Skip to main content

The Biological System of the Elements

  • Chapter
  • First Online:
Chemical Evolution

Abstract

Starting (in the 1990s) with abundance correlations among pairs of chemical elements in different kinds of plants which grow at a common site (a drying bog in Lower Saxony), the Biological System of Elements (BSE) was advanced by Bernd Markert striving to understand reasons why these—and no other—elements are used in biology to accomplish certain chemical transformations and how fractionation of elements from surrounding water or soil does take place in quantitative terms. For metals, essentiality apparently is related to coordination chemistry while it turns out that entire plant organs behave like homogeneous (single or equifunctional) ligands with respect to fractionation of elements after uptake from the environment. The BSE is arranged as a triangular picture in which the axes refer to the capability to form highly aggregated (e.g., polymeric) chemical species, the relative role in biological matter, and the response to (changing) salinity. It now is a double-layer body of knowledge, combining statistical statements on analytical bioinorganic chemistry and embracing quantitative chemical pieces of information to account for roles of most chemical elements with Z <84.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Markert (1994a, b).

  2. 2.

    Extended and more detailed information on the functionality of each chemical element are given in Appendix.

  3. 3.

    While for the actinoids similarity with lanthanoids was driven so far as to name analogs according to similar rules (Z = 63: europium, Z = 95: americium; Z = 65: terbium (alluding to a village in Sweden where it was found first), Z = 97: berkelium) the lighter actinoids (protactinium to americium) differ from their REE analogs in stabilizing oxidation states + V to + VII which the latter will never reach in condensed matter while the heavy ones (Z > 100, Md [mendelevium], No, and Lr) turned out to be commonly much more stable in divalent states than corresponding REEs Tm, Yb, let alone Lu.

  4. 4.

    To our present knowledge it will be almost impossible to prepare atoms with Z > 123 of sufficient half-lives (>0.2 μs) even to identify them (otherwise, nuclei formed in a target would decay during mass separation and hence before reaching the detector device), let alone doing any chemistry.

  5. 5.

    On the opposite, protons and neutrons in nuclei attract both each and the other kind of nucleon due to the strong nuclear force, partially compensating mutual repulsion of protons even though they are tightly packed. Thus the “magic” numbers producing closed, most stable nuclear orbitals (8, 20, 28, 50, 82, 126, plus 14, 34, 62, 108 for non-spherical arrangements) differ from the Z values of noble gases (10, 18, 36, 54, 86, and 118) and fairly inert metal ions (28, 46, 78) which are caused by electron properties alone.

  6. 6.

    Both one-dimensional ones, ylides, and three-dimensional assemblies of charged atoms.

  7. 7.

    There are significantly exergonic reactions which literally will not take place, not even allowing for geological periods of time, like hydrogenations of N2 or of nitriles unless there are efficient specific catalysts, either homogeneous (dissolved) V-, Mo, W- or Re complexes or iron (or Os) chalcogenide particles. Another hard-to-activate reaction (at least if T < 250 °C) which, unlike nitrogenase activity, almost every living being can induce is reduction of sulfate; activation (oxidation) of aliphatic CH bonds without additional functional groups (Hal, OH, -OPO3 2−, -COOR, -COSR) is less far-spread in biota.

  8. 8.

    Oscillations in permanganate-based systems (like others) require addition of orthophosphate plus two reductants to be present besides each other, like nitrite and formate, or NH3OH+ and an organic compound like malonate.

  9. 9.

    There are some exceptions: even humans can make glycine from CO2 and NH4 cations by C(IV) reduction via the folate reduction pathway, and glycine itself is linked to other organics via oxidative desamination affording glyoxylate (in malate synthase glyoxylate is linked to acetyl CoA producing C4 compound malate). Though this process falls far short from C autotrophy, it is an interesting question in how far these “exceptions” can and will influence general dynamics of essential elements.

  10. 10.

    In terms of interplanetary comparison, this means what is a mineral depends on local environmental conditions: in the atmospheres of Earth, Venus, Mars, and Titan, N2 of course is gaseous and not a mineral, but on Triton and possibly Pluto solid nitrogen which is known to be partly crystallized from spectra can well be considered one; conversely solid sulphur (S8) deposited here on Earth around volcano fumaroles or black smokers doubtlessly is a mineral (even forming large crystals) but on Venus elemental sulphur is a gas (mainly forming species S4 to S7) and thus not a mineral!

References

  • Adriano DC (1986) Trace elements in the terrestrial environment. Springer, New York

    Google Scholar 

  • Adriano DC (ed) (1992) Biogeochemistry of trace metals. Lewis, Boca Raton

    Google Scholar 

  • Amoozadeh E, Malek M, Rashidinejad R, Nabavi S, Karbassi A, Ghayoumi R, Ghorbanzadeh-Zafarani G, Salehi H, Sures B (2014) Marine organisms as heavy metal bioindicators in the Persian Gulf and the Gulf of Oman. Environ Sci Pollut Res 21(3):2386–2395

    CAS  Google Scholar 

  • Algreen M, Rein A, Legind C, Amundsen C, Gosewinkel Karlson U, Trapp S (2012) Test of tree core sampling for screening of toxic elements in soils from a Norwegian site. Int J Phytoremediation 14:305–319

    CAS  Google Scholar 

  • Allen LC (1992) Extension and completion of the periodic table. J Am Chem Soc 114:1510

    CAS  Google Scholar 

  • Altenburger R, Schmitt M (2003) Predicting toxic effects of contaminants in ecosystems using single species investigations. In: Markert B, Breure A, Zechmeister H (eds) Bioindicators and biomonitors. Principles, concepts and applications. Elsevier, Amsterdam, pp 153–198

    Google Scholar 

  • Araújo A, Fernandes E, França E, Bacchi M (2008) Status of chemical elements in Atlantic Forest tree species near an industrial complex. J Radioanal Nucl Chem 278(2):429–433

    Google Scholar 

  • Arndt U (1992) Key reactions in forest disease used as effects criteria for biomonitoring. In: McKenzie DH, Hyatt DE, McDonald VJ (eds) Ecological indicators. Proceedings of international symposium Fort Lauderdale USA, Elsevier, Applied Science Publishers, London, 16–19 October 1990, pp 829–840

    Google Scholar 

  • Baker A (1981) Accumulators and excluder-strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    CAS  Google Scholar 

  • Bargagli R (ed) (1998) Trace elements in terrestrial plants: an ecophysiological approach to biomonitoring and biorecovery. Springer, Heidelberg

    Google Scholar 

  • Beck MT, Ling J (1977) Transition-metal complexes in the prebiotic soup. Naturwissenschaften 64:91

    CAS  Google Scholar 

  • Beck MT, Gaspar V, Ling J (1977) Formation of glycine in the hydrolysis of coordinated cyanogen. Inorg Chim Acta 33:L177–L178

    Google Scholar 

  • Bleise A, Smodiš B (2001) Report on the quality control study NAT-6 for the determination of trace and minor elements in two moss samples. International Atomic Energy, Vienna

    Google Scholar 

  • Bode P, De Nadai Fernandes EA, Greenberg RR (2000) Metrology for chemical measurements and the position of INAA. J Radioanal Nucl Chem Budapest 245(1):109–114

    CAS  Google Scholar 

  • Bodek I, Lyman W, Reehl W, Rosenblatt D (eds) (1988) Environmental inorganic chemistry properties, processes and estimation method. Pergamon Press, New York

    Google Scholar 

  • Bowen HJM (1966) Trace elements in biochemistry. Academic, London

    Google Scholar 

  • Bowen HJM (1979) Environmental chemistry of the elements. Academic, London

    Google Scholar 

  • Breulmann G, Ogino K, Ninomiya I, Ashton PS, La Frankie JV, Leffler U, Weckert V, Lieth H, Konschak R, Markert B (1998) Chemical characterisation of Dipterocarpaceae by use of chemical fingerprinting—a multielement approach at Sarawak, Malaysia. Sci Total Environ 215:85–100

    CAS  Google Scholar 

  • Broadley M, White P, Hammond J, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    CAS  Google Scholar 

  • Broadley M, Hammond J, King G, Astley D, Bowen H, Meacham M, Mead A, Pink D, Teakle G, Hayden R, Spracklen W, White P (2008) Shoot calcium and magnesium concentrations differ between subtaxa, are highly heritable, and associate with potentially pleiotropic loci in Brassica oleracea. Plant Physiol 146(4):1707–1720

    CAS  Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant and Soil 302(1–2):1–17

    CAS  Google Scholar 

  • Carreras HA, Gudino GL, Pignata ML (1998) Comparative biomonitoring of atmospheric quality in five zones of Cordoba city (Argentina) employing the transplanted lichen Usnea sp. Environ Pollut 103:317

    CAS  Google Scholar 

  • Clarke BL (1975) Theorems on chemical network stability. J Chem Phys 62:773–775

    CAS  Google Scholar 

  • Clarke BL (1980) Stability of complex reaction networks. Adv Chem Phys 43:1–217

    CAS  Google Scholar 

  • Clemens S, Palmgren M, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7(7):309–315

    CAS  Google Scholar 

  • Catharino M, Vasconcellos M, Kirschbaum A, Gasparro M, Minei C, de Sousa E, Seo D, Moreira E (2011) Biomonitoring of coastal regions of São Paulo State, Brazil, using mussels Perna perna. J Radioanal Nucl Chem 291(1):113–117

    Google Scholar 

  • Chaney R, Chen K, Li Y, Angle J, Baker A (2008) Effects of calcium and nickel tolerance and accumulation in Alyssum species and cabbage grown in nutrient solution. Plant Soil 311(1–2):131–140

    CAS  Google Scholar 

  • Danserau P (1971) Dimensions of environmental quality. Institut d‘Urbanisme, Université de Montréal, Montreal

    Google Scholar 

  • De Bruyn U, Linders HW, Mohr K (2009) Epiphytische Flechten im Wandel von Immissionen und Klima—Ergebnisse einer Vergleichskartierung 1989/2007 in Nordwestdeutschland. Umweltwiss Schadst Forsch 21:63–75

    Google Scholar 

  • Diatta J, Chudzińska E, Drobek L, Wojcicka-Półtorak A, Markert B, Wünschmann S (2015) Multiple-phase evaluation of copper geochemistry. In: Sherameti J, Varma A (eds) Heavy metal contamination of soils: monitoring and remediation. Springer, Heidelberg (in press)

    Google Scholar 

  • Dickinson N, Baker A, Doronila A, Laidlaw S, Reeves R (2009) Phytoremediation of inorganics: realism and synergies. Int J Phytoremed 11(2):97–114

    CAS  Google Scholar 

  • Djingova R, Kuleff I (2000) Instrumental techniques for trace analysis. In: Markert B, Friese K (eds) Trace elements, their distribution and effects in the environment. Elsevier, Amsterdam, pp 137–185

    Google Scholar 

  • Döbereiner J (1819) Anfangsgründe der Chemie und Stöchiometrie. Jena

    Google Scholar 

  • Duvigneaud P, Denaeyer-de Smet S (1970) Phytogeochimie des groupes ecosociologiques forestiers de Haute-Belgique, I. Essai de classification phytochimique des especes herbacees. Oecol Oecol Plant 5:1–32

    Google Scholar 

  • Duvigneaud P, Denaeyer-de Smet S (1973) Biological cycling of minerals in temperate deciduous forests. In: Reichle D (ed) Analysis of temperate forest ecosystems. Ecological studies, vol 1. Springer, Heidelberg, pp 199–225

    Google Scholar 

  • Ellenberg H, Mayer R, Schauermann J (1986) Ökosystemforschung, Ergebnisse des Solling Projektes. Ulmer, Stuttgart

    Google Scholar 

  • Elias C, De Nadai Fernandes EA, França EJ, Bacchi MA (2006) Seleção de epifitas acumuladoras de elementos químicos na Mata Atlãntica. Biota Neotropica Campinas 6(1). Disponível em: http://www.biotaneotropica.org.br/v6n1/pt/abstract?article+bn021106012006

  • Enti-Brown S, Owiredu Yeboah P, Akoto-Bamford S, Kwablah Anim A, Abole H, Kpattah L, Hanson J, Ahiamadjie H, Tabuaa Gyamfi E (2012) Quality control analysis of imported fertilizers used in Ghana: the macronutrients perspective. Proc Int Acad Ecol Environ Sci 2(1):27–40

    CAS  Google Scholar 

  • Epstein E (1972) Mineral nutrition of plants, principles and perspectives. Wiley, New York

    Google Scholar 

  • Farago ME (ed) (1994) Plants and the chemical elements. VCH, Weinheim

    Google Scholar 

  • Fargašová A, Beinrohr E (1998) Metal-metal interactions in accumulation of V5+, Ni2+, Mo6+, Mn2+, and Cu2+ in under- and above-ground parts of Sinapis alba. Chemosphere 36:1305–1317

    Google Scholar 

  • Feldmann J, Krupp E, Urgast D, Raab A, Uroic M (2013) Speziationsanalytik: Haben wir die richtigen Werkzeuge? Nachrichten aus der Chemie, 145–148

    Google Scholar 

  • Feng X, Yin R, Yu B, Du B (2013) Mercury isotope variations in surface soils in different contaminated areas in Guizhou Province, China. Chin Sci Bull 58(2):249–255

    CAS  Google Scholar 

  • Figueiredo AMG, Saiki M, Ticianelli RB, Domingos M, Alves ES, Markert B (2001) Determination of trace elements in Tillandsia usneoides by neutron activation analysis for environmental biomonitoring. J Radioanal Nucl Chem 249(2):391–395

    CAS  Google Scholar 

  • Franzering J, Van der Eerden LJM (2000) Accumulation of persistent organic pollutants (POPs) in plants. Basic Appl Ecol 1:25–30

    Google Scholar 

  • Fomin A, Oehlmann J, Markert B (2003) Praktikum zur Ökotoxikologie. Grundlagen und Anwendungen biologischer Testverfahren. Wiley-VCH, Weinheim

    Google Scholar 

  • Fränzle O (1993) Contaminants in terrestrial environments. Springer, Berlin

    Google Scholar 

  • Fränzle S (2009) Prinzipien und Mechanismen der Verteilung und Essentialität von chemischen Elementen in pflanzlicher Biomasse—Ableitungen aus dem Biologischen System der Elemente. Habilitation Thesis; Vechta (engl. title: Chemical Elements in Plants and Soil; to be published with Springer, Weinheim).

    Google Scholar 

  • Fränzle S, Markert B, Wuenschmann S (2007) Dynamics of trace metals in organisms and ecosystem: prediction of metal bioconcentration in different organisms and estimation of exposure risks. Environ Pollut 150:22–33

    Google Scholar 

  • Fränzle S (2000) Stöchiometrische Netzwerk-Modelle in der ökologischen Risikoanalyse. In: Breckling B, Müller F (eds) Der Ökologische Risikobegriff. Peter Lang, Frankfurt, pp 161–177

    Google Scholar 

  • Fränzle S (2010) Chemical elements in plants and soil. Springer, Berlin

    Google Scholar 

  • Fränzle S (2011) A novel scaling method for estimating and predicting chemical potentials, distributions, speciation modes and mobilities of radiometals in soil, water and biomass. J Environ Radioact. doi:10.1016/j.jenvrad.2011.07.009

    Google Scholar 

  • Fränzle S, Markert B (2000a) Das Biologische System der Elemente (BSE): Eine modelltheoretische Betrachtung zur Essentialität von chemischen Elementen—die Anwendungen der Stöchiometrischen Netzwerkanalyse auf das Biologische System der Elemente. Zeitschrift für Umweltchemie und Ökotoxikologie 12:97–103

    Google Scholar 

  • Fränzle S, Markert B (2000b) The biological system of the elements (BSE). Part II: a theoretical model for establishing the essentiality of chemical elements. The application of stoichiometric network analysis to the biological system of the elements. Sci Total Environ 249:223–241

    Google Scholar 

  • Fränzle S, Markert B (2002a) The biological system of the elements (BSE)—a brief introduction into historical and applied aspects with special reference on “ecotoxicological identity cards” for different element species (e.g. As and Sn). Environ Pollut 120(1):27–45

    Google Scholar 

  • Fränzle S, Markert B, Wünschmann S (2005) Technische Umweltchemie. Innovative Verfahren der Reinigung verschiedener Umweltkompartimente. Wiley-VCH, Weinheim

    Google Scholar 

  • Fränzle S, Markert B, Wünschmann S (2007) Dynamics of trace metals in organisms and ecosystem: prediction of metal bioconcentration in different organisms and estimation of exposure risks. Environ Pollut 150:22–33

    Google Scholar 

  • Fränzle S, Markert B, Fränzle O, Lieth H (2008) The biological system of elements. Trace element concentration and abundance in plants give hints on biochemical reasons of sequestration and essentiality. In: Prasad MNV (ed) Trace elements: nutritional benefits, environmental contamination and health implications. Wiley, New York, pp 1–21

    Google Scholar 

  • Freitas MC, Reis M, Alves LC, Wolterbeek HT (1999) Distribution in Portugal of some pollutants in the lichen Parmelia sulcata. Environ Pollut 106:229

    CAS  Google Scholar 

  • Freitas MC, Pacheco AMG, Vieira BJ, Rodrigues AF (2006) Neutron activation analysis of atmospheric biomonitors from the Azores: a comparative study of lower and higher plants. Radioanal Nucl Chem 270:21–27

    CAS  Google Scholar 

  • Garten CT (1976) Correlations between concentrations of elements in plants. Nature 261:686–688

    CAS  Google Scholar 

  • Garty J (1998) Airborne elements, cell membranes, and chlorophyll in transplanted lichens. Environ Qual 27:973

    CAS  Google Scholar 

  • Genßler L, Rademacher J, Rammert U (2001) Arbeitskreis der Landesanstalten und -Ämter: Konzeption der künftigen Aufgabenbereiche. Z Umweltchem Ökotox 13(6):375

    Google Scholar 

  • Golan-Goldhirsh A, Barazani O, Nepovim A, Soudek P, Smrcek S, Dufkova L, Krenkova S, Yrjala K, Schroeder P, Vanek T (2004) Plant response to heavy metals and organic pollutants in cell culture and at whole plant level. Soil Sediments 4:133–140

    CAS  Google Scholar 

  • Greger M (2008) Trace elements and radionuclides in edible plants. Chapter 6. In: Prasad MNV (ed) Trace elements—nutritional benefits, environmental contamination, and health implications. Wiley, New York, pp 121–136

    Google Scholar 

  • Grill E, Winnacker E, Zenk M (1985) Phytochelatins, the principles heavy metal complexing peptides of higher plants. Science 230:674–676

    CAS  Google Scholar 

  • Hamilton EI (1980) The need for trace element analyses of biological materials in the environment, sciences. In: International Atomic Energy Agency (ed) Element analysis of biological materials—current problems and techniques with special reference to trace elements. Technical report series no. 197. Wien, pp 39–54

    Google Scholar 

  • Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Kraemer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453(7193):391–396

    CAS  Google Scholar 

  • Hartley W, Lepp NW (2008) Remediation of arsenic contaminated soils by iron-oxide application, evaluated in terms of plant productivity, arsenic and phytotoxic metal uptake. Sci Total Environ 390(1):35–44

    CAS  Google Scholar 

  • Heim M, Wappelhorst O, Markert B (2002) Thallium in terrestrial environments – occurrence and effects. Ecotoxicology 11:369–377

    CAS  Google Scholar 

  • Hermans C, Chen J, Coppens F, Inzé D, Verbruggen N (2011) Low magnesium status in plants enhances tolerance to cadmium exposure. New Phytol 192(2):428–436

    CAS  Google Scholar 

  • Herpin U, Siewers U, Kreimes K, Markert B (2001) Biomonitoring—evaluation and assessment of heavy metal concentrations from two German moss surveys. In: Burga CA, Kratochwil A (eds) General and applied aspects on regional and global scales. Tasks for vegetation science, vol 35. Kluwer Academic Publishers, Dordrecht, pp 73–95

    Google Scholar 

  • Herpin U, Markert B, Weckert V, Berlekamp J, Friese K, Siewers U, Lieth H (1997) Retrospective analysis of heavy metal concentrations at selected locations in the Federal Republic of Germany using moss material from herbarium. Sci Total Environ 205:1–12

    CAS  Google Scholar 

  • Herzig R (1993) Multi-residue analysis with passive biomonitoring: a new approach for volatile multi-element contents, heavy metals and polycyclic aromatic hydrocarbons with lichens in Switzerland and the Principality of Liechtenstein. In: Markert B (ed) Plants as biomonitors for heavy metal pollution in the terrestrial environment. VCH-Verlagsgesellschaft, Weinheim, pp 285–328

    Google Scholar 

  • Herzig R (2005) Erfolgskontrolle zur Luftreinhaltung in der Stadt Bern 2004. Wiederholung der Untersuchungen mit Flechten nach 14 Jahren. Schlussberichtes vom 20.10.05 Stadt Bern Amt für Umweltschutz und Lebensmittelkontrolle, beco Berner Wirtschaft und Gemeinden Köniz und Bremgarten

    Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Station Circ 347:1–32

    Google Scholar 

  • Hodson M, White P, Mead A, Broadley M (2005) Phylogenetic variation in the silicon composition of plants. Ann Bot 96(6):1027–1046

    CAS  Google Scholar 

  • Horovitz CT (1988) Is the major part of the periodic system really inessential for life? J Trace Elem Electrolytes Health Dis 2:135

    CAS  Google Scholar 

  • Höllriegl V, González-Estecha M, Trasobares E, Giussani A, Oeh U, Herraiz M, Michalke B (2010) Measurement of cerium in human breast milk and blood samples. J Trace Elem Med Biol 24(3):193–199

    Google Scholar 

  • Hooda P (ed) (2010) Trace elements in soils. Wiley, New York

    Google Scholar 

  • International Commission on Radiological Protection (ed) (1975) Report of the task group on reference man. Pergamon Press, Oxford

    Google Scholar 

  • International Union of Biological Sciences (1992) Promoting life sciences for a better human life. International Union of Biological Sciences, Paris

    Google Scholar 

  • Irtelli B, Navari-Izzo F (2008) Uptake kinetics of different arsenic species by Brassica carinata. Plant Soil 303(1):105–113

    CAS  Google Scholar 

  • Iyengar GV (1988) Biological trace element research. A multidisciplinary science. Sci Total Environ 71: 1–7

    Google Scholar 

  • Iyengar GV (1989) Elemental analysis of biological systems, biological, medical, environmental, Compositional and methodological aspects. CRC Press, Boca Raton

    Google Scholar 

  • Jacob D, Otte M, Hopkins D (2011) Phyto (in)stabilization of elements. Int J Phytoremediation 13:34–54

    Google Scholar 

  • Jacob D, Yellick A, Kissoon L, Asgary A, Wijeyaratne D, Saini-Eidukat B, Otte M (2013a) Cadmium and associated metals in soils and sediments of wetlands across the Northern Plains, USA. Environ Pollut 178:211–219

    CAS  Google Scholar 

  • Jacob D, Borchardt J, Navaratnam L, Otte M, Bezbaruah A (2013b) Uptake and translocation of Ti from nanoparticles in crops and wetland plants. Int J Phytoremed 15(2):142–153

    CAS  Google Scholar 

  • Jayasekera R (1987) Growth characteristics and uptake of minerals of the two mangrove species Rhizophora mangle L. and Rhizophora mucronata Lamk. Under different environmental conditions. PhD-thesis, University of Osnabrück

    Google Scholar 

  • Jeran Z, Smodis B, Jacimovic R (1993) Multielemental analysis of transplanted lichens (Hypogymnia physodes, L. Nyl.) by instrumental neutron activation analysis. Acta Chim Slov 40:289–299

    CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (1984) Trace elements in soils and plants. CRC Press, Boca Raton

    Google Scholar 

  • Keith LH (ed) (1988) Principles of environmental sampling. ACS professional reference book. American Chemical Society, Washington, DC

    Google Scholar 

  • Kettrup A (2003) Environmental specimen banking. In: Markert B, Breure A, Zechmeister H (eds) Bioindicators and biomonitors. Principles, concepts and applications. Elsevier, Amsterdam, pp 775–796

    Google Scholar 

  • Kinzl H (1982) Pflanzenökologie und Mineralstoffwechsel. Eugen Ulmer, Stuttgart

    Google Scholar 

  • Kirschbaum U, Cezanne R, Eichler M, Windisch U (2012) Long-term monitoring of environmental change in German towns by using lichens as biological indicators. Environ Sci Eur 24:19

    Google Scholar 

  • Kissoon LT, Jacob D, Otte M (2011) Multiple elements in Typha angustifolia rhizosphere and plants: wetland versus dryland. Environ Exp Bot 72:232–241

    CAS  Google Scholar 

  • Klumpp A, Domingos M, Pignata ML (2000) Air pollution and vegetation damage in South America—state of knowledge and perspectives. In: Agrawal SB, Agrawal MA (eds) Environmental pollution and plant responses. Lewis, Boca Raton

    Google Scholar 

  • Kłos A, Czora M, Rajfur M, Wacławek M (2012) Mechanisms for translocation of heavy metals from soil to epigeal mosses. Water Air Soil Pollut 223(4):1829–1836

    Google Scholar 

  • Kostka-Rick R, Leffler US, Markert B, Herpin U, Lusche M, Lehrke J (2001) Biomonitoring zur wirkungsbezogenen Ermittlung der Schadstoffbelastungen in terrestrischen Ökosystemen. Konzeption, Durchführung und Beurteilungsmaßstäbe im Rahmen von Genehmigungs-verfahren. UWSF-Z Umweltchem Ökotox 13(1):5–12

    CAS  Google Scholar 

  • Kovacs M, Turcsanyi G, Nagy L, Koltay A, Kaszab L, Szöke P (1990) Element concentration cadasters in a Quercetum petraeae-cerris forest. In: Lieth H, Markert B (eds) Element concentration cadasters in ecosystems. VCH, Weinheim, pp 255–265

    Google Scholar 

  • Kovacs M, Penksza K, Turcsanyi G, Kaszab L, Szoeke P (1993) Multielementanalyse der Arten eines Waldsteppen-Waldes in Ungarn. Phytocoenologia 23:257–267

    Google Scholar 

  • Lepp NW, Madejon P (2007) Cadmium and zinc in vegetation and litter of a voluntary woodland that has developed on contaminated sediment-derived soil. J Environ Qual 36(4):1123–1131

    CAS  Google Scholar 

  • Lieth H, Markert B (1985) Naturwissenschaften 72:322

    CAS  Google Scholar 

  • Lieth H, Markert B (1988) Aufstellung und Auswertung ökosystemarer Element-Konzentrations-Kataster. Eine Einführung. Springer, Berlin

    Google Scholar 

  • Lieth H, Markert B (eds) (1990) Element concentration cadasters in ecosystems. Methods of assessment and evaluation. VCH-Verlagsgesellschaft mbH, Weinheim

    Google Scholar 

  • Li HF, McGrath SP, Zhao FJ (2008) Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol 178(1):92–102

    CAS  Google Scholar 

  • Likens GE, Bormann FH, Pierce RS, Eaton JS, Johnson NM (1977) Bio-geochemistry of a forested ecosystem. Springer, Berlin

    Google Scholar 

  • Lombi E, Donner E, Taheri S, Tavakkoli E, Jämting Å, McClure S, Naidu R, Miller B, Scheckel K, Vasilev K (2013) Transformation of four silver/silver chloride nanoparticles during anaerobic treatment of wastewater and post-processing of sewage sludge. Environ Pollut 176:193–197

    CAS  Google Scholar 

  • Loppi S, Bonini I (2000) Lichens and mosses as biomonitors of trace elements in areas with thermal springs and fumarole activity (Mt. Amiata, central Italy). Chemosphere 41:1333–1336

    CAS  Google Scholar 

  • Lux A, Šottníková A, Opatrná J, Greger M (2004) Differences in structure of adventitious roots in Salix clones with contrasting characteristics of Cd accumulation and sensitivity. Physiol Plant 120:537–545

    CAS  Google Scholar 

  • Markert B (1986) Aufstellung von Elementkonzentrationskatastern in unterschiedlichen Pflanzenarten und Bodentypen in Deutschland, Österreich und Schweden. In: Stoeppler M, Dürbeck HW (eds) Beiträge zur Umweltprobenbank. Jüich. Spezial, 360.

    Google Scholar 

  • Markert B (1987) Interelement correlations in plants. Fresenius Zeitschrift für Analytische Chemie 329:462–465

    CAS  Google Scholar 

  • Markert B (1988) Interelement correlations in different reference materials. Fresenius Zeitschrift für Analytische Chemie 332:630–635

    CAS  Google Scholar 

  • Markert B (1991a) Instrumentelle Multielementanalyse an pflanzlichen Systemen. VCH, Weinheim

    Google Scholar 

  • Markert B (1991b) Multi-element analysis in plant material. In: Esser G, Overdieck D (eds) Modern ecology, basic and applied aspects. Elsevier, Amsterdam, pp 275–288

    Google Scholar 

  • Markert B (1992a) Presence and significance of naturally occuring chemical elements of the periodic system in the plant organism. Vegetatio 103:1–30

    Google Scholar 

  • Markert B (1992b) Establishing of “reference plant” for inorganic characterization of different plant species by chemical fingerprinting. Water Air Soil Pollut 64:533–538

    CAS  Google Scholar 

  • Markert B (1992c) Aspects of cleaning environmental material for multielement analysis: F.e. plant samples. Fresenius Zeitschrift für Analytische Chemie 342:409–412

    CAS  Google Scholar 

  • Markert B (1992d) Atomabsorptionsspektrometrie, Atomemissionsspektrometrie und Atomfluoreszensspektrometrie. In: D'ANS-LAX, Taschenbuch für Chemiker und Physiker, Band I. Springer, Heidelberg, pp 254–272

    Google Scholar 

  • Markert B (1993a) Occurrence and distribution of chemical elements in plants—outlook and further research plans. Toxicol Environ Chem 40:31–41

    CAS  Google Scholar 

  • Markert B (1993b) Interelement correlations detectable in plant samples based on data from reference materials and highly accurate research samples. Fresenius J Anal Chem 345:318–322

    CAS  Google Scholar 

  • Markert B (1994a) The biological system of the elements (BSE) for terrestrial plants (glycophytes). Sci Total Environ 155:221–228

    CAS  Google Scholar 

  • Markert B (1994b) Inorganic chemical fingerprinting of the environment; reference freshwater useful tool for comparison and harmonization of analytical data in freshwater chemistry. Fresen J Anal Chem 349:697–702

    CAS  Google Scholar 

  • Markert B (1996) Instrumental element and multielement analysis of plant samples—methods and applications. Wiley, Chichester, New York, Tokyo

    Google Scholar 

  • Markert B (2007) Definitions and principles for bioindication and biomonitoring of trace metals in the environment. J Trace Elem Med Biol 21(1):77–82

    Google Scholar 

  • Markert B (2008) Bioindication and biomonitoring as innovative biotechniques for controlling trace metal influences to the environment. In: Prasad MNV (ed) Trace elements: nutritional benefits, environmental contamination, and health implications. Wiley, New York, pp 743–760

    Google Scholar 

  • Markert B, Friese K (eds) (2000) Trace elements. Their distribution and effects in the environment. Elsevier, Amsterdam

    Google Scholar 

  • Markert B, Weckert V (1993) Time-and-site integrated long-term biomonitoring of chemical elements by means of mosses. Toxicol Environ Chem 40:43–56

    CAS  Google Scholar 

  • Markert B, Oehlmann J, Roth M (1997) General aspects of heavy metal monitoring by plants and animals. In: Subramanian G, Iyengar V (eds) Environmental biomonitoring-exposure assessment and specimen banking, ACS Symp. Ser. 654. American Chemical Society, Washington, DC

    Google Scholar 

  • Markert B, Wappelhorst O, Weckert V, Herpin U, Siewers U, Friese K, Breulmann G (1999) The use of bioindicators for monitoring the heavy-metal status of the environment. Radioanal Nucl Chem 240:425–429

    CAS  Google Scholar 

  • Markert B, Fraenzle S, Fomin A (2002) From the biological system of the elements to biomonitoring. In: Merian E, Anke M, Ihnat M, Stoeppler M (eds) Elements and their compounds in the environment, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  • Markert B, Breure A, Zechmeister H (2003b) General aspects and integrative approaches. In: Markert B, Breure T, Zechmeister H (eds) Bioindicators and biomonitors. Principles, concepts and applications. Elsevier, Amsterdam, pp 3–39

    Google Scholar 

  • Markert B, Fränzle S, Fomin A (2004) From the biological system of the elements to biomonitoring. In: Anke M, Ihnat M, Stoeppler M (eds) Elements and their compounds in the environment. Occurrence, analysis and biological relevance. Wiley-VCH, New York, pp 235–254

    Google Scholar 

  • Markert B, Wuenschmann S, Fraenzle S, Wappelhorst O, Weckert V, Breulmann G, Djingova R, Herpin U, Lieth H, Schroeder W, Siewers U, Steinnes E, Wolterbeek B, Zechmeister H (2008a) On the road from environmental biomonitoring to human health aspects: monitoring atmospheric heavy metal deposition by epiphytic/epigeic plants: present status and future needs. Int J Environ Pollut 32(4):486–498

    CAS  Google Scholar 

  • Markert B, Schroeder P, Golan-Goldhirsh A, Schwitzguebel J (2008b) Conference report: nutrient biofortification and exclusion of pollutants in food plants. Environ Pollut. 15(2): 172 (in: INTECOL-e-Bulletin 2(1): 3–4).

    Google Scholar 

  • Markert B, Wünschmann S, Herzig R, Quevauviller P (2010) Bioindicateurs et biomoniteurs: Définitions, stratégies et applications. French Lang TechIng Paris P4(170):1–16

    Google Scholar 

  • Markert B, Wünschmann S, Baltrėnaitė E (2012a) APLINKOS STEBĖJIMO NAUJOVĖS. BIOINDIKATORIAI IR BIOMONITORIAI:APIBRĖŽTYS, STRATEGIJOS IR TAIKYMAS, Lithuanian Language. J Environ Eng Landsc Manage 20(3):221–239

    Google Scholar 

  • Markert B, Wünschmann S, Diatta JB, Chudzińska E (2012b) Innowacyjna Obserwacja Środowiska: Bioindykatory i Biomonitory: Definicje, Strategie i Zastosowania, Polish Language. Environ Protect Nat Resour 53:115–152

    Google Scholar 

  • Markert B, Wünschmann S, Marcovecchio J y De Marco S (2013a) Bioindicadores y Biomonitores: Definiciones, Estrategias y Aplicaciones. In: Marcovecchio J, Freije RH (eds) Procesos Químicos en Estuarios; Spanish Language

    Google Scholar 

  • Markert B, Wang, M, Wünschmann S, Chen W (2013b) 生态环境生物指示与生物监测技术研究进展 (Bioindicators and Biomonitors in Environmental Quality Assessment), (Mandarin) Language. Acta Ecol Sinica, Elsevier China, Chinese 33(1): 33–44

    Google Scholar 

  • Markert B, Wünschmann S, Ghaffari Z (2013c) شاخص¬هاوفرانگرهایزیستی: تعاریف،راهبردهاوکاربردهابرندمارکرتوسیمونووشمن; Persian Language. J Environ Manage Plan 2: 95–110.

    Google Scholar 

  • Markert B, Wünschmann S, Tabors G (2014) Inovatīvie vides novērtējumi. Bioindikatori un biomonitoringi: definīcijas, stratēģijas un programmas (Innovative observation of the environment: bioindicators and biomonitors: definitions, strategies and applications), Latvia Language. LATVIJAS UNIVERSITĀTES RAKSTI. 2013, 791. sēj. ZEMES UN VIDES ZINĀTNES, 17–49.

    Google Scholar 

  • Marmiroli N, Maestri E (2008) Health implications of trace elements in the environment and the food chain. Chapter 2. In: Prasad MNV (ed) Trace elements—nutritional benefits, environmental contamination, and health implications. Wiley, New York, pp 23–54

    Google Scholar 

  • Marschner H (1986) Mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Marquard H, Schaefer S (eds) (2004) Lehrbuch der Toxikologie. Wissenschaftliche Verlagsgesellschaft mbH Stuttgart, 1348

    Google Scholar 

  • McKenzie HA, Smythe LE (eds) (1988) Quantitative trace analysis of biological materials. Elsevier Science Publications, Amsterdam

    Google Scholar 

  • McGrath S, Micó C, Curdy R, Zhao F (2010) Predicting molybdenum toxicity to higher plants: influence of soil properties. Environ Pollut 158(10):3095–3102

    CAS  Google Scholar 

  • McGrath S, Chambers B, Taylor M, Carlton-Smith C (2012) Biofortification of zinc in wheat grain by the application of sewage sludge. Plant Soil 361(1–2):97–108

    CAS  Google Scholar 

  • Mench M, Vangronsveld J, Beckx C, Ruttens A (2006) Progress in assisted natural remediation of an arsenic contaminated agricultural soil. Environ Pollut 144(1):51–61

    CAS  Google Scholar 

  • Mertz W (1981) The essential trace elements. Science 213:1332–1338

    CAS  Google Scholar 

  • Michalke B (2014) Anwendung der Platinspeziation zum Nachweis einer Aktivierung oder Inhibierung von Pt enthaltenden Krebsmedikamenten. Perspect Med 2:79–90

    Google Scholar 

  • Michalke B, Fernsebner K (2014) Neue Einsichten in die Toxizität und die Speziation von Mangan. Perspect Med 2:109–124

    Google Scholar 

  • Monaci F, Leidi E, Dolores M, Valdés B, Rossini S, Bargagli R (2011) Selective uptake of major and trace elements in Erica andevalensis, an endemic species to extreme habitats in the Iberian Pyrite Belt. J Environ Sci (China) 23(3):444–452

    CAS  Google Scholar 

  • Murakami M, Ae N, Ishikawa S (2007) Phytoextraction of cadmium by rice (Oryza sativa L.), soybean (Glycine max (L.) Merr.), and maize (Zea mays L.). Environ Pollut 145(1):96–103

    CAS  Google Scholar 

  • Murakami M, Ae N, Ishikawa S, Ibaraki T, Ito M (2008) Phytoextraction by a high-Cd-accumulating rice: reduction of Cd content of soybean seeds. Environ Sci Technol 42(16):6167–6172

    CAS  Google Scholar 

  • Nierboer E, Richardson DHS (1980) A biologically and chemically significant classification of metal ions. Environ Pollut B1:3–26

    Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134

    CAS  Google Scholar 

  • Nriagu J, Pacyna J, Szefer P, Markert B, Wuenschmann S, Namiesnik J (eds) (2012) Heavy metals in the environment. Maralte Books, The Netherlands

    Google Scholar 

  • Orgel LE (2004) Prebiotic chemistry and the origin of the RNA world. Crit Rev Biochem Mol Biol 39:99–123

    CAS  Google Scholar 

  • Otte M, Jacob D (2008) Mine area remediation. In: Jørgensen SE, Fath BD (eds) Ecological engineering. Encyclopedia of ecology, vol 3. Elsevier, Oxford, pp 2397–2402

    Google Scholar 

  • Pacyna J (1985) The chemical composition of aerosols in Zabadani Valley, Syria. The Norwegian Institute for Air Research, Oslo, NILU TR 18

    Google Scholar 

  • Pacheco AMG, Freitas MC, Reis MA (2003) Trace-element measurements in atmospheric biomonitors – a look at the relative performance of INAA and PIXE on olive-tree bark. Nucl Instr Meth Phys Res A 505:425–429

    CAS  Google Scholar 

  • Pacyna J, Sundseth K, Pacyna E, Banel A (2013) ArcRisk policy-related summary report. Technical Report OR 24/2013. The Norwegian Institute for Air Research, NILU, Kjeller, Norway

    Google Scholar 

  • Pais I (1991) Criteria of essentiality, beneficiality, and toxicity. What is too little and too much? In: Pais I (ed) Cycling of nutritive elements in geo- and biosphere. In: Proceedings of the IGBP symposium of the Hungarian academy of sciences, Budapest, pp 59–77

    Google Scholar 

  • Prasad MNV (ed) (2008) Trace elements as contaminants and nutrients. consequences in ecosystems and human health. Wiley, New York

    Google Scholar 

  • Poschenrieder C, Cabot C, Martos S, Gallego B, Barcelo J (2013) Do toxic ions induce hormesis in plants? Plant Sci 212:15–25

    CAS  Google Scholar 

  • Prange A (2001) Erfassung und Beurteilung der Belastung der Elebe mit Schadstoffen. BMBF-Forschungsvorhaben, GKSS-Forschungszentrum Geesthacht GmbH, Geesthacht

    Google Scholar 

  • Quevauviller P, Maier EA (1999) Interlaboratory studies and certified reference materials for environmental analysis-The BCR approach. Elsevier, Amsterdam

    Google Scholar 

  • Quevauviller P, Borchers U, Thompson C, Simonart T (eds) (2008) The water framework directive. Ecological and chemical status monitoring water quality measurements. Wiley, New York

    Google Scholar 

  • Railsback LB (2003) An earth scientist’s periodic table of the elements and their ions. Geology 31:737–740

    CAS  Google Scholar 

  • Rasemann W, Markert B (1998) Industrial waste dumps – sampling and analysis. In: Meyers R (1998) Encyclopedia of environmental analysis and Remediation, Vol 4. Wiley, New York, pp 2356–2373

    Google Scholar 

  • Reimann C, Siewers U, Tarvainen T, Bityukova L, Eriksson J, Gilucis A, Gregorauskiene V, Lukashev V, Matinian N, Pasieczna A (2003) Agricultural soils in Northern Europe: a geochemical atlas. Geol Jb Sonderheft SD 5:1–270 (Hannover)

    Google Scholar 

  • Reimann C, Arnoldussen A, Boyd R, Finne T, Nordgulen O, Volden T, Englmaier P (2006) The influence of a city on element contents of a terrestrial moss (Hylocomium splendens). Sci Total Environ 369(1–3):419–432

    CAS  Google Scholar 

  • Reimann C, Arnoldussen A, Boyd R, Finne T, Koller F, Nordgulen O, Englmaier P (2007) Elements content in leaves of four plant species (birch, mountain ash, fern and spruce) along anthropogenic and geogenic concentration gradients. Sci Total Environ 377:416–433

    CAS  Google Scholar 

  • Rossbach M (1986) Instrumentelle Neutronenaktivierungsanalyse zur standortabhängigen Aufnahme und Verteilung von Spurenelementen durch die Salzmarschpflanze Aster tripolium von Marschwiesen des Scheldeestuars, Niederlande. In: Stoeppler M, Dürbeck H (eds) Beiträge zur Umweltprobenbank, Jülich, Spezial. KFA Jülich, FRG

    Google Scholar 

  • Roots EF (1992) Environmental information - a step to knowledge and understanding. Environ Monitor Assess 50(4):87–94

    Google Scholar 

  • Roots EF (1996) Environmental information - Autobahn or maze? In: Schroeder W, Fraenzle O, Keune H, Mandy P (eds) Global monitoring of terrestrial ecosystem. Ernst & Sohn für Architektur und technische Wissenschaften GmbH, Berlin, pp 3–31

    Google Scholar 

  • Rodriguez J, Wannaz E, Salazar M, Pignata M, Fangmeier A, Franzaring J (2012) Accumulation of polycyclic aromatic hydrocarbons and heavy metals in the tree foliage of Eucalyptus rostrata, Pinus radiata and Populus hybridus in the vicinity of a large aluminium smelter in Argentina. Atmos Environ 55:35–42

    CAS  Google Scholar 

  • Rutgers M, Van ‘t Verlaat I, Wind B, Posthuma L, Breure AM (1998) Rapid method for assessing pollution-induced community tolerance in contaminated soil. Environ Toxicol Chem 17:2210

    Google Scholar 

  • Saiki M, Chaparro CG, Vasconcellos MBA, Marcelli MP (1997) Determination of trace elements in lichens by instrumental neutron activation analysis. Radioanal Nucl Chem Budapest 217(1):111–115

    CAS  Google Scholar 

  • Salazar M, Rodriguez J, Leonardo Nieto G, Pignata (2012) Effects of heavy metal concentrations (Cd, Zn and Pb) in agricultural soils near different emission sources on quality, accumulation and food safety in soybean [Glycine max (L.) Merrill]. J Hazard Mater 233–234:244–253

    Google Scholar 

  • Sansoni B (ed) (1985) Instrumentelle multielementanalyse. VCH, Weinheim

    Google Scholar 

  • Sansoni B (1987) Multi-element analysis for environmental characterization. Pure Appl Chem 59:579

    CAS  Google Scholar 

  • Sansoni B, Iyengar V (1978) Sampling and sample preparation methods for the analysis of trace elements in biological materials. Forschungszentrum Jülich, Jülich Spezial, 13

    Google Scholar 

  • Salt D (2004) Update on plant ionomics. Plant Physiol 136(1):2451–2456

    CAS  Google Scholar 

  • Schroeder W, Fraenzle O, Keune H, Mandy P (eds) (1996) Global monitoring of terrestrial ecosystems. Ernst, Berlin

    Google Scholar 

  • Schroeder P, Navarro-Avino J, Azaizeh H, Golan-Goldhirsh A, Di Gregorio S, Komives T, Langergraber G, Lenz A, Maestri E, Memon AR, Ranalli A, Sebastiani L, Smrcek S, Vanek T, Vuilleumier S, Wissing F (2007) Using phytoremediation technologies to upgrade waste water treatment in Europe. Environ Sci Pollut Res 14(7):490–497

    CAS  Google Scholar 

  • Schroeder P, Daubner D, Maier H, Neustifter J, Debus R (2008a) Phytoremediation of organic xenobiotics – glutathione dependent detoxification in Phragmites plants from European treatment sites. Bioresour Technol 99(15):7183–7197

    CAS  Google Scholar 

  • Schroeder P, Herzig R, Bojinov B, Ruttens A, Nehnevajova E, Stamatiadis S, Memon A, Vassilev A, Caviezel M, Vangronsveld J (2008b) Bioenergy to save the world – producing novel energy plants for growth on abandoned land. Environ Sci Pollut Res 15(3):196–204

    CAS  Google Scholar 

  • Schroeder W, Hornsmann I, Pesch R, Schmidt G, Fraenzle S, Wuenschmann S, Heidenreich H, Markert B (2008) Moosmonitoring als Spiegel der Landnutzung? Stickstoff- und Metallakkumulation zweier Regionen Mitteleuropas. Z Umweltchem Ökotox 20(1):62–74

    CAS  Google Scholar 

  • Schüürmann G, Markert B (eds) (1998) Ecotoxicology. Ecological fundamentals, chemical exposure, and biological effects. Wiley, New York

    Google Scholar 

  • Schwarz OJ, Jonas WL (1997) Bioaccumulation of xenobiotic organic chemicals by terrestrial plants. In: Wang W, Gorsuch JW, Hughes J (eds) Plants for Environmental Studies, Chap. 14. CRC, Boca Raton, pp 417–449

    Google Scholar 

  • Serbula S, Miljkovic D, Kovacevic R, Ilic A (2012) Assessment of airborne heavy metal pollution using plant parts and topsoil. Ecotoxicol Environ Saf 76(2):209–214

    CAS  Google Scholar 

  • Sheppard S (1991) A field and literature survey, with interpretation of elemental concentrations in blueberry (Vaccinium augustifolium). Can J Bot 69(1):63–77

    CAS  Google Scholar 

  • Siewers U, Herpin U (1998) Schwermetalleinträge in Deutschland. Moos-Monitoring 1995/96. Geol Jb Sonderheft SD Hannover 2:1–200

    Google Scholar 

  • Siewers U, Herpin U, Strassburg S (2000) Schwermetalleinträge in Deutschland. Teil 2: Moos-Monitoring 1995/1996. Geol. Jb. Sonderheft SD, Hannover. 3: 1–121.

    Google Scholar 

  • Smeets K, Ruytinx J, Van Belleghem F, Semane B, Lin D, Vangronsveld J, Cuypers A (2008) Critical evaluation and statistical validation of a hydroponic culture system for Arabidopsis thaliana. Plant Physiol Biochem 46(2):212–218

    CAS  Google Scholar 

  • Smodis B (2003) IAEA approaches to assessment of chemical elements in atmosphere. In: Markert BA, Breure AM, Zechmeister HG (eds) Bioindicators and biomonitors. Principles, concepts and applications. Elsevier, Amsterdam, pp 875–902

    Google Scholar 

  • Streit B, Stumm W (1993) Chemical properties of metals and the process of bioaccumulation in terrestrial plants. In: Markert B (ed) Plants as Biomonitors – Indicators for Heavy Metals in the Terrestrial Environment. VCH, Weinheim

    Google Scholar 

  • Stoeppler M, Duerbeck HW, Nuernberg HW (1982) Environmental specimen banking. Talanta 29:963

    CAS  Google Scholar 

  • Suchara I, Sucharova J, Hola M (2007) Bio-Monitoring of the atmospheric deposition of elements using moss analysis in the Czech Republic. Acta Pruhoniciana 87:186

    Google Scholar 

  • Suchara I, Rulík P, Hůlka J, Pilátová H (2011) Retrospective determination of 137Cs specific activity distribution in spruce bark and bark aggregated transfer factor in forests on the scale of the Czech Republic ten years after the Chernobyl accident. Sci Total Environ 409(10):1927–1934

    CAS  Google Scholar 

  • Sucharová J, Suchara I (2006) Determination of 36 elements in plant reference materials with different Si contents by inductively coupled plasma mass spectrometry: comparison of microwave digestions assisted by three types of digestion mixture. Anal Chim Acta 576:163–176

    Google Scholar 

  • Szárazová K, Fargašová A, Hiller E, Velická Z, Pastierová J (2008) Phytotoxic effects and translocation of Cr and Ni in washing wastewaters from cutlery production line to mustard (Sinapis alba L.) seedlings. Fresenius Environ Bull 17:58–65

    Google Scholar 

  • Tabors G, Brūmelis G, Lapiņa L, Pospelova G, Nikodemus O (2004) Changes in element concentrations in moss segments after cross-transplanting between a polluted and non-polluted site. J Atmos Chem 49:191–197

    CAS  Google Scholar 

  • Tipton KD, Ferrando AA, William BD, Wolf RR (1996) Muscle protein metabolism in female swimmers after a combination of resistance and endurance exercise. J Appl Physiol 81:2034–2038

    CAS  Google Scholar 

  • Tölg G (1989) Analytical chemistry and the quality of life. Kontakte, Darmstadt

    Google Scholar 

  • Trapp S, Feificova D, Rasmussen NF, Bauer-Gottwein P (2008) Plant uptake of NaCl in relation to enzyme kinetics and toxic effects. Environ Exp Bot 64(1):1–7

    CAS  Google Scholar 

  • van der Ent A, Baker A, Reeves R, Pollard A, Schat H (2012) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362(1–2):319–334

    Google Scholar 

  • Verkleij J (1993) The effects of heavy metal stress on higher plants and their use as biomonitors. In: Markert B (ed) Plants as biomonitors. Indicators for heavy metals in the terrestrial environment. VCH, Weinheim, pp 416–424

    Google Scholar 

  • Verkleij JAC (2008) Mechanisms of metal hypertolerance and (hyper)accumulation in plants. Agrochimica 52(3):167–188

    CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2008) Molecular mechanisms of metal hyperaccumulation and tolerance in plants. New Phytol. doi:10.1111/j.1469-8137.2998.02748x

    Google Scholar 

  • Vernadsky V (1967) The chemical structure of the biosphere of the earth and its environment. Nauka, Moscow

    Google Scholar 

  • Vijgen J, Abhilash P, Li Y, Lal R, Forter M, Torres J, Singh N, Yunus M, Tian C, Schäffer A, Weber R (2011) Hexachlorocyclohexane (HCH) as new Stockholm Convention POPs--a global perspective on the management of Lindane and its waste isomers. Environ Sci Pollut Res Int 18(2):152–162

    Google Scholar 

  • Vtorova V, Kholopova L, Markert B, Leffler U (2001) Multi-Elemental Composition of Tropical Plants and Bioindication of the Environmental Status. In: Biogeochemistry and Geochemical Ecology. Selected Presentations of the 2nd Russian School of Thought Geochemical Ecology and the Biogeochemical Study of Taxons of the Biosphere. January 25-29, 1999, Moscow, 177-189.

    Google Scholar 

  • Vutchkov M (2001) Biomonitoring of air pollution in Jamaica through trace-element analysis of epiphytic plants using nuclear and related analytical techniques. In: Co-ordinated research project on validation and application of plants as biomonitors of trace element atmospheric pollution, analyzed by nuclear and related techniques. IAEA, NAHRES-63, Vienna

    Google Scholar 

  • Wang M, Markert B, Shen S, Chen W, Peng C, Ouyang Z (2011) Microbial biomass carbon and enzyme activities of urban soils in Beijing. Environ Sci Pollut Res (ESRR) Springer 18:958–967

    CAS  Google Scholar 

  • Watanabe T, Broadley M, Jansen S, White P, Takada J, Satake K, Takamatsu T, Tuah S, Osaki M (2007) Evolutionary control of leaf element composition in plants. New Phytol 174:516–523

    CAS  Google Scholar 

  • Wedepohl K (1969) Handbook of geochemistry. Springer, Heildelberg

    Google Scholar 

  • White P, Broadley M (2009) Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182(1):49–84

    CAS  Google Scholar 

  • White P, Broadley M, Thompson J, McNicol J, Crawley M, Poulton P, Johnston A (2012) Testing the distinctness of shoot ionomes of angiosperm families using the Rothamsted Park Grass Continuous Hay Experiment. New Phytol 196:101–109

    CAS  Google Scholar 

  • Wittig R (1993) General aspects of biomonitoring heavy metals by plants. In: Markert B (ed) Plants as biomonitors—indicators for heavy metals in the terrestrial environment. VCH, Weinheim, pp 3–27

    Google Scholar 

  • Wolterbeek B (2002) Biomonitoring of trace element air pollution: principles, possibilities and perspectives. Environ Pollut Lond 120:11–21

    CAS  Google Scholar 

  • Wolterbeek HT, Kuik P, Verburg TG, Herpin U, Markert B, Thöni L (1995) Moss interspecies comparisons in trace element concentrations. Environ Monit Assess 35:263–286

    CAS  Google Scholar 

  • Wolterbeek H, Sarmento S, Verburg T (2010) Is there a future for biomonitoring of elemental air pollution? A review focused on a larger-scaled health related (epidemiological) context. J Radioanal Nucl Chem 286:195–210

    CAS  Google Scholar 

  • Woolhouse HW (1983) Toxicity and tolerance in the responses of plants to metals. In: Lange OL, Nobel PS, Osmond CG, Ziegler H (eds) Physiological plant ecology III. Encyclopedia of plant physiology, New Series, vol 12C. Springer, Heidelberg, pp 245–300

    Google Scholar 

  • Zechmeister HG, Dullinger S, Hohenwallner D, Riss A, Hanus-Illnar Scharf S (2007) Pilot study on road traffic emissions (PAHs, haevy metals) measured by using mosses in a tunnel experiment. Austria Embv Sci Poll Res 13:398–404

    Google Scholar 

  • Zeisler R, Stone SF, Sanders RW (1988) Anal Chem 60:2760

    CAS  Google Scholar 

  • Zhao F, Stroud J, Eagling T, Dunham S, McGrath S, Shewry P (2010) Accumulation, distribution, and speciation of arsenic in wheat grain. Environ Sci Technol 44(14):5464–5468

    Google Scholar 

  • Zhao F, Harris E, Yan J, Ma J, Wu L, Liu W, McGrath S, Zhou J, Zhu Y (2013) Arsenic methylation in soils and its relationship with microbial arsM abundance and diversity, and As speciation in rice. Environ Sci Technol 47(13):7147–7154

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Markert, B., Fränzle, S., Wünschmann, S. (2015). The Biological System of the Elements. In: Chemical Evolution. Springer, Cham. https://doi.org/10.1007/978-3-319-14355-2_2

Download citation

Publish with us

Policies and ethics