Skip to main content

Proportional-Integral Observer in Robust Control, Fault Detection, and Decentralized Control of Dynamic Systems

  • Chapter
Control and Systems Engineering

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 27))

Abstract

This chapter initially reviews observer theory as it was developed over the past few decades. The state observer and its order reduction including functional observer in connection to state feedback control design are briefly discussed. The robustness of observer-based controller design is also explored. The loss of robustness due to the inclusion of observer in optimal linear quadratic regulator (LQR) and its recovery procedure (LTR) are summarized. The subsequent development of new observer structures such as disturbance observer (DO), unknown input observer (UIO), and proportional-integral observer (PIO) for disturbance estimation and fault detection is highlighted. Throughout the chapter we concentrate mainly on important advantages of PI-observer. Finally, we consider the problem of designing a decentralized PI observer with prescribed degree of convergence for a set of interconnected systems. Under the assumption of linear interactions, we provide a direct design procedure for the PI observer which can effectively be used in disturbance estimation and observer-based control design enhancing the robustness properties. In this connection we also extend the results to the case of designing controllers that attenuate the disturbance while preserving the stability. It is shown that the design can be formulated in terms of LMI which efficiently solve the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Luenberger, D.: Observing the state of a linear system. IEEE Transactions on Military Electronics 8, 74–80 (1964)

    Article  Google Scholar 

  2. Luenberger, D.: An Introduction to Observers. IEEE Transactions on Automatic Control 16, 596–602 (1971)

    Article  Google Scholar 

  3. Chen, C.T.: Linear system theory and design. Oxford University Press, Inc. (1995)

    Google Scholar 

  4. O’Reily, J.: Observers for Linear Systems. Academic Press (1983)

    Google Scholar 

  5. Korovin, S., Fomichev, V.: State Observer for Linear Systems with uncertainty. de Gruyter Press, Berlin (2009)

    Book  Google Scholar 

  6. Trinh, H., Fernando, T.: Functional Observers for Dynamical Systems. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  7. Gupta, R., Fairman, F., Hinamoto, T.: A direct procedure for the design of single functional observers. IEEE Trans. Circuits and Systems CAS 28, 294–300 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fortman, T., Williamson, D.: Design of a low order observer for linear feedback control laws. IEEE Transactions on Automatic Control 17, 301–308 (1972)

    Article  Google Scholar 

  9. Trinh, H., Nahavandi, S., Tran, T.: Algorithms for designing reduced-order functional observers of linear systems. International Journal of Innovative Computing, Information and Control 4(2), 321–333 (2008)

    Google Scholar 

  10. Darouach, M.: Existence and design of functional observers for linear systems. IEEE Transactions on Automatic Control 45(5), 940–943 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Tsui, C.: A new algorithm for the design of multifunctional observers. IEEE Transactions on Automatic Control 30(1), 89–93 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  12. Uddin, V., Shafai, B., Kawaji, S.: A simple method for the design of minimal order multifunctional observer. In: Proc. of 2nd IASTED International Conference on Control and Applications, Banff, Canada, pp. 107–112 (1999)

    Google Scholar 

  13. Shafai, B., Carroll, R.L.: Minimal-order observer designs for linear time-varying multivariable systems. IEEE Transactions on Automatic Control 31(8), 757–761 (1986)

    Article  MATH  Google Scholar 

  14. Shafai, B.: Design of single-functional observers for linear time-varying multivariable systems. International Journal of Systems Science 20(11), 2227–2239 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chai, W., Loh, N.K., Hu, H.: Observer design for time-varying systems. International Journal of Systems Science 22(7), 1177–1196 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Trumpf, J.: Observers for linear time-varying systems. Linear Algebra and its Applications 425(2), 303–312 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rotella, F., Zambettakis, I.: On functional observers for linear time-varying systems. IEEE Transaction on Automatic Control 58(5), 1354–1360 (2013)

    Article  Google Scholar 

  18. Bestle, D., Zeitz, M.: Canonical form observer design for non-linear time-variable systems. International Journal of Control 38(2), 419–431 (1983)

    Article  MATH  Google Scholar 

  19. Gauthier, J.P., Hammouri, H., Othman, S.: A simple observer for nonlinear systems applications to bioreactors. IEEE Transactions on Automatic Control 37(6), 875–880 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ciccarella, G., Dalla Mora, M., Germani, A.: A Luenberger-like observer for nonlinear systems. International Journal of Control 57(3), 537–556 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  21. Fairman, F., Kumar, A.: Delayless observers for systems with delay. IEEE Transactions on Automatic Control 31(3), 258–259 (1986)

    Article  MATH  Google Scholar 

  22. Hou, M., Zitek, P., Patton, R.: An observer design for linear time-delay systems. IEEE Transactions on Automatic Control 47(1), 121–125 (2002)

    Article  MathSciNet  Google Scholar 

  23. Trinh, H., Teh, P., Fernando, T.: Time-delay systems: Design of delay-free and low-order observers. IEEE Transactions on Automatic Control 55(10), 2434–2438 (2010)

    Article  MathSciNet  Google Scholar 

  24. Sadaka, H., Shafai, B., Sipahi, R.: Robust PI observer design for linear time-delay systems. In: Control Applications(CCA) & Intelligent Control(ISIC), pp. 1209–1213. IEEE (2009)

    Google Scholar 

  25. Shafai, B., Carroll, R.L.: Design of a minimal-order observer for singular systems. International Journal of Control 45(3), 1075–1081 (1987)

    Article  MATH  Google Scholar 

  26. Dai, L.: Singular Control Systems. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  27. Darouach, M., Boutayeb, M.: Design of observers for descriptor systems. IEEE transactions on Automatic Control 40(7), 1323–1327 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hou, M., Muller, P.: Observer design for descriptor systems. IEEE Transactions on Automatic Control 44(1), 164–168 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  29. Rami, M.A., Tadeo, F., Helmke, U.: Positive observers for linear positive systems, and their implications. International Journal of Control 84(4), 716–725 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  30. Back, J., Astolfi, A.: Design of positive linear observers for positive linear systems via coordinate transformations and positive realizations. SIAM Journal on Control and Optimization 47(1), 345–373 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  31. Shafai, B.: Parallel procedure for the design of observers in high-order multivariable systems. International Journal of Control 47(5), 1489–1496 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  32. Jamshidi, M.: Large-scale systems: Modeling, control and fuzzy logic. Upper Saddle River. Prentice-Hall (1996)

    Google Scholar 

  33. Petkov, P.H., Christov, N.D., Konstantinov, M.M.: Computational methods for linear control systems. Prentice-Hall International (UK) Ltd (1991)

    Google Scholar 

  34. Saif, M., Guan, Y.: Decentralized state estimation in large-scale interconnected dynamical systems. Automatica 28(1), 215–219 (1992)

    Article  MathSciNet  Google Scholar 

  35. Doyle, J.C., Stein, G.: Robustness with Observers. IEEE Transactions on Automatic Control 24(4), 607–611 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  36. Doyle, J.C., Stein, G.: Multivariable Feedback Design: concepts for a classical/modern synthesis. IEEE Transactions on Automatic Control 26, 4–16 (1981)

    Article  MATH  Google Scholar 

  37. Athans, M.: A tutorial on the LQG/LTR method. In: Proc. of American Control Conference, Seattle, WA, pp. 1289–1296 (1986)

    Google Scholar 

  38. Shafai, B., Beale, S., Niemann, H.H., Stoustrup, J.L.: Modified structures for loop transfer recovery design. In: Proc. 32nd IEEE Conference on Decision and Control, San Antonio, TX, pp. 3341–3344 (1993)

    Google Scholar 

  39. Saberi, A., Chen, B.M., Sannuti, P.: Loop transfer recovery: Analysis and design. Springer, New York (1993)

    Book  MATH  Google Scholar 

  40. Yao, Y.X., Zhang, Y.M., Kovacevic, R.: Loop Transfer recovery design with proportional integral observer based on H  ∞  optimal observation. In: Proc. of American Control Conference, Albuquerque, New Mexico, vol. 1, pp. 786–790 (1997)

    Google Scholar 

  41. Niemann, H.H., Stoustrup, J., Shafai, B., Beale, S.: LTR design of proportional-integral observers. International Journal of Robust and Nonlinear Control 5(7), 671–693 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  42. Shafai, B., Beale, S., Niemann, H.H., Stoustrup, J.: LTR design of discrete-time proportional-integral observers. IEEE Transactions on Automatic Control 41(7), 1056–1062 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  43. Kim, B.K., Chung, W.K.: Advanced disturbance observer design for mechanical positioning systems. IEEE Transactions on Industrial Electronics 50(6), 1207–1216 (2003)

    Article  Google Scholar 

  44. Guan, Y., Saif, M.: A novel approach to the design of unknown input observers. IEEE Transactions on Automatic Control 36(5), 632–635 (1991)

    Article  Google Scholar 

  45. Kudva, P., Viswanadham, N., Ramakrishna, A.: Observers for linear systems with unknown inputs. IEEE Transactions on Automatic Control 25(1), 113–115 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  46. Hou, M., Muller, P.: Design of observers for linear systems with unknown inputs. IEEE Transactions on Automatic Control 37, 871–875 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  47. Busawon, K.K., Kabore, P.: Disturbance attenuation using proportional integral observers. International Journal of Control 74(6), 618–627 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  48. Shafai, B., Pi, C.T., Nork, S.: Simultaneous disturbance attenuation and fault detection using proportional integral observers. In: Proc. of American Control Conference, Anchorage, Alaska, pp. 1647–1649 (2002)

    Google Scholar 

  49. Marx, B., Koenig, D., Georges, D.: Robust fault diagnosis for linear descriptor systems using proportional integral observers. In: Proc. of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii, pp. 457–462 (2003)

    Google Scholar 

  50. Soffker, D., Yu, T.J., Muller, P.C.: State estimation of dynamical systems with nonlinearities by using proportional-integral observer. International Journal of Systems Science 26(9), 1571–1582 (1995)

    Article  Google Scholar 

  51. Shafai, B., Pi, C.T., Nork, S., Linder, S.P.: Proportional integral adaptive observer for parameter and disturbance estimations. In: Proc. of the 41st IEEE Conference on Decision and Control, Las Vegas, Nevada, pp. 4694–4699 (2002)

    Google Scholar 

  52. Patton, R., Frank, P., Clark, R.: Fault diagnosis in dynamic systems: theory and application. Prentice-Hall, Upper Saddle River (1989)

    Google Scholar 

  53. Liu, Y.: Robust nonlinear control design with Proportional-Integral-observer technique, Diss. Universitat Duisburg-Essen, Fakultat für Ingenieurwissenschaften Maschinenbau und Verfahrenstechnik (2011)

    Google Scholar 

  54. Shafai, B., Ghadami, R., Saif, M.: Robust decentralized PI observer for linear interconnected systems. In: IEEE International Symposium on Computer-Aided Control System Design (CACSD), pp. 650–655 (2011)

    Google Scholar 

  55. Ghadami, R., Shafai, B.: Decentralized PI observer-based control of nonlinear interconnected systems with disturbance attenuation. In: Proc. 2011 American Control Conference, San Francisco, CA, pp. 4705–4710 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahram Shafai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shafai, B., Saif, M. (2015). Proportional-Integral Observer in Robust Control, Fault Detection, and Decentralized Control of Dynamic Systems. In: El-Osery, A., Prevost, J. (eds) Control and Systems Engineering. Studies in Systems, Decision and Control, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-14636-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14636-2_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14635-5

  • Online ISBN: 978-3-319-14636-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics