Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sniderman LC, et al. Outcome of individuals with low-moderate methylmalonic aciduria detected through a neonatal screening program. J Pediatr. 1999;134(6):675–80.

    CAS  PubMed  Google Scholar 

  2. Yorifuji T, et al. Unexpectedly high prevalence of the mild form of propionic acidemia in Japan: presence of a common mutation and possible clinical implications. Hum Genet. 2002;111(2):161–5.

    CAS  PubMed  Google Scholar 

  3. Deodato F, et al. Methylmalonic and propionic aciduria. Am J Med Genet C Semin Med Genet. 2006;142C(2):104–12.

    CAS  PubMed  Google Scholar 

  4. Rafique M. Propionic acidaemia: demographic characteristics and complications. J Pediatr Endocrinol Metab. 2013;26(5–6):497–501.

    PubMed  Google Scholar 

  5. Ensenauer R, et al. A common mutation is associated with a mild, potentially asymptomatic phenotype in patients with isovaleric acidemia diagnosed by newborn screening. Am J Hum Genet. 2004;75(6):1136–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Ensenauer R, et al. Newborn screening for isovaleric acidemia using tandem mass spectrometry: data from 1.6 million newborns. Clin Chem. 2011;57(4):623–6.

    CAS  PubMed  Google Scholar 

  7. Nyhan WL, B. B, Ozand PT. Propionic acidemia (Ch 2) Methylmalonic acidemia (Ch 3) Isovaleric Acidemia (Ch 7). In: Atlas of metabolic diseases. 2nd ed. London: Hodder Arnold; 2005.

    Google Scholar 

  8. Dionisi-Vici C, et al. ‘Classical’ organic acidurias, propionic aciduria, methylmalonic aciduria and isovaleric aciduria: long-term outcome and effects of expanded newborn screening using tandem mass spectrometry. J Inherit Metab Dis. 2006;29(2–3):383–9.

    CAS  PubMed  Google Scholar 

  9. Vockley J, Ensenauer R. Isovaleric acidemia: new aspects of genetic and phenotypic heterogeneity. Am J Med Genet C Semin Med Genet. 2006;142C(2):95–103.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Ogier de Baulny H, Saudubray JM. Branched-chain organic acidurias. Semin Neonatol. 2002;7(1):65–74.

    CAS  PubMed  Google Scholar 

  11. Tanpaiboon P. Methylmalonic acidemia (MMA). Mol Genet Metab. 2005;85(1):2–6.

    CAS  PubMed  Google Scholar 

  12. Soyucen E, Demirci E, Aydin A. Outpatient treatment of propionic acidemia-associated hyperammonemia with N-carbamoyl-L-glutamate in an infant. Clin Ther. 2010;32(4):710–3.

    CAS  PubMed  Google Scholar 

  13. Ogier de Baulny H, Dionisi-Vici C, Wendel U. Branched-chain organic acidurias/acidemias. In: van den Berghe G, van den Berghe G, Saudubray J-M, Walter JH, editors. Inborn metabolic diseases. 5th ed. Heidelberg: Springer; 2012.

    Google Scholar 

  14. Dionisi-Vici C, Ogier de Baulny H. Emergency treatment. In: van den Berghe G, Saudubray J-M, Walter JH, editors. Inborn metabolic diseases. Diagnosis and treatment. Berlin: Springer; 2012. p. 104–11.

    Google Scholar 

  15. Erdem E, et al. Chronic intermittent form of isovaleric acidemia mimicking diabetic ketoacidosis. J Pediatr Endocrinol Metab. 2010;23(5):503–5.

    PubMed  Google Scholar 

  16. Dweikat IM, et al. Propionic acidemia mimicking diabetic ketoacidosis. Brain Dev. 2011;33(5):428–31.

    PubMed  Google Scholar 

  17. Joshi R, Phatarpekar A. Propionic acidemia presenting as diabetic ketoacidosis. Indian Pediatr. 2011;48(2):164–5.

    PubMed  Google Scholar 

  18. Guven A, et al. Methylmalonic acidemia mimicking diabetic ketoacidosis in an infant. Pediatr Diabetes. 2012;13(6):e22–5.

    CAS  PubMed  Google Scholar 

  19. de Baulny HO, et al. Methylmalonic and propionic acidaemias: management and outcome. J Inherit Metab Dis. 2005;28(3):415–23.

    CAS  PubMed  Google Scholar 

  20. Cosson MA, et al. Long-term outcome in methylmalonic aciduria: a series of 30 French patients. Mol Genet Metab. 2009;97(3):172–8.

    CAS  PubMed  Google Scholar 

  21. Schreiber J, et al. Neurologic considerations in propionic acidemia. Mol Genet Metab. 2012;105(1):10–5.

    CAS  PubMed  Google Scholar 

  22. Chapman KA, et al. Acute management of propionic acidemia. Mol Genet Metab. 2012;105(1):16–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Ianchulev T, et al. Optic nerve atrophy in propionic acidemia. Ophthalmology. 2003;110(9):1850–4.

    PubMed  Google Scholar 

  24. Martín-Hernández E, et al. Long-term needs of adult patients with organic acidaemias: outcome and prognostic factors. J Inherit Metab Dis. 2009;32(4):523–33.

    PubMed  Google Scholar 

  25. Williams ZR, et al. Late onset optic neuropathy in methylmalonic and propionic acidemia. Am J Ophthalmol. 2009;147(5):929–33.

    CAS  PubMed  Google Scholar 

  26. Kölker S, et al. Methylmalonic acid, a biochemical hallmark of methylmalonic acidurias but no inhibitor of mitochondrial respiratory chain. J Biol Chem. 2003;278(48):47388–93.

    PubMed  Google Scholar 

  27. Morath MA, et al. Neurodegeneration and chronic renal failure in methylmalonic aciduria–a pathophysiological approach. J Inherit Metab Dis. 2008;31(1):35–43.

    CAS  PubMed  Google Scholar 

  28. Ballhausen D, et al. Evidence for catabolic pathway of propionate metabolism in CNS: expression pattern of methylmalonyl-CoA mutase and propionyl-CoA carboxylase alpha-subunit in developing and adult rat brain. Neuroscience. 2009;164(2):578–87.

    CAS  PubMed  Google Scholar 

  29. de Keyzer Y, et al. Multiple OXPHOS deficiency in the liver, kidney, heart, and skeletal muscle of patients with methylmalonic aciduria and propionic aciduria. Pediatr Res. 2009;66(1):91–5.

    PubMed  Google Scholar 

  30. Broomfield A, et al. Spontaneous rapid resolution of acute basal ganglia changes in an untreated infant with propionic acidemia: a clue to pathogenesis? Neuropediatrics. 2010;41(6):256–60.

    CAS  PubMed  Google Scholar 

  31. Ribeiro LR, et al. Chronic administration of methylmalonate on young rats alters neuroinflammatory markers and spatial memory. Immunobiology. 2013;218(9):1175–83.

    CAS  PubMed  Google Scholar 

  32. Schuck PF, et al. Acute renal failure potentiates methylmalonate-induced oxidative stress in brain and kidney of rats. Free Radic Res. 2013;47(3):233–40.

    CAS  PubMed  Google Scholar 

  33. Scholl-Bürgi S, et al. Stroke-like episodes in propionic acidemia caused by central focal metabolic decompensation. Neuropediatrics. 2009;40(2):76–81.

    PubMed  Google Scholar 

  34. Pena L, Burton BK. Survey of health status and complications among propionic acidemia patients. Am J Med Genet A. 2012;158A(7):1641–6.

    PubMed  Google Scholar 

  35. Viegas CM, et al. Disruption of redox homeostasis and brain damage caused in vivo by methylmalonic acid and ammonia in cerebral cortex and striatum of developing rats. Free Radic Res. 2014;48(6):659–69.

    CAS  PubMed  Google Scholar 

  36. Lam C, et al. 45-year-old female with propionic acidemia, renal failure, and premature ovarian failure; late complications of propionic acidemia? Mol Genet Metab. 2011;103(4):338–40.

    CAS  PubMed  Google Scholar 

  37. Vernon HJ, et al. Chronic kidney disease in an adult with propionic acidemia. JIMD Rep. 2014;12:5–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Kasapkara CS, et al. Severe renal failure and hyperammonemia in a newborn with propionic acidemia: effects of treatment on the clinical course. Ren Fail. 2014;36(3):451–2.

    PubMed  Google Scholar 

  39. Rutledge SL, et al. Tubulointerstitial nephritis in methylmalonic acidemia. Pediatr Nephrol. 1993;7(1):81–2.

    CAS  PubMed  Google Scholar 

  40. Hörster F, et al. Long-term outcome in methylmalonic acidurias is influenced by the underlying defect (mut0, mut-, cblA, cblB). Pediatr Res. 2007;62(2):225–30.

    PubMed  Google Scholar 

  41. Zsengellér ZK, et al. Methylmalonic acidemia: a megamitochondrial disorder affecting the kidney. Pediatr Nephrol. 2014;29:2139–46.

    PubMed  Google Scholar 

  42. Massoud AF, Leonard JV. Cardiomyopathy in propionic acidaemia. Eur J Pediatr. 1993;152(5):441–5.

    CAS  PubMed  Google Scholar 

  43. Lee TM, et al. Unusual presentation of propionic acidaemia as isolated cardiomyopathy. J Inherit Metab Dis. 2009;32 Suppl 1:S97–101.

    PubMed Central  PubMed  Google Scholar 

  44. Romano S, et al. Cardiomyopathies in propionic aciduria are reversible after liver transplantation. J Pediatr. 2010;156(1):128–34.

    PubMed  Google Scholar 

  45. Prada CE, et al. Cardiac disease in methylmalonic acidemia. J Pediatr. 2011;159(5):862–4.

    PubMed  Google Scholar 

  46. Laemmle A, et al. Propionic acidemia in a previously healthy adolescent with acute onset of dilated cardiomyopathy. Eur J Pediatr. 2014;173(7):971–4.

    CAS  PubMed  Google Scholar 

  47. Sutton VR, et al. Chronic management and health supervision of individuals with propionic acidemia. Mol Genet Metab. 2012;105(1):26–33.

    CAS  PubMed  Google Scholar 

  48. Kakavand B, Schroeder VA, Di Sessa TG. Coincidence of long QT syndrome and propionic acidemia. Pediatr Cardiol. 2006;27(1):160–1.

    CAS  PubMed  Google Scholar 

  49. Baumgartner D, et al. Prolonged QTc intervals and decreased left ventricular contractility in patients with propionic acidemia. J Pediatr. 2007;150(2):192–7, 197.e1.

    PubMed  Google Scholar 

  50. Jameson E, Walter J. Cardiac arrest secondary to long QT(C) in a child with propionic acidemia. Pediatr Cardiol. 2008;29(5):969–70.

    PubMed  Google Scholar 

  51. Grünert SC, et al. Propionic acidemia: clinical course and outcome in 55 pediatric and adolescent patients. Orphanet J Rare Dis. 2013;8:6.

    PubMed Central  PubMed  Google Scholar 

  52. De Raeve L, et al. Acrodermatitis enteropathica-like cutaneous lesions in organic aciduria. J Pediatr. 1994;124(3):416–20.

    PubMed  Google Scholar 

  53. Oztürk Y. Acrodermatitis enteropathica-like syndrome secondary to branched-chain amino acid deficiency in inborn errors of metabolism. Pediatr Dermatol. 2008;25(3):415.

    PubMed  Google Scholar 

  54. Domínguez-Cruz JJ, et al. Acrodermatitis enteropathica-like skin lesions secondary to isoleucine deficiency. Eur J Dermatol. 2011;21(1):115–6.

    PubMed  Google Scholar 

  55. North KN, et al. Neonatal-onset propionic acidemia: neurologic and developmental profiles, and implications for management. J Pediatr. 1995;126(6):916–22.

    CAS  PubMed  Google Scholar 

  56. Kahler SG, et al. Pancreatitis in patients with organic acidemias. J Pediatr. 1994;124(2):239–43.

    CAS  PubMed  Google Scholar 

  57. Burlina AB, et al. Acute pancreatitis in propionic acidaemia. J Inherit Metab Dis. 1995;18(2):169–72.

    CAS  PubMed  Google Scholar 

  58. Bultron G, et al. Recurrent acute pancreatitis associated with propionic acidemia. J Pediatr Gastroenterol Nutr. 2008;47(3):370–1.

    PubMed  Google Scholar 

  59. Mantadakis E, et al. Acute pancreatitis with rapid clinical improvement in a child with isovaleric acidemia. Case Rep Pediatr. 2013;2013:721871.

    PubMed Central  PubMed  Google Scholar 

  60. Ozand PT, Gascon GG. Organic acidurias: a review. Part 2. J Child Neurol. 1991;6(4):288–303.

    CAS  PubMed  Google Scholar 

  61. Ozand PT, Gascon GG. Organic acidurias: a review. Part 1. J Child Neurol. 1991;6(3):196–219.

    CAS  PubMed  Google Scholar 

  62. Ribeiro CA, et al. Isovaleric acid reduces Na+, K+-ATPase activity in synaptic membranes from cerebral cortex of young rats. Cell Mol Neurobiol. 2007;27(4):529–40.

    CAS  PubMed  Google Scholar 

  63. Nizon M, et al. Long-term neurological outcome of a cohort of 80 patients with classical organic acidurias. Orphanet J Rare Dis. 2013;8:148.

    PubMed Central  PubMed  Google Scholar 

  64. Filipowicz HR, et al. Metabolic changes associated with hyperammonemia in patients with propionic acidemia. Mol Genet Metab. 2006;88(2):123–30.

    CAS  PubMed  Google Scholar 

  65. Gebhardt B, et al. N-carbamylglutamate protects patients with decompensated propionic aciduria from hyperammonaemia. J Inherit Metab Dis. 2005;28(2):241–4.

    CAS  PubMed  Google Scholar 

  66. Chandler RJ, et al. Mitochondrial dysfunction in mut methylmalonic acidemia. FASEB J. 2009;23(4):1252–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Wajner M, Goodman SI. Disruption of mitochondrial homeostasis in organic acidurias: insights from human and animal studies. J Bioenerg Biomembr. 2011;43(1):31–8.

    CAS  PubMed  Google Scholar 

  68. Melo DR, et al. Mitochondrial energy metabolism in neurodegeneration associated with methylmalonic acidemia. J Bioenerg Biomembr. 2011;43(1):39–46.

    CAS  PubMed  Google Scholar 

  69. Wilnai Y, et al. Abnormal hepatocellular mitochondria in methylmalonic acidemia. Ultrastruct Pathol. 2014;38(5):309–14.

    Google Scholar 

  70. Brusque AM, et al. Inhibition of the mitochondrial respiratory chain complex activities in rat cerebral cortex by methylmalonic acid. Neurochem Int. 2002;40(7):593–601.

    CAS  PubMed  Google Scholar 

  71. Richard E, et al. Methylmalonic acidaemia leads to increased production of reactive oxygen species and induction of apoptosis through the mitochondrial/caspase pathway. J Pathol. 2007;213(4):453–61.

    CAS  PubMed  Google Scholar 

  72. Solano AF, et al. Induction of oxidative stress by the metabolites accumulating in isovaleric acidemia in brain cortex of young rats. Free Radic Res. 2008;42(8):707–15.

    CAS  PubMed  Google Scholar 

  73. Fernandes CG, et al. Experimental evidence that methylmalonic acid provokes oxidative damage and compromises antioxidant defenses in nerve terminal and striatum of young rats. Cell Mol Neurobiol. 2011;31(5):775–85.

    CAS  PubMed  Google Scholar 

  74. Yannicelli S. Nutrition therapy of organic acidaemias with amino acid-based formulas: emphasis on methylmalonic and propionic acidaemia. J Inherit Metab Dis. 2006;29(2–3):281–7.

    CAS  PubMed  Google Scholar 

  75. Knerr I, V J, Gibson KM. Disorders of leucine, isoleucine and valine metabolism. In: Blau N, editor. Physician’s guide to the diagnosis, treatment and follow-up of inherited metabolic diseases. Berlin: Springer; 2014. p. 103–41.

    Google Scholar 

  76. Feillet F, et al. Resting energy expenditure in disorders of propionate metabolism. J Pediatr. 2000;136(5):659–63.

    CAS  PubMed  Google Scholar 

  77. Thomas JA, et al. Apparent decreased energy requirements in children with organic acidemias: preliminary observations. J Am Diet Assoc. 2000;100(9):1074–6.

    CAS  PubMed  Google Scholar 

  78. Hauser NS, et al. Variable dietary management of methylmalonic acidemia: metabolic and energetic correlations. Am J Clin Nutr. 2011;93(1):47–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Roe CR, et al. L-carnitine therapy in isovaleric acidemia. J Clin Invest. 1984;74(6):2290–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. de Sousa C, et al. The response to L-carnitine and glycine therapy in isovaleric acidaemia. Eur J Pediatr. 1986;144(5):451–6.

    PubMed  Google Scholar 

  81. Berry GT, Yudkoff M, Segal S. Isovaleric acidemia: medical and neurodevelopmental effects of long-term therapy. J Pediatr. 1988;113(1 Pt 1):58–64.

    CAS  PubMed  Google Scholar 

  82. Naglak M, et al. The treatment of isovaleric acidemia with glycine supplement. Pediatr Res. 1988;24(1):9–13.

    CAS  PubMed  Google Scholar 

  83. Fries MH, et al. Isovaleric acidemia: response to a leucine load after three weeks of supplementation with glycine, L-carnitine, and combined glycine-carnitine therapy. J Pediatr. 1996;129(3):449–52.

    CAS  PubMed  Google Scholar 

  84. Ah Mew N, et al. N-carbamylglutamate augments ureagenesis and reduces ammonia and glutamine in propionic acidemia. Pediatrics. 2010;126(1):e208–14.

    PubMed  Google Scholar 

  85. Al-Hassnan ZN, et al. The relationship of plasma glutamine to ammonium and of glycine to acid-base balance in propionic acidaemia. J Inherit Metab Dis. 2003;26(1):89–91.

    CAS  PubMed  Google Scholar 

  86. Siekmeyer M, et al. Citric acid as the last therapeutic approach in an acute life-threatening metabolic decompensation of propionic acidaemia. J Pediatr Endocrinol Metab. 2013;26(5–6):569–74.

    PubMed  Google Scholar 

  87. Pinar-Sueiro S, et al. Optic neuropathy in methylmalonic acidemia: the role of neuroprotection. J Inherit Metab Dis. 2010;33 Suppl 3:S199–203.

    PubMed  Google Scholar 

  88. Fragaki K, et al. Fatal heart failure associated with CoQ10 and multiple OXPHOS deficiency in a child with propionic acidemia. Mitochondrion. 2011;11(3):533–6.

    CAS  PubMed  Google Scholar 

  89. Ha TS, Lee JS, Hong EJ. Delay of renal progression in methylmalonic acidemia using angiotensin II inhibition: a case report. J Nephrol. 2008;21(5):793–6.

    PubMed  Google Scholar 

  90. Kelts DG, et al. Studies on requirements for amino acids in infants with disorders of amino acid metabolism. I. Effect of alanine. Pediatr Res. 1985;19(1):86–91.

    CAS  PubMed  Google Scholar 

  91. Wolff JA, et al. Alanine decreases the protein requirements of infants with inborn errors of amino acid metabolism. J Neurogenet. 1985;2(1):41–9.

    CAS  PubMed  Google Scholar 

  92. Marsden D, et al. Anabolic effect of human growth hormone: management of inherited disorders of catabolic pathways. Biochem Med Metab Biol. 1994;52(2):145–54.

    CAS  PubMed  Google Scholar 

  93. Treacy E, et al. Glutathione deficiency as a complication of methylmalonic acidemia: response to high doses of ascorbate. J Pediatr. 1996;129(3):445–8.

    CAS  PubMed  Google Scholar 

  94. Touati G, et al. Methylmalonic and propionic acidurias: management without or with a few supplements of specific amino acid mixture. J Inherit Metab Dis. 2006;29(2–3):288–98.

    CAS  PubMed  Google Scholar 

  95. Jones S, et al. N-carbamylglutamate for neonatal hyperammonaemia in propionic acidaemia. J Inherit Metab Dis. 2008;31 Suppl 2:S219–22.

    PubMed  Google Scholar 

  96. Filippi L, et al. N-carbamylglutamate in emergency management of hyperammonemia in neonatal acute onset propionic and methylmalonic aciduria. Neonatology. 2010;97(3):286–90.

    CAS  PubMed  Google Scholar 

  97. Schwahn BC, et al. Biochemical efficacy of N-carbamylglutamate in neonatal severe hyperammonaemia due to propionic acidaemia. Eur J Pediatr. 2010;169(1):133–4.

    PubMed  Google Scholar 

  98. Kasapkara CS, et al. N-carbamylglutamate treatment for acute neonatal hyperammonemia in isovaleric acidemia. Eur J Pediatr. 2011;170(6):799–801.

    CAS  PubMed  Google Scholar 

  99. Abacan M, Boneh A. Use of carglumic acid in the treatment of hyperammonaemia during metabolic decompensation of patients with propionic acidaemia. Mol Genet Metab. 2013;109(4):397–401.

    CAS  PubMed  Google Scholar 

  100. Matern D, et al. Primary treatment of propionic acidemia complicated by acute thiamine deficiency. J Pediatr. 1996;129(5):758–60.

    CAS  PubMed  Google Scholar 

  101. Mayatepek E, Schulze A. Metabolic decompensation and lactic acidosis in propionic acidaemia complicated by thiamine deficiency. J Inherit Metab Dis. 1999;22(2):189–90.

    CAS  PubMed  Google Scholar 

  102. Van Calcar SC, et al. Renal transplantation in a patient with methylmalonic acidaemia. J Inherit Metab Dis. 1998;21(7):729–37.

    PubMed  Google Scholar 

  103. van’t Hoff WG, et al. Combined liver-kidney transplantation in methylmalonic acidemia. J Pediatr. 1998;132(6):1043–4.

    Google Scholar 

  104. Lubrano R, et al. Kidney transplantation in a girl with methylmalonic acidemia and end stage renal failure. Pediatr Nephrol. 2001;16(11):848–51.

    CAS  PubMed  Google Scholar 

  105. Nagarajan S, et al. Management of methylmalonic acidaemia by combined liver-kidney transplantation. J Inherit Metab Dis. 2005;28(4):517–24.

    CAS  PubMed  Google Scholar 

  106. Lubrano R, et al. Renal transplant in methylmalonic acidemia: could it be the best option? Report on a case at 10 years and review of the literature. Pediatr Nephrol. 2007;22(8):1209–14.

    PubMed  Google Scholar 

  107. Mc Guire PJ, et al. Combined liver-kidney transplant for the management of methylmalonic aciduria: a case report and review of the literature. Mol Genet Metab. 2008;93(1):22–9.

    CAS  PubMed  Google Scholar 

  108. Clothier JC, et al. Renal transplantation in a boy with methylmalonic acidaemia. J Inherit Metab Dis. 2011;34(3):695–700.

    PubMed  Google Scholar 

  109. Yorifuji T, et al. Living-related liver transplantation for neonatal-onset propionic acidemia. J Pediatr. 2000;137(4):572–4.

    CAS  PubMed  Google Scholar 

  110. Barshes NR, et al. Evaluation and management of patients with propionic acidemia undergoing liver transplantation: a comprehensive review. Pediatr Transplant. 2006;10(7):773–81.

    PubMed  Google Scholar 

  111. Kasahara M, et al. Current role of liver transplantation for methylmalonic acidemia: a review of the literature. Pediatr Transplant. 2006;10(8):943–7.

    PubMed  Google Scholar 

  112. Chen PW, et al. Stabilization of blood methylmalonic acid level in methylmalonic acidemia after liver transplantation. Pediatr Transplant. 2010;14(3):337–41.

    PubMed  Google Scholar 

  113. Vara R, et al. Liver transplantation for propionic acidemia in children. Liver Transpl. 2011;17(6):661–7.

    PubMed  Google Scholar 

  114. Brassier A, et al. Renal transplantation in 4 patients with methylmalonic aciduria: a cell therapy for metabolic disease. Mol Genet Metab. 2013;110(1–2):106–10.

    CAS  PubMed  Google Scholar 

  115. Nagao M, et al. Improved neurologic prognosis for a patient with propionic acidemia who received early living donor liver transplantation. Mol Genet Metab. 2013;108(1):25–9.

    CAS  PubMed  Google Scholar 

  116. Ou P, et al. A rare cause of cardiomyopathy in childhood: propionic acidosis. Three case reports. Arch Mal Coeur Vaiss. 2001;94(5):531–3.

    CAS  PubMed  Google Scholar 

  117. Kasahara M, et al. Living-donor liver transplantation for propionic acidemia. Pediatr Transplant. 2012;16(3):230–4.

    CAS  PubMed  Google Scholar 

  118. Chakrapani A, et al. Metabolic stroke in methylmalonic acidemia five years after liver transplantation. J Pediatr. 2002;140(2):261–3.

    PubMed  Google Scholar 

  119. Nyhan WL, et al. Progressive neurologic disability in methylmalonic acidemia despite transplantation of the liver. Eur J Pediatr. 2002;161(7):377–9.

    PubMed  Google Scholar 

  120. Arnold GL, et al. Methylcitrate/citrate ratio as a predictor of clinical control in propionic acidemia. J Inherit Metab Dis. 2003;26(suppl 2):37.

    Google Scholar 

  121. Zwickler T, et al. Metabolic decompensation in methylmalonic aciduria: which biochemical parameters are discriminative? J Inherit Metab Dis. 2012;35(5):797–806.

    CAS  PubMed  Google Scholar 

  122. Zwickler T, et al. Usefulness of biochemical parameters in decision-making on the start of emergency treatment in patients with propionic acidemia. J Inherit Metab Dis. 2014;37(1):31–7.

    CAS  PubMed  Google Scholar 

  123. Mountain States Genetics Regional Collaborative Propionic Acidemia: care plan & shared dataset. 2013. 21 Feb 2009 [cited 2014 Oct 2]; Available from: http://www.msgrcc.org/consortium/Propionic_Acidemia/PPA_revison.pdf

  124. Surtees RA, Matthews EE, Leonard JV. Neurologic outcome of propionic acidemia. Pediatr Neurol. 1992;8(5):333–7.

    CAS  PubMed  Google Scholar 

  125. Nicolaides P, Leonard J, Surtees R. Neurological outcome of methylmalonic acidaemia. Arch Dis Child. 1998;78(6):508–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. O’Shea CJ, et al. Neurocognitive phenotype of isolated methylmalonic acidemia. Pediatrics. 2012;129(6):e1541–51.

    PubMed Central  PubMed  Google Scholar 

  127. Grünert SC, et al. Clinical and neurocognitive outcome in symptomatic isovaleric acidemia. Orphanet J Rare Dis. 2012;7:9.

    PubMed Central  PubMed  Google Scholar 

  128. van der Meer SB, et al. Clinical outcome of long-term management of patients with vitamin B12-unresponsive methylmalonic acidemia. J Pediatr. 1994;125(6 Pt 1):903–8.

    PubMed  Google Scholar 

  129. Fischer AQ, et al. Cerebellar hemorrhage complicating isovaleric acidemia: a case report. Neurology. 1981;31(6):746–8.

    CAS  PubMed  Google Scholar 

  130. Dave P, Curless RG, Steinman L. Cerebellar hemorrhage complicating methylmalonic and propionic acidemia. Arch Neurol. 1984;41(12):1293–6.

    CAS  PubMed  Google Scholar 

  131. van der Meer SB, et al. Clinical outcome and long-term management of 17 patients with propionic acidaemia. Eur J Pediatr. 1996;155(3):205–10.

    PubMed  Google Scholar 

  132. Ledley FD, et al. Benign methylmalonic aciduria. N Engl J Med. 1984;311(16):1015–8.

    CAS  PubMed  Google Scholar 

  133. Treacy E, et al. Methylmalonic acidemia with a severe chemical but benign clinical phenotype. J Pediatr. 1993;122(3):428–9.

    CAS  PubMed  Google Scholar 

  134. Grünert SC, et al. Propionic acidemia: neonatal versus selective metabolic screening. J Inherit Metab Dis. 2012;35(1):41–9.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet A. Thomas MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Thomas, J.A. (2015). Organic Acidemias. In: Bernstein, L., Rohr, F., Helm, J. (eds) Nutrition Management of Inherited Metabolic Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-14621-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14621-8_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14620-1

  • Online ISBN: 978-3-319-14621-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics