Skip to main content

Radiation Effects and Fault Tolerance Techniques for FPGAs and GPUs

  • Chapter
FPGAs and Parallel Architectures for Aerospace Applications

Abstract

This book introduces the concepts of soft errors in FPGAs and GPUs. The chapters cover radiation effects in FPGAs, fault-tolerant techniques for FPGAs, use of COTS FPGAs in aerospace applications, experimental data of FPGAs under radiation, FPGA embedded processors under radiation, and fault injection in FPGAs. Since dedicated parallel processing architectures such as GPUs have become more desirable in aerospace applications due to high computational power, GPU analysis under radiation is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nicolaidis M (2011) Soft errors in modern electronic systems. Springer, New York, p 318

    Book  Google Scholar 

  2. Stassinopolous EG, Raymond JP (1988) The space radiation environment for electronics. Proc IEEE 76:1423–1442

    Article  Google Scholar 

  3. Dodd PE, Massengill LW (2003) Basic mechanisms and modeling of single-event upset in digital microelectronics. IEEE Trans Nucl Sci 50(3):583–602

    Article  Google Scholar 

  4. Kastensmidt FL, Reis R, Carro L (2006) Fault-tolerance techniques for SRAM-based FPGAs (frontiers in electronic testing). Springer, New York

    Google Scholar 

  5. Microsemi. ProASIC3, IGLOO and SmartFusion flash family FPGAs datasheet. www.microsemi.com

  6. Rezgui S, Louris P, Sharmin R (2010) SEE characterization of the new RTAX-DSP (RTAX-D) antifuse-based FPGA. IEEE Trans Nucl Sci 57(6):3537–3546

    Google Scholar 

  7. Rech P, Aguiar C, Frost C, Carro L (2013) An efficient and experimentally tuned software-based hardening strategy for matrix multiplication on GPUs. IEEE Trans Nucl Sci 60(4):2797–2804

    Article  Google Scholar 

  8. Rech P, Pilla L, Navaux POA, Carro L (2014) Impact of GPUs parallelism management on safety-critical and HPC applications reliability. In: Proceeding IEEE international conference on dependable systems and networks (DSN), June 2014, pp 455–466

    Google Scholar 

  9. Mukherjee SS, Emer J, Reinhardt SK (2005) The soft error problem: an architectural perspective. In: High-performance computer architecture, 2005. HPCA-11. 11th international symposium on, 12–16 Feb 2005, pp 243–247

    Google Scholar 

  10. Schrimpf RD, Fleetwood DM (2004) Radiation effects and soft errors in integrated circuits and electronic devices. Word Scientific, Singapore

    Google Scholar 

  11. Anghel L, Alexandrescu D, Nicolaidis M (2000) Evaluation of a soft error tolerance technique based on time and/or space redundancy. In: The Proceedings of symposium on integrated circuits and systems design, SBCCI, 13, pp 237–242

    Google Scholar 

  12. Oliveira DAG, Rech P, Pilla LL, Navaux POA, Carro L (2014) GPGPUs ECC efficiency and efficacy. In: International symposium on defect and fault tolerance in VLSI and nanotechnology systems

    Google Scholar 

  13. Pilla LL, Rech P, Silvestri F, Frost C, Navaux POA, Sonza Reorda M, Carro L (2014) Software-based hardening strategies for neutron sensitive FFT algorithms on GPUs. IEEE Trans Nucl Sci 61(4):1874–1880

    Article  Google Scholar 

  14. Sterpone L, Violante M (2007) A new partial reconfiguration-based fault-injection system to evaluate SEU effects in SRAM-based FPGAs. IEEE Trans Nucl Sci 54(4):965–970

    Article  Google Scholar 

  15. Fang B, Pattabiraman K, Ripeanu M, Gurumurthi S (2014) GPU-Qin: A methodology for evaluating the error resilience of GPGPU applications. In: Proceedings of the IEEE international symposium on performance analysis of systems and software (ISPASS)

    Google Scholar 

  16. Xilinx, Inc. (2013) Device reliability report third quarter 2013. http://www.xilinx.com/support/documentation/user_guides/ug116.pdf

  17. Violante M, Sterpone L, Manuzzato A, Gerardin S, Rech P, Bagatin M, Paccagnella A, Andreani C, Gorini G, Pietropaolo A, Cargarilli G, Pontarelli S, Frost C (2007) A new hardware/software platform and a new 1/E neutron source for soft error studies: testing FPGAs at the ISIS facility. IEEE Trans Nucl Sci 54(4):1184–1189

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda Kastensmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kastensmidt, F., Rech, P. (2016). Radiation Effects and Fault Tolerance Techniques for FPGAs and GPUs. In: Kastensmidt, F., Rech, P. (eds) FPGAs and Parallel Architectures for Aerospace Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-14352-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14352-1_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14351-4

  • Online ISBN: 978-3-319-14352-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics