Skip to main content

Perspective of Biofuels from Wastes

  • Chapter
  • First Online:
Lignocellulose-Based Bioproducts

Part of the book series: Biofuel and Biorefinery Technologies ((BBT,volume 1))

Abstract

In the world today, with an everyday increase in global population, transitioning the society to a more sustainable atmosphere would be the only solution for guaranteeing a long-lasting life in this planet. Despite the fact that the earth is armed with various natural resources, it should be accepted that they would not last forever. By converting useless wastes and residues to a new source for supplying energy rather than wasting the existed energy for their disposal, not only the concerns for the depletion of fossil fuels would be reduced but also the environment dares to breathe. Concerning this issue, the present chapter has tried to depict a clearer perspective for waste-based biofuels which are known as second-generation ones. The discussed products in this chapter are biodiesel, bioethanol, biobutanol, biogas, and biohydrogen. The focus is mostly on new researches which have introduced new waste as feedstock and their usage feasibility, though production processes and challenges ahead are included as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdehagh N, Tezel FH, Thibault J (2014) Separation techniques in butanol production: challenges and developments. Biomass Bioenergy 60:222–246

    Google Scholar 

  • Abu Tayeh H, Najami N, Dosoretz C, Tafesh A, Azaizeh H (2014) Potential of bioethanol production from olive mill solid wastes. Bioresour Technol 152:24–30

    Google Scholar 

  • Afazeli H, Jafari A, Rafiee S, Nosrati M (2014) An investigation of biogas production potential from livestock and slaughterhouse wastes. Renew Sust Energ Rev 34:380–386

    Google Scholar 

  • Alkanok G, Demirel B, Onay TT (2014) Determination of biogas generation potential as a renewable energy source from supermarket wastes. Waste Manage 34(1):134–140

    Google Scholar 

  • Alptekin E, Canakci M, Sanli H (2012) Evaluation of leather industry wastes as a feedstock for biodiesel production. Fuel 95:214–220

    Google Scholar 

  • Angerbauer C, Siebenhofer M, Mittelbach M, Guebitz G (2008) Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresour Technol 99(8):3051–3056

    Google Scholar 

  • Appels L, Baeyens J, Degrève J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energ Combust 34(6):755–781

    Google Scholar 

  • Arifin Y, Tanudjaja E, Dimyati A, Pinontoan R (2014) A second generation biofuel from cellulosic agricultural by-product fermentation using clostridium species for electricity generation. Energy Procedia 47:310–315

    Google Scholar 

  • Ariunbaatar J, Panico A, Esposito G, Pirozzi F, Lens PN (2014) Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl Energ 123:143–156

    Google Scholar 

  • Avami A (2013) Assessment of optimal biofuel supply chain planning in Iran: technical, economic, and agricultural perspectives. Renew Sust Energ Rev 26:761–768

    Google Scholar 

  • Azbar N, Levin DB (2012) State of the art and progress in production of biohydrogen. Bentham Science Publishers, Sharjah

    Google Scholar 

  • Bajaj M, Winter J (2013) Biogas and biohydrogen production potential of high strength automobile industry wastewater during anaerobic degradation. J Environ Manage 128:522–529

    Google Scholar 

  • Balat M, Balat M (2009) Political, economic and environmental impacts of biomass-based hydrogen. Int J Hydrogen Energ 34(9):3589–3603

    Google Scholar 

  • Bartels JR, Pate MB, Olson NK (2010) An economic survey of hydrogen production from conventional and alternative energy sources. Int J Hydrogen Energ 35(16):8371–8384

    Google Scholar 

  • Bayrakci AG, Koçar G (2014) Second-generation bioethanol production from water hyacinth and duckweed in Izmir: a case study. Renew Sust Energ Rev 30:306–316

    Google Scholar 

  • Bentsen NS, Felby C, Thorsen BJ (2014) Agricultural residue production and potentials for energy and materials services. Prog Energ Combust 40:59–73

    Google Scholar 

  • Boocock DGB, Konar SK, Leung A, Liu J, Ly LD (1993) Liquid hydrocarbons from the extraction and catalytic pyrolysis of sewage sludge. In: Bridgwater AV (ed) Advances in thermochemical biomass conversion. Springer, The Netherlands, pp 986–999

    Google Scholar 

  • Bougrier C, Albasi C, Delgenes J, Carrere H (2006) Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability. Chem Eng Process Process Intensif 45(8):711–718

    Google Scholar 

  • Cai D, Zhang T, Zheng J, Chang Z, Wang Z, Qin P-y, Tan T-w (2013) Biobutanol from sweet sorghum bagasse hydrolysate by a hybrid pervaporation process. Bioresour Technol 145:97–102

    Google Scholar 

  • Canakci M (2007) The potential of restaurant waste lipids as biodiesel feedstocks. Bioresour Technol 98(1):183–190

    Google Scholar 

  • Carrère H, Dumas C, Battimelli A, Batstone D, Delgenes J, Steyer J, Ferrer I (2010) Pretreatment methods to improve sludge anaerobic degradability: a review. J Hazard Mater 183(1):1–15

    Google Scholar 

  • Carriquiry MA, Du X, Timilsina GR (2011) Second generation biofuels: economics and policies. Energ Policy 39(7):4222–4234

    Google Scholar 

  • Cavinato C, Bolzonella D, Fatone F, Cecchi F, Pavan P (2011) Optimization of two-phase thermophilic anaerobic digestion of biowaste for hydrogen and methane production through reject water recirculation. Bioresour Technol 102(18):8605–8611

    Google Scholar 

  • Cekmecelioglu D, Uncu ON (2013) Kinetic modeling of enzymatic hydrolysis of pretreated kitchen wastes for enhancing bioethanol production. Waste Manage 33(3):735–739

    Google Scholar 

  • Cesaro A, Naddeo V, Amodio V, Belgiorno V (2012) Enhanced biogas production from anaerobic codigestion of solid waste by sonolysis. Ultrason Sonochem 19(3):596–600

    Google Scholar 

  • Chakraborty R, Sahu H (2014) Intensification of biodiesel production from waste goat tallow using infrared radiation: process evaluation through response surface methodology and artificial neural network. Appl Energ 114:827–836

    Google Scholar 

  • Che F, Sarantopoulos I, Tsoutsos T, Gekas V (2012) Exploring a promising feedstock for biodiesel production in Mediterranean countries: a study on free fatty acid esterification of olive pomace oil. Biomass Bioenerg 36:427–431

    Google Scholar 

  • Cheirsilp B, Louhasakul Y (2013) Industrial wastes as a promising renewable source for production of microbial lipid and direct transesterification of the lipid into biodiesel. Bioresour Technol 142:329–337

    Google Scholar 

  • Chen W-H, Chen Y-C, Lin J-G (2013) Evaluation of biobutanol production from non-pretreated rice straw hydrolysate under non-sterile environmental conditions. Bioresour Technol 135:262–268

    Google Scholar 

  • Chen W-H, Jian Z-C (2013) Evaluation of recycling the effluent of hydrogen fermentation for biobutanol production: Kinetic study with butyrate and sucrose concentrations. Chemosphere 93(4):597–603

    Google Scholar 

  • Cheng C-L, Che P-Y, Chen B-Y, Lee W-J, Lin C-Y, Chang J-S (2012) Biobutanol production from agricultural waste by an acclimated mixed bacterial microflora. Appl Energ 100:3–9

    Google Scholar 

  • Chhetri AB, Watts KC, Islam MR (2008) Waste cooking oil as an alternate feedstock for biodiesel production. Energies 1(1):3–18

    Google Scholar 

  • Chiesa S, Gnansounou E (2014) Use of empty fruit bunches from the oil palm for bioethanol production: a thorough comparison between dilute acid and dilute alkali pretreatment. Bioresour Technol 159:355–364

    Google Scholar 

  • Chin H-C, Choong W-W, Wan Alwi SR, Mohammed AH (2013) Issues of social acceptance on biofuel development. J Clean Prod 71:30–39

    Google Scholar 

  • Chinellato G, Cavinato C, Bolzonella D, Heaven S, Banks C (2013) Biohydrogen production from food waste in batch and semi-continuous conditions: evaluation of a two-phase approach with digestate recirculation for pH control. Int J Hydrogen Energ 38(11):4351–4360

    Google Scholar 

  • Choi IS, Kim J-H, Wi SG, Kim KH, Bae H-J (2013) Bioethanol production from mandarin (Citrus unshiu) peel waste using popping pretreatment. Appl Energ 102:204–210

    Google Scholar 

  • Choi IS, Wi SG, Kim S-B, Bae H-J (2012) Conversion of coffee residue waste into bioethanol with using popping pretreatment. Bioresour Technol 125:132–137

    Google Scholar 

  • Chong M-L, Sabaratnam V, Shirai Y, Hassan MA (2009) Biohydrogen production from biomass and industrial wastes by dark fermentation. Int J Hydrogen Energ 34(8):3277–3287

    Google Scholar 

  • Costa J, Almeida M, Alvim-Ferraz M, Dias J (2013) Biodiesel production using oil from fish canning industry wastes. Energ Convers Manage 74:17–23

    Google Scholar 

  • da Costa Sousa L, Chundawat SP, Balan V, Dale BE (2009) ‘Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies. Curr Opin Biotech 20(3):339–347

    Google Scholar 

  • Das D, Khanna N, Dasgupta CN (2014) Biohydrogen production: fundamentals and technology advances. CRC Press, Boca Raton

    Google Scholar 

  • De Bari I, Cuna D, Di Matteo V, Liuzzi F (2014) Bioethanol production from steam-pretreated corn stover through an isomerase mediated process. New Biotechnol 31(2):185–195

    Google Scholar 

  • De Gioannis G, Muntoni A, Polettini A, Pomi R (2013) A review of dark fermentative hydrogen production from biodegradable municipal waste fractions. Waste Manage 33(6):1345–1361

    Google Scholar 

  • Dewan A, Li Z, Han B, Karim MN (2013) Saccharification and fermentation of waste sweet potato for bioethanol production. J Food Process Eng 36(6):739–747

    Google Scholar 

  • Dubey AK, Gupta PK, Garg N, Naithani S (2012) Bioethanol production from waste paper acid pretreated hydrolyzate with xylose fermenting Pichia stipitis. Carbohyd Polym 88(3):825–829

    Google Scholar 

  • Dufreche S, Hernandez R, French T, Sparks D, Zappi M, Alley E (2007) Extraction of lipids from municipal wastewater plant microorganisms for production of biodiesel. J Am Oil Chem Soc 84(2):181–187

    Google Scholar 

  • Eiroa M, Costa J, Alves M, Kennes C, Veiga M (2012) Evaluation of the biomethane potential of solid fish waste. Waste Manage 32(7):1347–1352

    Google Scholar 

  • El-Mashad HM, Zhang R, Avena-Bustillos RJ (2008) A two-step process for biodiesel production from salmon oil. Biosyst Eng 99(2):220–227

    Google Scholar 

  • Elbeshbishy E, Hafez H, Dhar BR, Nakhla G (2011) Single and combined effect of various pretreatment methods for biohydrogen production from food waste. Int J Hydrogen Energ 36(17):11379–11387

    Google Scholar 

  • Faloye F, Gueguim Kana E, Schmidt S (2014) Optimization of biohydrogen inoculum development via a hybrid pH and microwave treatment technique: semi pilot scale production assessment. Int J Hydrogen Energ 39(11):5607–5616

    Google Scholar 

  • Fan X, Burton R, Austic G (2010) Preparation and characterization of biodiesel produced from fish oil. Chem Tech Fuels Oil 46(5):287–293

    Google Scholar 

  • Fernández CM, Ramos MJ, Pérez Á, Rodríguez JF (2010) Production of biodiesel from winery waste: extraction, refining and transesterification of grape seed oil. Bioresour Technol 101(18):7019–7024

    Google Scholar 

  • Ferreira L, Duarte E, Figueiredo D (2012) Utilization of wasted sardine oil as co-substrate with pig slurry for biogas production: a pilot experience of decentralized industrial organic waste management in a Portuguese pig farm. Bioresource Technol 116:285–289

    Google Scholar 

  • Festel G, Würmseher M, Rammer C, Boles E, Bellof M (2014) Modelling production cost scenarios for biofuels and fossil fuels in Europe. J Clean Prod 66:242–253

    Google Scholar 

  • Fiorese G, Catenacci M, Verdolini E, Bosetti V (2013) Advanced biofuels: future perspectives from an expert elicitation survey. Energ Policy 56:293–311

    Google Scholar 

  • Freedman B, Pryde E, Mounts T (1984) Variables affecting the yields of fatty esters from transesterified vegetable oils. J Am Oil Chem Soc 61(10):1638–1643

    Google Scholar 

  • Gadhe A, Sonawane SS, Varma MN (2014) Ultrasonic pretreatment for an enhancement of biohydrogen production from complex food waste. Int J Hydrogen Energ 39(15):7721–7729

    Google Scholar 

  • Gottumukkala LD, Parameswaran B, Valappil SK, Mathiyazhakan K, Pandey A, Sukumaran RK (2013) Biobutanol production from rice straw by a non acetone producing Clostridium sporogenes BE01. Bioresour Technol 145:182–187

    Google Scholar 

  • Graebig M, Bringezu S, Fenner R (2010) Comparative analysis of environmental impacts of maize–biogas and photovoltaics on a land use basis. Sol Energy 84(7):1255–1263

    Google Scholar 

  • Guo XM, Trably E, Latrille E, Carrère H, Steyer J-P (2010) Hydrogen production from agricultural waste by dark fermentation: a review. Int J Hydrogen Energ 35(19):10660–10673

    Google Scholar 

  • Haas M, Foglia T (2005) Alternate feedstocks and technologies for biodiesel production. In: The biodiesel handbook, 2nd edn. AOCS Publishing, Urbana, pp 42–61

    Google Scholar 

  • Haghighi Mood S, Hossein Golfeshan A, Tabatabaei M, Salehi Jouzani G, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sust Energ Rev 27:77–93

    Google Scholar 

  • Han SH, Cho DH, Kim YH, Shin SJ (2013) Biobutanol production from 2-year-old willow biomass by acid hydrolysis and acetone–butanol–ethanol fermentation. Energy 61:13–17

    Google Scholar 

  • Harde SM, Bankar SB, Ojamo H, Granström T, Singhal RS, Survase SA (2014) Continuous lignocellulosic ethanol production using Coleus forskohlii root hydrolysate. Fuel 126:77–84

    Google Scholar 

  • Hay JXW, Wu TY, Juan JC (2013) Biohydrogen production through photo fermentation or dark fermentation using waste as a substrate: overview, economics, and future prospects of hydrogen usage. Biofuel Bioprod Bior 7(3):334–352

    Google Scholar 

  • Hoornweg D, Bhada-Tata P (2012) What a waste: a global review of solid waste management. World Bank, Washington DC

    Google Scholar 

  • Hung C, Solli C (2012) Biogas from municipal organic waste–Trondheim’s environmental holy grail? Energy Procedia 20:11–19

    Google Scholar 

  • Jeihanipour A (2011) Waste textiles bioprocessing to ethanol and biogas. Chalmers University of Technology, Göteborg

    Google Scholar 

  • Jeihanipour A, Taherzadeh MJ (2009) Ethanol production from cotton-based waste textiles. Bioresour Technol 100(2):1007–1010

    Google Scholar 

  • Jeihanipour A, Karimi K, Niklasson C, Taherzadeh MJ (2010a) A novel process for ethanol or biogas production from cellulose in blended-fibers waste textiles. Waste Manage 30(12):2504–2509

    Google Scholar 

  • Jeihanipour A, Karimi K, Taherzadeh MJ (2010b) Enhancement of ethanol and biogas production from high-crystalline cellulose by different modes of NMO pretreatment. Biotechnol Bioeng 105(3):469–476

    Google Scholar 

  • Jeihanipour A, Aslanzadeh S, Rajendran K, Balasubramanian G, Taherzadeh MJ (2013) High-rate biogas production from waste textiles using a two-stage process. Renew Energ 52:128–135

    Google Scholar 

  • Jia X, Li M, Xi B, Zhu C, Yang Y, Xia T, Song C, Pan H (2014) Integration of fermentative biohydrogen with methanogenesis from fruit–vegetable waste using different pre-treatments. Energ Convers Manage (in press)

    Google Scholar 

  • Kafle GK, Kim SH (2013) Anaerobic treatment of apple waste with swine manure for biogas production: batch and continuous operation. Appl Energ 103:61–72

    Google Scholar 

  • Kafle GK, Kim SH, Sung KI (2013) Ensiling of fish industry waste for biogas production: a lab scale evaluation of biochemical methane potential (BMP) and kinetics. Bioresource Technol 127:326–336

    Google Scholar 

  • Kahr H, Wimberger J, Schürz D, Jäger A (2013) Evaluation of the biomass potential for the production of lignocellulosic bioethanol from various agricultural residues in Austria and Worldwide. Energy Procedia 40:146–155

    Google Scholar 

  • Kargbo DM (2010) Biodiesel production from municipal sewage sludges. Energ Fuel 24(5):2791–2794

    Google Scholar 

  • Kelessidis A, Stasinakis AS (2012) Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Manage 32(6):1186–1195

    Google Scholar 

  • Kim J-S, Park S-C, Kim J-W, Park JC, Park S-M, Lee J-S (2010) Production of bioethanol from lignocellulose: status and perspectives in Korea. Bioresour Technol 101(13):4801–4805

    Google Scholar 

  • Kırtay E (2011) Recent advances in production of hydrogen from biomass. Energ Convers Manage 52(4):1778–1789

    Google Scholar 

  • Köhler J, Walz R, Marscheder-Weidemann F, Thedieck B (2013) Lead markets in 2nd generation biofuels for aviation: a comparison of Germany, Brazil and the USA. Environ Innov Societ Transit 10:59–76

    Google Scholar 

  • Komonkiat I, Cheirsilp B (2013) Felled oil palm trunk as a renewable source for biobutanol production by Clostridium spp. Bioresour Technol 146:200–207

    Google Scholar 

  • Kothari R, Tyagi V, Pathak A (2010) Waste-to-energy: a way from renewable energy sources to sustainable development. Renew Sust Energ Rev 14(9):3164–3170

    Google Scholar 

  • Kulkarni MG, Dalai AK (2006) Waste cooking oil an economical source for biodiesel: a review. Ind Eng Chem Res 45(9):2901–2913

    Google Scholar 

  • Kumar M, Gayen K (2011) Developments in biobutanol production: new insights. Appl Energ 88(6):1999–2012

    Google Scholar 

  • Kumar M, Goyal Y, Sarkar A, Gayen K (2012) Comparative economic assessment of ABE fermentation based on cellulosic and non-cellulosic feedstocks. Appl Energ 93:193–204

    Google Scholar 

  • Kuttiraja M, Sindhu R, Varghese PE, Sandhya SV, Binod P, Vani S, Pandey A, Sukumaran RK (2013) Bioethanol production from bamboo (Dendrocalamus sp.) process waste. Biomass Bioenerg 59:142–150

    Google Scholar 

  • Lee RA, Lavoie J-M (2013) From first-to third-generation biofuels: challenges of producing a commodity from a biomass of increasing complexity. Anim Frontiers 3(2):6–11

    Google Scholar 

  • Leiva-Candia D, Pinzi S, Redel-Macías M, Koutinas A, Webb C, Dorado M (2014) The potential for agro-industrial waste utilization using oleaginous yeast for the production of biodiesel. Fuel 123:33–42

    Google Scholar 

  • Li Y, Chen Y-F, Chen P, Min M, Zhou W, Martinez B, Zhu J, Ruan R (2011) Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour Technol 102(8):5138–5144

    Google Scholar 

  • Li Y-C, Liu Y-F, Chu C-Y, Chang P-L, Hsu C-W, Lin P-J, Wu S-Y (2012) Techno-economic evaluation of biohydrogen production from wastewater and agricultural waste. Int J Hydrogen Energ 37(20):15704–15710

    Google Scholar 

  • Liang Y, Tang T, Umagiliyage AL, Siddaramu T, McCarroll M, Choudhary R (2012) Utilization of sorghum bagasse hydrolysates for producing microbial lipids. Appl Energ 91(1):451–458

    Google Scholar 

  • Liew LN, Shi J, Li Y (2012) Methane production from solid-state anaerobic digestion of lignocellulosic biomass. Biomass Bioenerg 46:125–132

    Google Scholar 

  • Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energ Combust 38(4):449–467

    Google Scholar 

  • Lin C-Y, Li R-J (2009) Engine performance and emission characteristics of marine fish-oil biodiesel produced from the discarded parts of marine fish. Fuel Process Technol 90(7):883–888

    Google Scholar 

  • Lindorfer J, Fazeni K, Steinmüller H (2014) Life cycle analysis and soil organic carbon balance as methods for assessing the ecological sustainability of 2nd generation biofuel feedstock. Sustain Energ Technol Ass 5:95–105

    Google Scholar 

  • Liu X, Gao X, Wang W, Zheng L, Zhou Y, Sun Y (2012) Pilot-scale anaerobic co-digestion of municipal biomass waste: focusing on biogas production and GHG reduction. Renew Energ 44:463–468

    Google Scholar 

  • Liu Z, Zhang C, Lu Y, Wu X, Wang L, Wang L, Han B, Xing X-H (2013) States and challenges for high-value biohythane production from waste biomass by dark fermentation technology. Bioresour Technol 135:292–303

    Google Scholar 

  • López-Linares JC, Romero I, Cara C, Ruiz E, Moya M, Castro E (2014) Bioethanol production from rapeseed straw at high solids loading with different process configurations. Fuel 122:112–118

    Google Scholar 

  • Loyarkat S, Cheirsilp B, Umsakul K (2013) Decanter cake waste as a renewable substrate for biobutanol production by Clostridium beijerinckii. Process Biochem 48(12):1933–1941

    Google Scholar 

  • Mandolesi de Araújo CD, de Andrade CC, de Souza e Silva E, Dupas FA (2013) Biodiesel production from used cooking oil: a review. Renew Sust Energ Rev 27:445–452

    Google Scholar 

  • Matsakas L, Kekos D, Loizidou M, Christakopoulos P (2014) Utilization of household food waste for the production of ethanol at high dry material content. Biotechnol Biofuels 7(1):1–9

    Google Scholar 

  • Menten F, Chèze B, Patouillard L, Bouvart F (2013) A review of LCA greenhouse gas emissions results for advanced biofuels: the use of meta-regression analysis. Renew Sust Energ Rev 26:108–134

    Google Scholar 

  • Mohan SV, Chiranjeevi P, Mohanakrishna G (2012) A rapid and simple protocol for evaluating biohydrogen production potential (BHP) of wastewater with simultaneous process optimization. Int J Hydrogen Energ 37(4):3130–3141

    Google Scholar 

  • Moradi F, Amiri H, Soleimanian-Zad S, Ehsani MR, Karimi K (2013) Improvement of acetone, butanol and ethanol production from rice straw by acid and alkaline pretreatments. Fuel 112:8–13

    Google Scholar 

  • Nasaruddin RR, Alam MZ, Jami MS (2014) Evaluation of solvent system for the enzymatic synthesis of ethanol-based biodiesel from sludge palm oil (SPO). Bioresour Technol 154:155–161

    Google Scholar 

  • Niemistö J, Kujawski W, Keiski RL (2013) Pervaporation performance of composite poly (dimethyl siloxane) membrane for butanol recovery from model solutions. J Membrane Sci 434:55–64

    Google Scholar 

  • Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energ Combust 37(1):52–68

    MathSciNet  Google Scholar 

  • Nilsson R, Bauer F, Mesfun S, Hulteberg C, Lundgren J, Wännström S, Rova U, Berglund KA (2014) Techno-economics of carbon preserving butanol production using a combined fermentative and catalytic approach. Bioresour Technol 161:263–269

    Google Scholar 

  • Olkiewicz M, Fortuny A, Stüber F, Fabregat A, Font J, Bengoa C (2012) Evaluation of different sludges from WWTP as a potential source for biodiesel production. Procedia Eng 42:634–643

    Google Scholar 

  • Pan J, Chen X, Sheng K, Yu Y, Zhang C, Ying Y (2013) Effect of ammonia on biohydrogen production from food waste via anaerobic fermentation. Int J Hydrogen Energ 38(29):12747–12754

    Google Scholar 

  • Pan J, Zhang R, El-Mashad HM, Sun H, Ying Y (2008) Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation. Int J Hydrogen Energ 33(23):6968–6975

    Google Scholar 

  • Pasupuleti SB, Sarkar O, Venkata Mohan S (2014) Upscaling of biohydrogen production process in semi-pilot scale biofilm reactor: evaluation with food waste at variable organic loads. Int J Hydrogen Energ 39(14):7587–7596

    Google Scholar 

  • Patumsawad S (2011) 2nd generation biofuels: technical challenge and R&D opportunity in Thailand. J Sustain Energ Environ (Special Issue):47–50

    Google Scholar 

  • Paulová L, Patáková P, Rychtera M, Melzoch K (2014) High solid fed-batch SSF with delayed inoculation for improved production of bioethanol from wheat straw. Fuel 122:294–300

    Google Scholar 

  • Pawar SS, van Niel EW (2013) Thermophilic biohydrogen production: how far are we? Appl Microbiol Biotechnol 97(18):7999–8009

    Google Scholar 

  • Pilavtepe M, Celiktas MS, Sargin S, Yesil-Celiktas O (2013) Transformation of Posidonia oceanica residues to bioethanol. Ind Crop Prod 51:348–354

    Google Scholar 

  • Pilavtepe M, Sargin S, Celiktas MS, Yesil-Celiktas O (2012) An integrated process for conversion of Zostera marina residues to bioethanol. J Supercrit Fluid 68:117–122

    Google Scholar 

  • Pitk P, Kaparaju P, Vilu R (2012) Methane potential of sterilized solid slaughterhouse wastes. Bioresour Technol 116:42–46

    Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL (2006) The path forward for biofuels and biomaterials. Science 311(5760):484–489

    Google Scholar 

  • Rajendran K, Kankanala HR, Martinsson R, Taherzadeh MJ (2014) Uncertainty over techno-economic potentials of biogas from municipal solid waste (MSW): a case study on an industrial process. Appl Energ 125:84–92

    Google Scholar 

  • Ranjan A, Khanna S, Moholkar V (2013) Feasibility of rice straw as alternate substrate for biobutanol production. Appl Energ 103:32–38

    Google Scholar 

  • Ren N, Wang A, Cao G, Xu J, Gao L (2009) Bioconversion of lignocellulosic biomass to hydrogen: potential and challenges. Biotechnol Adv 27(6):1051–1060

    Google Scholar 

  • Roy P, Orikasa T, Tokuyasu K, Nakamura N, Shiina T (2012a) Evaluation of the life cycle of bioethanol produced from rice straws. Bioresour Technol 110:239–244

    Google Scholar 

  • Roy P, Tokuyasu K, Orikasa T, Nakamura N, Shiina T (2012b) A techno-economic and environmental evaluation of the life cycle of bioethanol produced from rice straw by RT-CaCCO process. Biomass Bioenerg 37:188–195

    Google Scholar 

  • Sabra W, Dietz D, Tjahjasari D, Zeng AP (2010) Biosystems analysis and engineering of microbial consortia for industrial biotechnology. Eng Life Sci 10(5):407–421

    Google Scholar 

  • Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energ 37(1):19–27

    Google Scholar 

  • Scano EA, Asquer C, Pistis A, Ortu L, Demontis V, Cocco D (2014) Biogas from anaerobic digestion of fruit and vegetable wastes: experimental results on pilot-scale and preliminary performance evaluation of a full-scale power plant. Energ Convers Manage 77:22–30

    Google Scholar 

  • Sekoai P, Gueguim Kana E (2013) A two-stage modelling and optimization of biohydrogen production from a mixture of agro-municipal waste. Int J Hydrogen Energ 38(21):8657–8663

    Google Scholar 

  • Serra T, Zilberman D (2013) Biofuel-related price transmission literature: a review. Energ Econ 37:141–151

    Google Scholar 

  • Sheikh MMI, Kim C-H, Lee J-Y, Kim S-H, Kim G-C, Shim S-W, Kim J-W (2013) Production of bioethanol from waste money bills—a new cellulosic material for biofuels. Food Bioprod Process 91(1):60–65

    Google Scholar 

  • Shi W, Li J, He B, Yan F, Cui Z, Wu K, Lin L, Qian X, Cheng Y (2013) Biodiesel production from waste chicken fat with low free fatty acids by an integrated catalytic process of composite membrane and sodium methoxide. Bioresour Technol 139:316–322

    Google Scholar 

  • Show K-Y, Lee D-J, Zhang Z-P (2011) Production of biohydrogen: current perspectives and future prospects. In: Pandey A, Larroche C, Ricke SC, Dussap C-G, Gnansounou E (eds) Biofuels. Academic Press, Amsterdam, pp 467–479

    Google Scholar 

  • Siddiquee MN, Rohani S (2011) Lipid extraction and biodiesel production from municipal sewage sludges: a review. Renew Sust Energ Rev 15(2):1067–1072

    Google Scholar 

  • Sims R, Taylor M, Saddler J, Mabee W (2008) From 1st- to 2nd-generation biofuel technologies: an overview of current industry and RD&D activities. Int Energy Agency 16–20

    Google Scholar 

  • Singhal Y, Singh R (2014) Effect of microwave pretreatment of mixed culture on biohydrogen production from waste of sweet produced from Benincasa hispida. Int J Hydrogen Energ 39(14):7534–7540

    Google Scholar 

  • Sitorus B, Sukandar Panjaitan SD (2013) Biogas recovery from anaerobic digestion process of mixed fruit–vegetable wastes. Energy Procedia 32:176–182

    Google Scholar 

  • Sivakumar G, Vail DR, Xu J, Burner DM, Lay JO, Ge X, Weathers PJ (2010) Bioethanol and biodiesel: alternative liquid fuels for future generations. Eng Life Sci 10(1):8–18

    Google Scholar 

  • Sivaramakrishna D, Sreekanth D, Sivaramakrishnan M, Sathish Kumar B, Himabindu V, Narasu ML (2014) Effect of system optimizing conditions on biohydrogen production from herbal wastewater by slaughterhouse sludge. Int J Hydrogen Energ 39(14):7526–7533

    Google Scholar 

  • Skovgaard M, Hedal N, Villanueva A, Møller Andersen F, Larsen HV (2008) Municipal waste management and greenhouse gases. European Topic Centre on Resource and Waste Management, Copenhagen

    Google Scholar 

  • Soccol CR, Vandenberghe LPdS, Medeiros ABP, Karp SG, Buckeridge M, Ramos LP, Pitarelo AP, Ferreira-Leitão V, Gottschalk LMF, Ferrara MA (2010) Bioethanol from lignocelluloses: status and perspectives in Brazil. Bioresour Technol 101(13):4820–4825

    Google Scholar 

  • Soimakallio S, Koponen K (2011) How to ensure greenhouse gas emission reductions by increasing the use of biofuels?—Suitability of the European Union sustainability criteria. Biomass Bioenerg 35(8):3504–3513

    Google Scholar 

  • Srirangan K, Akawi L, Moo-Young M, Chou CP (2012) Towards sustainable production of clean energy carriers from biomass resources. Appl Energ 100:172–186

    Google Scholar 

  • Stoeberl M, Werkmeister R, Faulstich M, Russ W (2011) Biobutanol from food wastes–fermentative production, use as biofuel an the influence on the emissions. Procedia Food Sci 1:1867–1874

    Google Scholar 

  • Styarini D, Aristiawan Y, Aulia F, Abimanyu H, Sudiyani Y (2013) Determination of organic impurities in lignocellulosic bioethanol product by GC-FID. Energy Procedia 32:153–159

    Google Scholar 

  • Surendra K, Takara D, Hashimoto AG, Khanal SK (2014) Biogas as a sustainable energy source for developing countries: opportunities and challenges. Renew Sust Energ Rev 31:846–859

    Google Scholar 

  • Suurs RA, Hekkert MP (2009) Competition between first and second generation technologies: lessons from the formation of a biofuels innovation system in The Netherlands. Energy 34(5):669–679

    Google Scholar 

  • Sydney EB, Larroche C, Novak AC, Nouaille R, Sarma SJ, Brar SK, Letti LAJ, Soccol VT, Soccol CR (2014) Economic process to produce biohydrogen and volatile fatty acids by a mixed culture using vinasse from sugarcane ethanol industry as nutrient source. Bioresour Technol 159:380–386

    Google Scholar 

  • Taherzadeh MJ, Jeihanipour A (2012) Recalcitrance of lignocellulosic biomass to anaerobic digestion. In: Mudhoo A (ed) Biogas production: pretreatment methods in anaerobic digestion. Wiley, New York, pp 27–54

    Google Scholar 

  • Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9(9):1621–1651 Epub 2008 Sep 1621

    Google Scholar 

  • Toscano L, Montero G, Stoytcheva M, Campbell H, Lambert A (2011) Preliminary assessment of biodiesel generation from meat industry residues in Baja California, Mexico. Biomass Bioenerg 35(1):26–31

    Google Scholar 

  • Trinh LTP, Cho EJ, Lee YJ, Bae H-J, Lee H-J (2013) Pervaporative separation of bioethanol produced from the fermentation of waste newspaper. J Ind Eng Chem 19(6):1910–1915

    Google Scholar 

  • Tsita KG, Pilavachi PA (2013) Evaluation of next generation biomass derived fuels for the transport sector. Energ Policy 62:443–455

    Google Scholar 

  • van der Merwe A, Cheng H, Görgens J, Knoetze J (2013) Comparison of energy efficiency and economics of process designs for biobutanol production from sugarcane molasses. Fuel 105:451–458

    Google Scholar 

  • Van Dyk J, Gama R, Morrison D, Swart S, Pletschke B (2013) Food processing waste: problems, current management and prospects for utilisation of the lignocellulose component through enzyme synergistic degradation. Renew Sust Energ Rev 26:521–531

    Google Scholar 

  • Virunanon C, Ouephanit C, Burapatana V, Chulalaksananukul W (2013) Cassava pulp enzymatic hydrolysis process as a preliminary step in bio-alcohols production from waste starchy resources. J Clean Prod 39:273–279

    Google Scholar 

  • Wang L, Sharifzadeh M, Templer R, Murphy RJ (2013a) Bioethanol production from various waste papers: economic feasibility and sensitivity analysis. Appl Energ 111:1172–1182

    Google Scholar 

  • Wang X, Wang Y, Wang B, Blaschek H, Feng H, Li Z (2013b) Biobutanol production from fiber-enhanced DDGS pretreated with electrolyzed water. Renew Energ 52:16–22

    Google Scholar 

  • Williams PRD, Inman D, Aden A, Heath GA (2009) Environmental and sustainability factors associated with next-generation biofuels in the U.S.: what do we really know? Envir Sci Tech 43(13):4763–4775

    Google Scholar 

  • Xiao L, Deng Z, Fung KY, Ng KM (2013) Biohydrogen generation from anaerobic digestion of food waste. Int J Hydrogen Energ 38(32):13907–13913

    Google Scholar 

  • Xu Z, Zhao M, Miao H, Huang Z, Gao S, Ruan W (2014) In situ volatile fatty acids influence biogas generation from kitchen wastes by anaerobic digestion. Bioresour Technol 163:186–192

    Google Scholar 

  • Xue C, Zhao X-Q, Liu C-G, Chen L-J, Bai F-W (2013) Prospective and development of butanol as an advanced biofuel. Biotechnol Adv 31(8):1575–1584

    Google Scholar 

  • Yahyaee R, Ghobadian B, Najafi G (2013) Waste fish oil biodiesel as a source of renewable fuel in Iran. Renew Sust Energ Rev 17:312–319

    Google Scholar 

  • Yang X, Lee JH, Yoo HY, Shin HY, Thapa LP, Park C, Kim SW (2014) Production of bioethanol and biodiesel using instant noodle waste. Bioproc Biosyst Eng 1–9

    Google Scholar 

  • Yasin NHM, Mumtaz T, Hassan MA, Abd Rahman NA (2013) Food waste and food processing waste for biohydrogen production: a review. J Environ Manage 130:375–385

    Google Scholar 

  • Ye J, Li D, Sun Y, Wang G, Yuan Z, Zhen F, Wang Y (2013) Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure. Waste Manage 33(12):2653–2658

    Google Scholar 

  • Yue D, You F, Snyder SW (2013) Biomass-to-bioenergy and biofuel supply chain optimization: overview, key issues and challenges. Comput Chem Eng 66:36–56

    Google Scholar 

  • Zah R (2010) Future perspectives of 2nd generation biofuels, vol 55. vdf Hochschulverlag AG, Zurich

    Google Scholar 

  • Zerva A, Savvides AL, Katsifas EA, Karagouni AD, Hatzinikolaou DG (2014) Evaluation of Paecilomyces variotii potential in bioethanol production from lignocellulose through consolidated bioprocessing. Bioresour Technol 162:294–299

    Google Scholar 

  • Zhang P, Lin C-J, Liu J, Pongprueksa P, Evers SA, Hart P (2014) Biogas production from brown grease using a pilot-scale high-rate anaerobic digester. Renew Energ 68:304–313

    Google Scholar 

  • Zhang X, Yan S, Tyagi RD, Surampalli RY (2013) Energy balance and greenhouse gas emissions of biodiesel production from oil derived from wastewater and wastewater sludge. Renew Energ 55:392–403

    Google Scholar 

  • Zhang Y, Dube M, McLean D, Kates M (2003) Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour Technol 90(3):229–240

    Google Scholar 

  • Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energ Combust 42:35–53

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azam Jeihanipour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jeihanipour, A., Bashiri, R. (2015). Perspective of Biofuels from Wastes. In: Karimi, K. (eds) Lignocellulose-Based Bioproducts. Biofuel and Biorefinery Technologies, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-14033-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14033-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14032-2

  • Online ISBN: 978-3-319-14033-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics