

    PubMed Central  CAS  PubMed  Google Scholar 

  • Alama-Bermejo G, Šíma R, Raga JA, Holzer AS (2013) Understanding myxozoan infection dynamics in the sea: seasonality and transmission of Ceratomyxa puntazzi. Int J Parasitol 43(9):771–780

    PubMed  Google Scholar 

  • Alexander JA, Hallett SL, Stocking RW, Xue L, Bartholomew JL (2014) Host and parasite populations after a ten year flood: Manayunkia speciosa and Ceratonova (syn Ceratomyxa) shasta in the Klamath River. Northwest Sci 88(3):219–233

    Google Scholar 

  • Alvarez-Pellitero P, Palenzuela O, Sitjà-Bobadilla A (2008) Histopathology and cellular response in Enteromyxum leei (Myxozoa) infections of Diplodus puntazzo (Teleostei). Parasitol Int 57(2):110–120

    CAS  PubMed  Google Scholar 

  • American Fisheries Society Fish Health Section (2012) Fish health section blue book: suggested procedures for the detection and identification of certain finfish and shellfish pathogens. American Fisheries Society, Am Fish Soc Symp, Bethesda, Maryland

    Google Scholar 

  • Arndt RE, Wagner EJ, Cannon Q, Smith M Triactinomyxon production as related to rearing substrate and diel light cycle. In: American Fisheries Society Symposium, 2002. American Fisheries Society, pp 87–92

    Google Scholar 

  • Arsan EL, Hallett SL, Bartholomew JL (2007) Tubifex tubifex from Alaska and their susceptibility to Myxobolus cerebralis. J Parasitol 93(6):1332–1342

    CAS  PubMed  Google Scholar 

  • Athanassopoulou F, Prapas T, Rodger H (1999) Diseases of Puntazzo puntazzo Cuvier in marine aquaculture systems in Greece. J Fish Dis 22(3):215–218

    Google Scholar 

  • Atkinson SD, Bartholomew JL (2009) Alternate spore stages of Myxobilatus gasterostei, a myxosporean parasite of three-spined sticklebacks (Gasterosteus aculeatus) and oligochaetes (Nais communis). Parasitol Res 104(5):1173–1181

    PubMed  Google Scholar 

  • Atkinson SD, Bartholomew JL (2010a) Disparate infection patterns of Ceratomyxa shasta (Myxozoa) in rainbow trout (Oncorhynchus mykiss) and Chinook salmon (Oncorhynchus tshawytscha) correlate with internal transcribed spacer-1 sequence variation in the parasite. Int J Parasitol 40(5):599–604

    CAS  PubMed  Google Scholar 

  • Atkinson SD, Bartholomew JL (2010b) Spatial, temporal and host factors structure the Ceratomyxa shasta (Myxozoa) population in the Klamath River basin. Infect Genet Evol 10(7):1019–1026

    PubMed  Google Scholar 

  • Ayre KK, Caldwell CA, Stinson J, Landis WG (2014) Analysis of regional scale risk of whirling disease in populations of colorado and rio grande cutthroat trout using a bayesian belief network model. Risk Anal 34(9):1589–1605

    PubMed  Google Scholar 

  • Baldwin TJ, Peterson JE, McGhee GC, Staigmiller KD, Motteram ES, Downs CC, Stanek DR (1998) Distribution of Myxobolus cerebralis in salmonid fishes in Montana. J Aqu Anim Health 10(4):361–371

    Google Scholar 

  • Baldwin TJ, Vincent ER, Silflow RM, Stanek D (2000) Myxobolus cerebralis infection in rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta) exposed under natural stream conditions. J Vet Diagn Invest 12(4):312–321

    CAS  PubMed  Google Scholar 

  • Barnard SM, Upton SJ (1994) A veterinary guide to the parasites of reptiles. In: Protozoa, vol 1. Krieger Publishing Company, Malabar, Florida

    Google Scholar 

  • Bartholomew JL (1998) Host resistance to infection by the myxosporean parasite Ceratomyxa shasta: a review. J Aqu Anim Health 10(2):112–120

    Google Scholar 

  • Bartholomew JL (2012) Salmonid Ceratomyxosis. In: Suggested procedures for the detection and identification of certain finfish and shellfish pathogens. Blue Book 4th edn. Fish Health Section, American Fisheries Society, Bethesda, Maryland

    Google Scholar 

  • Bartholomew JL, Atkinson SD, Hallett SL, Lowenstine LJ, Garner MM, Gardiner CH, Rideout BA, Keel MK, Brown JD (2008) Myxozoan parasitism in waterfowl. Int J Parasitol 38(10):1199–1207

    PubMed  Google Scholar 

  • Bartholomew JL, Kerans BL, Hedrick RP, Macdiarmid SC, Winton JR (2005) A risk assessment based approach for the management of whirling disease. Rev Fish Sci 13(4):205–230

    Google Scholar 

  • Bartholomew JL, Lorz HV, Sollid SA, Stevens DG (2003) Susceptibility of juvenile and yearling bull trout to Myxobolus cerebralis and effects of sustained parasite challenges. J Aqua Anim Health 15(3):248–255

    Google Scholar 

  • Bartholomew JL, Ray E, Torell B, Whipple MJ, Heidel JR (2004) Monitoring Ceratomyxa shasta infection during a hatchery rearing cycle: comparison of molecular, serological and histological methods. Dis Aqu Org 62(1–2):85–92

    Google Scholar 

  • Bartholomew JL, Smith CE, Rohovec JS, Fryer JL (1989) Characterization of a host response to the myxosporean parasite, Ceratomyxa shasta (Noble), by histology, scanning electron microscopy and immunological techniques. J Fish Dis 12(5):509–522

    Google Scholar 

  • Bartholomew JL, Whipple MJ, Stevens DG, Fryer JL (1997) The life cycle of Ceratomyxa shasta, a myxosporean parasite of salmonids, requires a freshwater polychaete as an alternate host. J Parasitol 83(5):859–868

    CAS  PubMed  Google Scholar 

  • Baxa DV, Kelley GO, Mukkatira KS, Beauchamp KA, Rasmussen C, Hedrick RP (2008) Arrested development of the myxozoan parasite, Myxobolus cerebralis, in certain populations of mitochondrial 16S lineage III Tubifex tubifex. Parasitol Res 102(2):219–228

    CAS  PubMed  Google Scholar 

  • Beauchamp KA, Gay M, Kelley GO, El-Matbouli M, Kathman RD, Nehring RB, Hedrick RP (2002) Prevalence and susceptibility of infection to Myxobolus cerebralis, and genetic differences among populations of Tubifex tubifex. Dis Aqu Org 51(2):113–121

    Google Scholar 

  • Bettge K, Segner H, Burki R, Schmidt-Posthaus H, Wahli T (2009a) Proliferative kidney disease (PKD) of rainbow trout: temperature- and time-related changes of Tetracapsuloides bryosalmonae DNA in the kidney. Parasitology 136(6):615–625

    CAS  PubMed  Google Scholar 

  • Bettge K, Wahli T, Segner H, Schmidt-Posthaus H (2009b) Proliferative kidney disease in rainbow trout: time- and temperature-related renal pathology and parasite distribution. Dis Aqu Org 83(1):67–76

    Google Scholar 

  • Bjork SJ (2010) Factors affecting the Ceratomyxa shasta infectious cycle and transmission between polychaete and salmonid hosts. Oregon State University, Corvallis, Oregon

    Google Scholar 

  • Bjork SJ, Bartholomew JL (2009) Effects of Ceratomyxa shasta dose on a susceptible strain of rainbow trout and comparatively resistant Chinook and coho salmon. Dis Aqu Org 86(1):29–37

    Google Scholar 

  • Bjork SJ, Bartholomew JL (2010) Invasion of Ceratomyxa shasta (Myxozoa) and comparison of migration to the intestine between susceptible and resistant fish hosts. Int J Parasitol 40(9):1087–1095

    PubMed  Google Scholar 

  • Bjork SJ, Zhang Y, Hurst CN, Alonso-Naveiro ME, Alexander JD, Sunyer JO, Bartholomew JL (2014) Defenses of susceptible and resistant chinook salmon (Onchorhynchus tshawytscha) against the myxozoan parasite. Ceratomyxa shasta Fish Shellfish Immunol 37:87–95

    Google Scholar 

  • Blazer VS, Waldrop TB, Schill WB, Densmore CL, Smith D (2003) Effects of water temperature and substrate type on spore production and release in eastern Tubifex tubifex worms infected with Myxobolus cerebralis. J Parasitol 89(1):21–26

    PubMed  Google Scholar 

  • Bowser PR, Conroy JD (1985) Histopathology of gill lesions in channel catfish associated with Henneguya. J Wildl Dis 21(2):177–179

    CAS  PubMed  Google Scholar 

  • Bruno DW, Ellis AE (1996) Salmonid disease management. In: William P, Bruce AB (eds) Developments in aquaculture and fisheries science, vol 29. Elsevier, New York, pp 759–832

    Google Scholar 

  • Buchanan DV, Sanders JE, Zinn JL, Fryer JL (1983) Relative susceptibility of four strains of summer steelhead to infection by Ceratomyxa shasta. Trans Am Fish Soc 112(4):541–543

    Google Scholar 

  • Bucke D, Feist SW, Clifton-Hadley RS (1991) The occurrence of proliferative kidney disease (PKD) in cultured and wild fish: further investigations. J Fish Dis 14(5):583–588

    Google Scholar 

  • Burtle GJ, Harrison LR, Styer EL (1991) Detection of a triactinomyxid myxozoan in an oligochaete from ponds with proliferative gill disease in channel catfish. J Aqu Anim Health 3(4):281–287

    Google Scholar 

  • Cacciò SM, Ryan U (2008) Molecular epidemiology of giardiasis. Mol Biochem Parasitol 160(2):75–80

    PubMed  Google Scholar 

  • Chiaramonte LV (2013) Climate warming effects on the life cycle of the parasite Ceratomyxa shasta in salmon of the Pacific Northwest. Oregon State University, Corvallis, Oregon

    Google Scholar 

  • Ching HL (1984) Comparative resistance of Oregon (Big Creek) and British Columbia (Capilano) juvenile chinook salmon to the myxozoan pathogen, Ceratomyxa shasta, after laboratory exposure to Fraser River water. Can J Zool 62(7):1423–1424

    Google Scholar 

  • Ching HL, Munday DR (1984a) Geographic and seasonal distribution of the infectious stage of Ceratomyxa shasta Noble, 1950, a myxozoan salmonid pathogen in the Fraser River system. Can J Zool 62(6):1075–1080

    Google Scholar 

  • Ching HL, Munday DR (1984b) Susceptibility of six Fraser chinook salmon stocks to Ceratomyxa shasta and the effects of salinity on ceratomyxosis. Can J Zool 62(6):1081–1083

    Google Scholar 

  • Clifton-Hadley RS, Bucke D, Richards RH (1987) A study of the sequential clinical and pathological changes during proliferative kidney disease in rainbow trout, Salmo gairdneri Richardson. J Fish Dis 10(5):335–352

    Google Scholar 

  • Clifton-Hadley RS, Richards RH, Bucke D (1985) The sequential pathological changes in proliferative kidney disease. In: Ellis AE (ed) Fish and shellfish pathology. Academic Press, New York, pp 359–367

    Google Scholar 

  • Coley TC, Chacko AJ, Klontz GW (1983) Development of a lavage technique for sampling Ceratomyxa shasta in adult salmonids. J Fish Dis 6(3):317–319

    Google Scholar 

  • Crisp DT (2000) Trout and salmon: ecology, conservation, and rehabilitation. Blackwell, Cambridge

    Google Scholar 

  • Cuesta A, Muñoz P, Rodríguez A, Salinas I, Sitjà-Bobadilla A, Álvarez-Pellitero P, Esteban MÁ, Meseguer J (2006) Gilthead seabream (Sparus aurata L.) innate defence against the parasite Enteromyxum leei (Myxozoa). Parasitology 132(01):95–104

    CAS  PubMed  Google Scholar 

  • Dawson-Coates JA, Chase JC, Funk V, Booy MH, Haines LR, Falkenberg CL, Whitaker DJ, Olafson RW, Pearson TW (2003) The relationship between flesh quality and numbers of Kudoa thyrsites plasmodia and spores in farmed Atlantic salmon, Salmo salar L. J Fish Dis 26(8):451–459

    CAS  PubMed  Google Scholar 

  • De Kinkelin P, Gay M, Forman S (2002) The persistence of infectivity of Tetracapsula bryosalmonae-infected water for rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 25:477–482

    Google Scholar 

  • De la Hoz Franco E, Budy P (2004) Linking environmental heterogeneity to the distribution and prevalence of Myxobolus cerebralis: a comparison across sites in a Northern Utah watershed. Trans Am Fish Soc 133(5):1176–1189

    Google Scholar 

  • Diamant A (1992) A new pathogenic histozoic Myxidium (Myxosporea) in cultured gilt-head sea bream Sparus aurata L. Bull Eur Assoc Fish Pathol 12(2):64–66

    Google Scholar 

  • Diamant A (1997) Fish-to-fish transmission of a marine myxosporean. Dis Aqu Org 30:99–105

    Google Scholar 

  • Diamant A, Lom J, Dyková I (1994) Myxidium leei n. sp., a pathogenic myxosporean of cultured sea bream Sparus aurata. Dis Aqu Org 20(2):137–141

    Google Scholar 

  • Diamant A, Ram S, Paperna I (2006) Experimental transmission of Enteromyxum leei to freshwater fish. Dis Aqu Org 72(2):171

    CAS  Google Scholar 

  • Downing DC, McMahon TE, Kerans BL, Vincent ER (2002) Relation of spawning and rearing life history of rainbow trout and susceptibility to Myxobolus cerebralis infection in the Madison River, Montana. J Aquat Anim Health 14(3):191–203

    Google Scholar 

  • DuBey R, Caldwell C (2004) Distribution of Tubifex tubifex lineages and Myxobolus cerebralis infection in the tailwater of the San Juan River, New Mexico. J Aqua Anim Health 16(4):179–185

    Google Scholar 

  • DuBey R, Caldwell C, Gould WR (2005) Effects of temperature, photoperiod, and Myxobolus cerebralis infection on growth, reproduction, and survival of Tubifex tubifex lineages. J Aquatic Anim Health 17(4):338–344

    Google Scholar 

  • El-Matbouli M, Hoffmann RW (2002) Influence of water quality on the outbreak of proliferative kidney disease—field studies and exposure experiments. J Fish Dis 25:459–467

    Google Scholar 

  • El-Matbouli M, Hoffmann RW, Mandok C (1995) Light and electron microscopic observations on the route of the triactinomyxon-sporoplasm of Myxobolus cerebralis from epidermis into rainbow trout cartilage. J Fish Biol 46(6):919–935

    Google Scholar 

  • El-Matbouli M, Hoffmann RW, Schoel H, McDowell TS, Hedrick RP (1999a) Whirling disease: host specificity and interaction between the actinosporean stage of Myxobolus cerebralis and rainbow trout Oncorhynchus mykiss. Dis Aqua Org 35(1):1–12

    CAS  Google Scholar 

  • El-Matbouli M, McDowell TS, Antonio DB, Andree KB, Hedrick RP (1999b) Effect of water temperature on the development, release and survival of the triactinomyxon stage of Myxobolus cerebralis in its oligochaete host. Int J Parasitol 29(4):627–641

    CAS  PubMed  Google Scholar 

  • Elliott JM (1994) Quantitative ecology and the brown trout. Oxford University Press, Oxford

    Google Scholar 

  • Ellis AE, McVicar AH, Munro ALS (1985) Proliferative kidney disease in brown trout, Salmo trutta L., and Atlantic salmon, Salmo salar L., parr: histopathological and epidemiological observations. J Fish Dis 8(2):197–208

    Google Scholar 

  • Elwell LC, Kerans BL, Rasmussen C, Winton JR (2006) Interactions among two strains of Tubifex tubifex (Oligochaeta: Tubificidae) and Myxobolus cerebralis (Myxozoa). Dis Aqua Org 68(2):131–139

    Google Scholar 

  • Environment Agency (2011) Myxosporidean parasites. Fisheries Technical Services/The Environment Agency. http://www.environment-agency.gov.uk/static/documents/Research/Myxosporidean_parasites.pdf. Accessed 25 Nov 2011

  • Estensoro I, Benedito-Palos L, Palenzuela O, Kaushik S, Sitjà-Bobadilla A, Pérez-Sánchez J (2011) The nutritional background of the host alters the disease course in a fish–myxosporean system. Vet Parasitol 175(1–2):141–150

    PubMed  Google Scholar 

  • Feist SW, Longshaw M (2006) The phylum myxozoa. In: Woo PTK (ed) Fish diseases and disorders, vol 1. CABI Publishing, Wallingford

    Google Scholar 

  • Feist SW, Peeler EJ, Gardiner CH, Smith E, Longshaw M (2002) Proliferative kidney disease and renal myxosporidiosis in juvenile salmonids from rivers in England and Wales. J Fish Dis 25:451–458

    Google Scholar 

  • Ferguson HW (1981) The effects of water temperature on the development of proliferative kidney disease in rainbow trout, Salmo gairdneri Richardson. J Fish Dis 4(2):175–177

    Google Scholar 

  • Ferguson HW, Ball HJ (1979) Epidemiological aspects of proliferative kidney disease amongst rainbow trout Salmo gairdneri Richardson in Northern Ireland. J Fish Dis 2(3):219–225

    Google Scholar 

  • Ferguson HW, Needham EA (1978) Proliferative kidney disease in rainbow trout Salmo gairdneri Richardson. J Fish Dis 1(1):91–108

    Google Scholar 

  • Fogerty R, Foott JS, Stone R, Bolick A, True K (2012) FY2011 technical report: Ceratomyxa shasta myxospore survey of fall-run Chinook salmon carcasses in the Klamath and Shasta Rivers, and Bogus Creek, 2011. Nevada Fish Health Center, Anderson, CA

    Google Scholar 

  • Foott JS, Fogerty R, Stone R (2010) FY2009 technical report: Ceratomyxa shasta myxospore survey of Fall-run Chinook salmon carcasses in Bogus Creek, Shasta River, and Klamath River: Component of joint OSU-Yurok Fisheries-CDFG pilot project testing the effect of carcass removal on C. shasta levels in Bogus Creek, 2009–2010. Nevada Fish Health Center, Anderson, CA

    Google Scholar 

  • Foott JS, Hedrick RP (1987) Seasonal occurrence of the infectious stage of proliferative kidney disease (PKD) and resistance of rainbow trout, Salmo gairdneri Richardson, to reinfection. J Fish Biol 30(4):477–483

    Google Scholar 

  • Foott JS, Hedrick RP (1990) Blood parameters and immune status of rainbow trout with proliferative kidney disease. J Aqua Anim Health 2(2):141–148

    Google Scholar 

  • Foott JS, Stone R, Wiseman E, True K, Nichols K (2007) Longevity of Ceratomyxa shasta and Parvicapsula minibicornis actinospore infectivity in the Klamath River. J Aqua Anim Health 19(2):77–83

    Google Scholar 

  • Foott JS, Strange J, Slezak R (2009) FY2007 technical report: Ceratomyxa shasta myxospore survey of adult Rainbow trout/Steelhead, Chinook and Coho salmon in the Klamath River basin in 2007–2008: Cooperative Humboldt State University-Yurok Fisheries-CA-NV FHC project. Nevada Fish Health Center, Anderson, CA

    Google Scholar 

  • Fox MD, Palenzuela O, Bartholomew JL (2000) Strategies for diagnosis of Ceratomyxa shasta using the PCR: comparison of lethal and non-lethal sampling with microscopic examination. J Aqua Anim Health 12:100–106

    Google Scholar 

  • Fujiwara M, Mohr MS, Greenberg A, Foott JS, Bartholomew JL (2011) Effects of ceratomyxosis on population dynamics of Klamath fall-run Chinook salmon. Trans Am Fish Soc 140(5):1380–1391

    Google Scholar 

  • Gay M, Okamura B, de Kinkelin P (2001) Evidence that infectious stages of Tetracapsula bryosalmonae for rainbow trout Oncorhynchus mykiss are present throughout the year. Dis Aqua Org 46:31–40

    CAS  Google Scholar 

  • Georgiadis MP, Gardner IA, Hedrick RP (2001) The role of epidemiology in the prevention, diagnosis, and control of infectious diseases of fish. Prev Vet Med 48(4):287–302

    CAS  PubMed  Google Scholar 

  • Godfrey SS (2013) Networks and the ecology of parasite transmission: a framework for wildlife parasitology. Int J Parasitol 2:235–245

    Google Scholar 

  • Golomazou E, Athanassopoulou F, Karagouni E, Tsagozis P, Tsantilas H, Vagianou S (2006) Experimental transmission of Enteromyxum leei Diamant, Lom and Dykova, 1994 in sharpsnout sea bream, Diplodus puntazzo C. and the effect on some innate immune parameters. Aquaculture 260(1–4):44–53

    Google Scholar 

  • Grabner DS, El-Matbouli M (2008) Transmission of Tetracapsuloides bryosalmonae (Myxozoa: Malacosporea) to Fredericella sultana (Bryozoa: Phylactolaemata) by various fish species. Dis Aqua Org 79(2):133–139

    Google Scholar 

  • Grabner DS, El-Matbouli M (2009) Comparison of the susceptibility of brown trout (Salmo trutta) and four rainbow trout (Oncorhynchus mykiss) strains to the myxozoan Tetracapsuloides bryosalmonae, the causative agent of proliferative kidney disease (PKD). Vet Parasitol 165(3–4):200–206

    PubMed  Google Scholar 

  • Granath WO, Gilbert MA, Wyatt-Pescador EJ, Vincent ER (2007) Epizootiology of Myxobolus cerebralis, the causative agent of salmonid whirling disease in the rock creek drainage of West-Central Montana. J Parasitol 93(1):104–119

    PubMed  Google Scholar 

  • Granath WO, Vincent ER (2010) Epizootiology of Myxobolus cerebralis, the causative agent of salmonid whirling disease in the rock creek drainage of West-Central Montana: 2004–2008. J Parasitol 96(2):252–257

    PubMed  Google Scholar 

  • Griffin MJ, Pote LM, Camus AC, Mauel MJ, Greenway TE, Wise DJ (2009) Application of a real-time PCR assay for the detection of Henneguya ictaluri in commercial channel catfish ponds. Dis Aqua Org 86(3):223–233

    CAS  Google Scholar 

  • Hallett SL, Bartholomew JL (2006) Application of a real-time PCR assay to detect and quantify the myxozoan parasite Ceratomyxa shasta in river water samples. Dis Aqua Org 71:109–118

    CAS  Google Scholar 

  • Hallett SL, Bartholomew JL (2008) Effects of water flow on the infection dynamics of Myxobolus cerebralis. Parasitology 135(3):371

    CAS  PubMed  Google Scholar 

  • Hallett SL, Bartholomew JL (2009) Development and application of a duplex QPCR for river water samples to monitor the myxozoan parasite Parvicapsula minibicornis. Dis Aqua Org 86(1):39–50

    Google Scholar 

  • Hallett SL, Bartholomew JL (2012) Myxobolus cerebralis and Ceratomyxa shasta. In: Woo PTK, Buchmann K (eds) Fish parasites: pathobiology and protection. CABI, Oxfordshire, U.K

    Google Scholar 

  • Hallett SL, Lorz HV, Atkinson SD, Rasmussen C, Xue L, Bartholomew JL (2009) Propagation of the myxozoan parasite Myxobolus cerebralis by different geographic and genetic populations of Tubifex tubifex: an Oregon perspective. J Invertebr Pathol 102(1):57–68

    PubMed  Google Scholar 

  • Hallett SL, Ray RA, Hurst CN, Holt RA, Buckles GR, Atkinson SD, Bartholomew JL (2012) Density of the waterborne parasite Ceratomyxa shasta and its biological effects on Salmon. Appl Environ Microbiol 78(10):3724–3731

    PubMed Central  CAS  PubMed  Google Scholar 

  • Harrell LW, Scott TM (1985) Kudoa thyrsitis (Gilchrist) (Myxosporea: Multivalvulida) in Atlantic salmon, Salmo salar L. J Fish Dis 8(3):329–332

    Google Scholar 

  • Hartikainen H-L, Johnes P, Moncrieff C, Okamura B (2009) Bryozoan populations reflect nutrient enrichment and productivity gradients in rivers. Freshw Biol 54(11):2320–2334

    CAS  Google Scholar 

  • Hartikainen H-L, Okamura B (2011) Castrating parasites and colonial hosts. Parasitology:1–10

    Google Scholar 

  • Haythornthwaite C (1996) Social network analysis: an approach and technique for the study of information exchange. Lib Inf Sci Res 18(4):323–342

    Google Scholar 

  • Hedrick RP, Adkison MA, El-Matbouli M, MacConnell E (1998) Whirling disease: re-emergence among wild trout. Immunol Rev 166(1):365–376

    CAS  PubMed  Google Scholar 

  • Hedrick RP, Kent ML, Rosemark R, Manzer D (1984) Occurrence of proliferative kidney disease (PKD) among Pacidic Salmon and steelhead trout. Bull Eur Assoc Fish Pathol 4(3):34–37

    Google Scholar 

  • Hedrick RP, MacConnell E, de Kinkelin P (1993) Proliferative kidney disease of salmonid fish. Annu Rev Fish Dis 3:277–290

    Google Scholar 

  • Hedrick RP, McDowell TS, Adkison MA, Myklebust KA, Mardones FO, Petri B (2012) Invasion and initial replication of ultraviolet irradiated waterborne infective stages of Myxobolus cerebralis results in immunity to whirling disease in rainbow trout. Int J Parasitol 42(7):657–666

    CAS  PubMed  Google Scholar 

  • Hedrick RP, McDowell TS, Gay M, Marty GD, Georgiadis MP, MacConnell E (1999) Comparative susceptibility of rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta to Myxobolus cerebralis, the cause of salmonid whirling disease. Dis Aqu Org 37(3):173–183

    CAS  Google Scholar 

  • Hendrickson GL, Carleton A, Manzer D (1989) Geographic and seasonal distribution of the infective stage of Ceratomyxa shasta (Myxozoa) in Northern California. Dis Aqua Org 7(3):165–169

    Google Scholar 

  • Hill SL, Okamura B (2007) Endoparasitism in colonial hosts: patterns and processes. Parasitology 134(6):841–852

    CAS  PubMed  Google Scholar 

  • Hiner M, Moffitt CM (2001) Variation in infections of Myxobolus cerebralis in field-exposed cutthroat and rainbow trout in Idaho. J Aqua Anim Health 13(2):124–132

    Google Scholar 

  • Hurst CN, Bartholomew JL (2012) Ceratomyxa shasta genotypes cause differential mortality in their salmonid hosts. J Fish Dis 35(10):725–732

    CAS  PubMed  Google Scholar 

  • Ibarra AM, Hedrick RP, Gall GAE (1994) Genetic analysis of rainbow trout susceptibility to the myxosporean, Ceratomyxa shasta. Aquac 120(3–4):239–262

    Google Scholar 

  • Jørgensen A, Nylund A, Nikolaisen V, Alexandersen S, Karlsbakk E (2011) Real-time PCR detection of Parvicapsula pseudobranchicola (Myxozoa: Myxosporea) in wild salmonids in Norway. J Fish Dis 34(5):365–371

    PubMed  Google Scholar 

  • Kabata Z, Whitaker DJ (1981) Two species of Kudoa (Myxosporea: Multivalvulida) parasitic in the flesh of Merluccius productus (Ayres, 1855) (Pisces: Teleostei) in the Canadian Pacific. Can J Zool 59(11):2085–2091

    Google Scholar 

  • Kallert DM, Eszterbauer E, Grabner D, El-Matbouli M (2009) In vivo exposure of susceptible and non-susceptible fish species to Myxobolus cerebralis actinospores reveals non-specific invasion behaviour. Dis Aqua Org 84(2):123–130

    CAS  Google Scholar 

  • Karlsbakk E, Sæther PA, Hostlund C, Fjellsoy KR, Nylund A (2002) Parvicapsula pseudobranchicola n. sp. (Myxozoa), a myxosporidian infecting the pseudobranch of cultured Atlantic salmon (Salma salar) in Norway. Bull Eur Assoc Fish Pathol 22(6):381–387

    Google Scholar 

  • Kerans BL, Zale AV (2002) Review: the ecology of Myxobolus cerebralis. In: Bartholomew JL, Wilson JC (eds) Whirling disease: reviews and current topics. Symposium 29. American Fisheries Society, Bethesda, Maryland, pp 145–166

    Google Scholar 

  • Koel TM, Kerans BL, Barras SC, Hanson KC, Wood JS (2010) Avian Piscivores as vectors for Myxobolus cerebralis in the greater yellowstone ecosystem. Trans Am Fish Soc 139(4):976–988

    Google Scholar 

  • Krueger RC, Kerans BL, Vincent ER, Rasmussen C (2006) Risk of Myxobolus Cerebralis infection to rainbow trout in the Madison River, Montana, USA. Ecol Appl 16(2):770–783

    PubMed  Google Scholar 

  • Kudo RR, Sprague V (1940) On Myxidium immersum (Lutz) and M. serotinum n. sp., two myxosporidian parasites of Salientia of South and North America. Revista de Medicina Tropical y Parasitología, Bacteriología, Clínica y Laboratoria 6:65–73

    Google Scholar 

  • Langdon JS, Thorne T, Fletcher WJ (1992) Reservoir hosts and new clupeoid host records for the myoliquefactive myxosporean parasite Kudoa thyrsites (Gilchrist). J Fish Dis 15(6):459–471

    Google Scholar 

  • Lom J, Dyková I (2006) Myxozoan genera: definition and notes on taxonomy, life-cycle terminology and pathogenic species. Folia Parasitol 53:1–36

    PubMed  Google Scholar 

  • Longshaw M, Feist SW, Canning Elizabeth U, Okamura B (1999) First idenfitication of PKX in bryozoans from the United Kingdom—molecular evidence. Bull Eur Assoc Fish Pathol 19(4):146–148

    Google Scholar 

  • Longshaw M, Le Deuff R-M, Harris AF, Feist SW (2002) Development of proliferative kidney disease in rainbow trout, Oncorhynchus mykiss (Walbaum), following short-term exposure to Tetracapsula bryosalmonae infected bryozoans. J Fish Dis 25:443–449

    Google Scholar 

  • Lukins HJ, Zale AV, Barrows FT (2003) Temporal fluctuations in triactinomyxon densities. In: 9th annual whirling disease symposium, Denver, Colorado, 2003. Whirling Disease Foundation, pp 36–37

    Google Scholar 

  • MacConnell E, Vincent ER (2002) Review: The effects of Myxobolus cerebralis on the salmonid host. In: Bartholomew JL, Wilson JC (eds) Whirling disease: reviews and current topics. Symposium 29. American Fisheries Society, Bethesda, Maryland, pp 95–107

    Google Scholar 

  • MacMillan JR, Wilson C, Thiyagarajah A (1989) Experimental induction of proliferative gill disease in specific-pathogen-free channel catfish. J Aqua Anim Health 1(4):245–254

    Google Scholar 

  • Mann RD, Caudill CC, Keefer ML, Roumasset AG, Schreck CB, Kent ML (2011) Migration behavior and spawning success of spring Chinook salmon in fall creek and the north fork middle fork Willamette river: relationships among fate, fish condition, and environmental factors, 2010. technical report 2011-8-DRAFT. U.S. Army Corps of Engineers, Portland District, Portand OR

    Google Scholar 

  • Markiw ME (1991) Whirling disease: earliest susceptible age of rainbow trout to the triactinomyxid of Myxobolus cerebralis. Aquaculture 92:1–6

    Google Scholar 

  • Markiw ME (1992) Salmonid whirling disease, vol 17. Leetown Science Center, Washington, D.C

    Google Scholar 

  • Markiw ME, Wolf K (1983) Myxosoma cerebralis (Myxozoa: Myxosporea) etiologic agent of salmonid whirling disease requires tubificid worm (Annelida: Oligochaeta) in its life cycle. J Protozool 30(3):561–564

    Google Scholar 

  • McGurk C, Morris DJ, Auchinachie NA, Adams A (2006) Development of Tetracapsuloides bryosalmonae (Myxozoa: Malacosporea) in bryozoan hosts (as examined by light microscopy) and quantitation of infective dose to rainbow trout (Oncorhynchus mykiss). Vet Parasitol 135:249–257

    PubMed  Google Scholar 

  • Miller DAW, Talley BL, Lips KR, Campbell Grant EH (2012) Estimating patterns and drivers of infection prevalence and intensity when detection is imperfect and sampling error occurs. Methods Ecol Evol 3(5):850–859

    Google Scholar 

  • Miller KM, Teffer A, Tucker S, Li S, Schulze AD, Trudel M, Juanes F, Tabata A, Kaukinen KH, Ginther NG, Ming TJ, Cooke SJ, Hipfner JM, Patterson DA, Hinch SG (2014) Infectious disease, shifting climates, and opportunistic predators: cumulative factors potentially impacting wild salmon declines. Evol Appl 7(7):812–855

    PubMed Central  PubMed  Google Scholar 

  • Miller MP, Vincent ER (2008) Rapid natural selection for resistance to an introduced parasite of rainbow trout. Evol Appl 1(2):336–341

    PubMed Central  PubMed  Google Scholar 

  • Mo TA, Kaada I, Joranlid AK, Poppe TT (2011) Occurrence of Tetracapsuloides bryosalmonae in the kidney of smolts of Atlantic salmon (Salmo salar) and sea trout (S. trutta). Bull Eur Assoc Fish Pathol 31(4):151–155

    Google Scholar 

  • Moran JDW, Kent ML, Whitaker DJ (1999) Kudoa thyrsites (Myxozoa: Myxosporea) infections in pen-reared Atlantic Salmon in the Northeast Pacific Ocean with a survey of potential nonsalmonid reservoir hosts. J Aqua Anim Health 11(2):101–109

    Google Scholar 

  • Morris DJ, Adams A (2006a) Transmission of freshwater myxozoans during the asexual propagation of invertebrate hosts. Int J Parasitol 36(3):371–377

    CAS  PubMed  Google Scholar 

  • Morris DJ, Adams A (2006b) Transmission of Tetracapsuloides bryosalmonae (Myxozoa: Malacosporea), the causative organism of salmonid proliferative kidney disease, to the freshwater bryozoan Fredericella sultana. Parasitology 133(6):701–709

    CAS  PubMed  Google Scholar 

  • Morris DJ, Adams A (2008) Sporogony of Tetracapsuloides bryosalmonae in the brown trout Salmo trutta and the role of the tertiary cell during the vertebrate phase of myxozoan life cycles. Parasitology 135(9):1075–1092

    CAS  PubMed  Google Scholar 

  • Muñoz P, Cuesta A, Athanassopoulou F, Golomazou H, Crespo S, Padrós F, Sitjà-Bobadilla A, Albiñana G, Esteban MA, Alvarez-Pellitero P, Meseguer J (2007) Sharpsnout sea bream (Diplodus puntazzo) humoral immune response against the parasite Enteromyxum leei (Myxozoa). Fish Shellfish Immunol 23(3):636–645

    PubMed  Google Scholar 

  • Murcia S, Kerans BL, MacConnell E, Koel TM (2006) Myxobolus cerebralis infection patterns in Yellowstone cutthroat trout after natural exposure. Dis Aqua Org 71(3):191

    Google Scholar 

  • Murcia S, Kerans BL, MacConnell E, Koel TM (2011) Correlation of environmental attributes with histopathology of native Yellowstone cutthroat trout naturally infected with Myxobolus cerebralis. Dis Aqua Org 93(3):225–234

    Google Scholar 

  • Nehring RB, Thompson KG, Taurman KA, Shuler DL (2002) Laboratory studies indicating that living brown trout Salmo trutta expel viable Myxobolus cerebralis myxospores. In: Bartholomew JL, Wilson JC (eds) Whirling disease: reviews and current topics, Symposium 29, Bethesda, Maryland, 2002. American Fisheries Society

    Google Scholar 

  • Neudecker RA, McMahon TE, Vincent ER (2012) Spatial and temporal variation of whirling disease risk in Montana spring creeks and rivers. J Aqua Anim Health 24(4):201–212

    Google Scholar 

  • Nylund A, Karlsbakk E, Sæther PA, Koren C, Larsen T, Nielsen BD, Brøderud AE, Høstlund C, Fjellsøy KR, Lervik K, Rosnes L (2005) Parvicapsula pseudobranchicola (Myxosporea) in farmed Atlantic salmon Salmo salar: tissue distribution, diagnosis and phylogeny. Dis Aqua Org 63(2–3):197–204

    CAS  Google Scholar 

  • O’Hara T (1985) The use of saltwater as a treatment for proliferative kidney disease in 0+ Atlantic salmon (S. salar). Bull Eur Assoc Fish Pathol 5(4):79–80

    Google Scholar 

  • Oidtmann B, Peeler E, Lyngstad T, Brun E, Bang Jensen B, Stärk KDC (2013) Risk-based methods for fish and terrestrial animal disease surveillance. Prev Vet Med 112(1–2):13–26

    PubMed  Google Scholar 

  • Okamura B, Hartikainen H-L, Schmidt-Posthaus H, Wahli T (2011) Life cycle complexity, environmental change and the emerging status of salmonid proliferative kidney disease. Freshw Biol 56(4):735–753

    Google Scholar 

  • Okamura B, Hatton-Ellis T (1995) Population biology of bryozoans: correlates of sessile, colonial life histories in freshwater habitats. Experientia 51(5):510–525

    CAS  Google Scholar 

  • Peeler EJ, Feist SW, Longshaw M, Thrush MA, St-Hilaire S (2008) An assessment of the variation in the prevalence of renal myxosporidiosis and hepatitis in wild brown trout, Salmo trutta L., within and between rivers in South-West England. J Fish Dis 31(10):719–728

    CAS  PubMed  Google Scholar 

  • Peeler EJ, Taylor NGH (2011) The application of epidemiology in aquatic animal health—opportunities and challenges. Vet Res 42(1):94

    PubMed Central  PubMed  Google Scholar 

  • Pote LM, Hanson LA, Shivaji R (2000) Small subunit ribosomal RNA sequences link the cause of proliferative gill disease in channel catfish to Henneguya n. sp. (Myxozoa: Myxosporea). J Aqua Anim Health 12(3):230–240

    Google Scholar 

  • Prunescu C-C, Prunescu P, Pucek Z, Lom J (2007) The first finding of myxosporean development from plasmodia to spores in terrestrial mammals: Soricimyxum fegati gen. et sp. n. (Myxozoa) from Sorex araneus (Soricomorpha). Folia Parasitol 54(3):159–164

    PubMed  Google Scholar 

  • Ratliff DE (1981) Ceratomyxa shasta: epizootiology in chinook salmon of Central Oregon. Trans Am Fish Soc 110(4):507–513

    Google Scholar 

  • Ray RA (2013) Modeling abiotic influences on disease dynamics for the complex life cycle of the Myxozoan parasite Ceratomyxa shasta. PhD thesis. Oregon State University, USA

    Google Scholar 

  • Ray RA, Bartholomew JL (2013) Estimation of transmission dynamics of the Ceratomyxa shasta actinospore to the salmonid host. Parasitology 140(7):907–916

    CAS  PubMed  Google Scholar 

  • Ray RA, Holt RA, Bartholomew JL (2012) Relationship between temperature and Ceratomyxa shasta—induced mortality in Klamath River salmonids. J Parasitol 98(3):520–526

    PubMed  Google Scholar 

  • Ray RA, Perry RW, Som NA, Bartholomew JL (2014) Using cure models for analyzing the influence of pathogens on salmon survival. Trans Am Fish Soc 143 (2):387–398

    Google Scholar 

  • Rigos G, Christophilogiannis P, Yiagnisi M, Andriopoulou A, Koutsodimou M, Nengas I, Alexis M (1999) Myxosporean infections in greek mariculture. Aquacult Int 7(5):361–364

    Google Scholar 

  • Rigos G, Katharios P (2010) Pathological obstacles of newly-introduced fish species in Mediterranean mariculture: a review. Rev Fish Biol Fisheries 20(1):47–70

    Google Scholar 

  • Rognlie MC, Knapp SE (1998) Myxobolus cerebralis in Tubifex tubifex from a whirling disease epizootic in Montana. J Parasitol 84(4):711–713

    CAS  PubMed  Google Scholar 

  • Ryce EKN, Zale AV, MacConnell E, Nelson M (2005) Effects of fish age versus size on the development of whirling disease in rainbow trout. Dis Aqua Org 63(1):69–76

    Google Scholar 

  • Sandell TA, Lorz HV, Stevens DG, Bartholomew JL (2001) Dynamics of Myxobolus cerebralis in the Lostine River, Oregon: implications for resident and anadromous salmonids. J Aqua Anim Health 13(2):142–150

    Google Scholar 

  • Schaperclaus W (1931) Die drehkrankheit in den forellenzucht und ihre bekampfung (Whirling disease in trout farming and its control). Zeitschrift für Fischerei 29:521–567

    Google Scholar 

  • Schisler GJ, Bergersen EP, Walker PG (2000) Effects of multiple stressors on morbidity and mortality of fingerling rainbow trout infected with Myxobolus cerebralis. Trans Am Fish Soc 129(3):859–865

    Google Scholar 

  • Schisler GL, Myklebust KA, Hedrick RP (2006) Inheritance of Myxobolus cerebralis resistance among F1-generation crosses of whirling disease resistant and susceptible rainbow trout strains. J Aqua Anim Health 18(2):109–115

    Google Scholar 

  • Schmidt H, Bernet D, Wahli T, Meier W, Burkhardt-Holm P (1999) Active biomonitoring with brown trout and rainbow trout in diluted sewage plant effluents. J Fish Biol 54(3):585–596

    Google Scholar 

  • Seagrave CP, Bucke D, Hudson EB, McGregor D (1981) A survey of the prevalence and distribution of proliferative kidney disease (PKD) in England and Wales. J Fish Dis 4:437–439

    Google Scholar 

  • Shaw RW, Hervio DML, Devlin RH, Adamson ML (1997) Infection of Aulorhynchus flavidus (Gill) (Osteichthyes: Gasterosteiformes) by Kudoa thyrsites (Gilchrist) (Myxosporea: Multivalvulida). J Parasitol 83(5):810–814

    CAS  PubMed  Google Scholar 

  • Skovgaard A, Buchmann K (2012) Tetracapsuloides bryosalmonae and PKD in juvenile wild salmonids in Denmark. Dis Aqua Org 101(1):33–42

    CAS  Google Scholar 

  • Slezak R (2009) Evaluation of Ceratomyxa shasta and Parvicapsula minibicornis infection in returning adult chinook salmon (Oncorhnychus tshawytscha) throughout the Klamath River Basin. Humboldt State University

    Google Scholar 

  • St-Hilaire S, Ribble C, Whitaker DJ, Kent M (1998) Prevalence of Kudoa thyrsites in sexually mature and immature pen-reared Atlantic Salmon (Salmo salar) in British Columbia, Canada. Aquaculture 162(1–2):69–77

    Google Scholar 

  • Sterud E, Forseth T, Ugedal O, Poppe TT, Jørgensen A, Bruheim T, Fjeldstad H, Mo TA (2007) Severe mortality in wild Atlantic salmon Salmo salar due to proliferative kidney disease (PKD) caused by Tetracapsuloides bryosalmonae (Myxozoa). Dis Aqua Org 77:191–198

    Google Scholar 

  • Sterud E, Simolin P, Kvellestad A (2003) Infection by Parvicapsula sp. (Myxozoa) is associated with mortality in sea-caged Atlantic salmon Salmo salar in northern Norway. Dis Aqua Org 54(3):259–263

    Google Scholar 

  • Stocking RW, Bartholomew JL (2007) Distribution and habitat characteristics of Manayunkia speciosa and infection prevalence with the parasite Ceratomyxa shasta in the Klamath River, Oregon-California. J Parasitol 93(1):78–88

    PubMed  Google Scholar 

  • Stocking RW, Holt RA, Foott JS, Bartholomew JL (2006) Spatial and temporal occurrence of the salmonid parasite Ceratomyxa shasta in the Oregon-California Klamath River Basin. J Aqua Anim Health 18(3):194–202

    Google Scholar 

  • Stocking RW, Lorz HV, Holt RA, Bartholomew JL (2007) Surveillance for Ceratomyxa shasta in the Puget Sound Watershed, Washington. J Aqua Anim Health 19(2):116–120

    Google Scholar 

  • Stone R, Foott JS, Fogerty R (2008) FY 2006 Investigational report: comparative susceptibility to infection and disease from Ceratomyxa shasta and Parvicapsula minibicornis in Klamath River basin juvenile Chinook, coho and steelhead populations. Nevada Fish Health Center, Anderson, CA

    Google Scholar 

  • Sturmbauer C, Opadiya GB, Niederstätter H, Riedmann A, Dallinger R (1999) Mitochondrial DNA reveals cryptic oligochaete species differing in cadmium resistance. Mol Biol Evol 16(7):967–974

    CAS  PubMed  Google Scholar 

  • Styer EL, Harrison LR, Burtle GJ (1991) Communications: experimental production of proliferative gill disease in channel catfish exposed to a Myxozoan-Infected Oligochaete, Dero digitata. J Aqua Anim Health 3(4):288–291

    Google Scholar 

  • Subasinghe RP, Bondad-Reantaso MG, McGladdery SE (2001) Aquaculture development, health and wealth. In: Subasinghe RP, Bueno P, Phillips MJ, Hough C, McGladdery SE, Arthur JR (eds) Aquaculture in the third millennium. Technical proceedings of the conference on aquaculture in the third millennium and FAO: Rome, Bangkok

    Google Scholar 

  • Taylor NGH, Norman RA, Way K, Peeler EJ (2011) Modelling the koi herpesvirus (KHV) epidemic highlights the importance of active surveillance within a national control policy. J Appl Ecol 48(2):348–355

    Google Scholar 

  • Taylor REL, Haber MH (1974) Opercular cyst formation in trout infected with Myxosoma cerebralis. J Wildl Dis 10(4):347–351

    CAS  PubMed  Google Scholar 

  • Thompson KG, Nehring RB (2000) A simple technique used to filter and quantify the actinospore of Myxobolus cerebralis and determine its seasonal abundance in the Colorado River. J Aqua Anim Health 12(4):316–323

    Google Scholar 

  • Thrusfield M (2013) Veterinary epidemiology, 3rd edn. Blackwell science, Oxford

    Google Scholar 

  • Thrush M, Peeler EJ (2006) Stochastic simulation of live salmonid movement in England and Wales to predict potential spread of exotic pathogens. Dis Aqua Org 72(2):115–123

    Google Scholar 

  • Thrush MA, Peeler EJ (2013) A model to approximate lake temperature from gridded daily air temperature records and its application in risk assessment for the establishment of fish diseases in the UK. Transboundary Emerg Dis 60(5):460–471

    CAS  Google Scholar 

  • Tipping JM (1988) Ozone control of ceratomyxosis: survival and growth benefits to steelhead and cutthroat trout. Progressive Fish Culturist 50(4):202–210

    Google Scholar 

  • Tops S, Hartikainen H-L, Okamura B (2009) The effects of infection by Tetracapsuloides bryosalmonae (Myxozoa) and temperature on Fredericella sultana (Bryozoa). Int J Parasitol 39(9):1003–1010

    PubMed  Google Scholar 

  • Tops S, Lockwood W, Okamura B (2006) Temperature-driven proliferation of Tetracapsuloides bryosalmonae in bryozoan hosts portends salmonid declines. Dis Aqua Org 70:227–236

    CAS  Google Scholar 

  • True K, Bolick A, Foott JS (2013) FY 2012 Investigational report: Myxosporean parasite (Ceratomyxa shasta and Parvicapsula minibicornis) annual prevalence of infection in Klamath River Basin Juvenile Chinook Salmon, April–August 2012. Nevada Fish Health Center, Anderson, CA

    Google Scholar 

  • Turner KG, Smith MJ, Ridenhour BJ (2014) Whirling disease dynamics: an analysis of intervention strategies. Prev Vet Med 113(4):457–468

    PubMed  Google Scholar 

  • Udey LR, Fryer JL, Pilcher KS (1975) Relation of water temperature to Ceratomyxosis in rainbow trout (Salmo gairdneri) and Coho Salmon (Oncorhynchus kisutch). J Fish Res Board Can 32(9):1545–1551

    Google Scholar 

  • Wahli T, Bernet D, Steiner PA, Schmidt-Posthaus H (2007) Geographic distribution of Tetracapsuloides bryosalmonae infected fish in Swiss rivers: an update. Aquat Sci 69(1):3–10

    Google Scholar 

  • Wales JH, Wolf H (1955) Three protozoan diseases of trout in California. Calif Fish Game 41(3):183

    Google Scholar 

  • Whipps CM, Kent ML (2006) Phylogeography of the cosmopolitan marine parasite Kudoa thyrsites (Myxozoa: Myxosporea). J Eukaryot Microbiol 53(5):364–373

    CAS  PubMed  Google Scholar 

  • Whitaker DJ, Kabata Z (1987) Early infection of Merluccius productus (Ayres) (Pisces: Teleostei) with Kudoa thyrsites (Gilchrist) (Myxozoa). Can J Zool 65(4):936–939

    Google Scholar 

  • Willis AG (1949) On the vegetative forms and life history of Chloromyxum Thyrsites gilchrist and its doubtful systematic position. Aus J Biol Sci 2(4):379–398

    Google Scholar 

  • Wise DJ, Camus AC, Schwedler T, Terhune J (2004) Health management. In: Tucker CS, Hargreaves JA (eds) Biology and culture of the channel catfish. Developments in aquaculture and fisheries science, vol 34, 1 edn. Elsevier, Amsterdam, pp 444–502

    Google Scholar 

  • Wise DJ, Griffin MJ, Terhune JS, Pote LM, Khoo LH (2008) Induction and evaluation of proliferative gill disease in channel catfish fingerlings. J Aqua Anim Health 20(4):236–244

    Google Scholar 

  • Yanagida T, Nomura Y, Kimura T, Fukuda Y, Yokoyama H, Ogawa K (2004) Molecular and morphological redescriptions of enteric myxozoans, Enteromyxum leei (formerly Myxidium sp. TP) and Enteromyxum fugu comb. n. (syn. Myxidium fugu) from cultured tiger puffer. Fish Pathol 39(3):137–144

    CAS  Google Scholar 

  • Yanagida T, Sameshima M, Nasu H, Yokoyama H, Ogawa K (2006) Temperature effects on the development of Enteromyxum spp. (Myxozoa) in experimentally infected tiger puffer, Takifugu rubripes (Temminck & Schlegel). J Fish Dis 29(9):561–567

    CAS  PubMed  Google Scholar 

  • Yasuda H, Ooyama T, Nakamura A, Iwata K, Palenzuela O, Yokoyama H (2005) Occurrence of the myxosporean emaciation disease caused by Enteromyxum leei in cultured Japanese flounder Paralichthys olivaceus. Fish Pathol 40(4):175

    Google Scholar 

  • Yokoyama H, Grabner D, Shirakashi S (2012) Transmission biology of the Myxozoa. In: Carvalho ED (ed) Health and environment in aquaculture. InTech, Online, pp 3–42

    Google Scholar 

  • Yokoyama H, Shirakashi S (2007) Evaluation of hyposalinity treatment on infection with Enteromyxum leei (Myxozoa) using anemonefish Amphiprion spp. as experimental host. Bull Eur Assoc Fish Pathol 27(2):74–78

    Google Scholar 

  • Zendt JS, Bergersen EP (2000) Distribution and abundance of the aquatic oligochaete host Tubifex tubifex for the salmonid whirling disease parasite Myxobolus cerebralis in the Upper Colorado River Basin. North Am J Fish Manag 20(2):502–512

    Google Scholar 

  • Zielinski CM, Lorz HV, Hallett SL, Xue L, Bartholomew JL (2011) Comparative susceptibility of Deschutes River, Oregon, Tubifex tubifex populations to Myxobolus cerebralis. J Aqua Anim Health 23(1):1–8

    Google Scholar 

  • Zimmerli S, Bernet D, Burkhardt-Holm P, Schmidt-Posthaus H, Vonlanthen P, Wahli T, Segner H (2007) Assessment of fish health status in four Swiss rivers showing a decline of brown trout catches. Aquat Sci 69(1):11–25

    CAS  Google Scholar 

  • Zinn JL, Johnson KA, Sanders JE, Fryer JL (1977) Susceptibility of salmonid species and hatchery strains of Chinook salmon (Oncorhynchus tshawytscha) to infections by Ceratomyxa shasta. J Fish Res Board Can 34(7):933–936

    Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Stephen Atkinson and Dr. Hanna Hartikainen for providing drawings for Fig. 17.1. IF was funded by the Natural Environment Research Council (NE/019227/1), the Environment Agency, the Centre for Environment, Fisheries and Aquatic Sciences, the Fundação para a Ciência e a Tecnologia (SFRH/BD/86118/2012) and Pescanova, S.A. during the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inês Fontes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fontes, I., Hallett, S.L., Mo, T.A. (2015). Comparative Epidemiology of Myxozoan Diseases. In: Okamura, B., Gruhl, A., Bartholomew, J. (eds) Myxozoan Evolution, Ecology and Development. Springer, Cham. https://doi.org/10.1007/978-3-319-14753-6_17

Download citation

Publish with us

Policies and ethics