Skip to main content

Modeling and Understanding Intrinsic Characteristics of Human Mobility

  • Chapter
Social Phenomena

Abstract

Humans are intrinsically social creatures and our mobility is central to understanding how our societies grow and function. Movement allows us to congregate with our peers, access things we need, and exchange information. Human mobility has huge impacts on topics like urban and transportation planning, social and biologic spreading, and economic outcomes. So far, modeling these processes has been hindered by a lack of data. This is radically changing with the rise of ubiquitous devices. In this chapter, we discuss recent progress deriving insights from the massive, high resolution data sets collected from mobile phone and other devices. We begin with individual mobility, where empirical evidence and statistical models have shown important intrinsic and universal characteristics about our movement: we, as human, are fundamentally slow to explore new places, relatively predictable, and mostly unique. We then explore methods of modeling aggregate movement of people from place to place and discuss how these estimates can be used to understand and optimize transportation infrastructure. Finally, we highlight applications of these findings to the dynamics of disease spread, social networks, and economic outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    United Nations Department of Economic and Social Affairs—World Urbanization Prospects—2014 Update. http://esa.un.org/unpd/wup/Highlights/WUP2014-Highlights.pdf.

  2. 2.

    http://www.worldpop.org.uk/ebola/.

  3. 3.

    GSMA European Mobile Industry Observatory 2011 http://www.gsma.com/publicpolicy/wp-content/uploads/2012/04/emofullwebfinal.pdf.

  4. 4.

    ITU. (2013) ICT Facts and Figures http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2013-e.pdf.

  5. 5.

    Lookout (2010) Introducing the App Genome Project https://blog.lookout.com/blog/2010/07/27/introducing-the-app-genome-project/.

  6. 6.

    Hubway Data Visualization Challenge (2012) http://hubwaydatachallenge.org/.

  7. 7.

    New York taxi details can be extracted from anonymized data, researchers say (2014) http://www.theguardian.com/technology/2014/jun/27/new-york-taxi-details-anonymised-data-researchers-warn.

  8. 8.

    Flowing data—Where People Run in Major Cities http://flowingdata.com/2014/02/05/where-people-run/.

  9. 9.

    Cell-Phone Data Might Help Predict Ebola’s Spread (2014) http://www.technologyreview.com/news/530296/cell-phone-data-might-help-predict-ebolas-spread/

References

  1. Wesolowski, A., Eagle, N., Tatem, A. J., Smith, D. L., Noor, A. M., Snow, R. W., et al. (2012, October). Quantifying the impact of human mobility on malaria. Science, 338(6104), 267–270.

    Article  ADS  Google Scholar 

  2. Colizza, V., Barrat, A., Barthélemy, M., & Vespignani, A. (2006, February). The role of the airline transportation network in the prediction and predictability of global epidemics. Proceedings of the National Academy of Sciences of the United States of America, 103(7), 2015–2020.

    Article  ADS  Google Scholar 

  3. Bettencourt, L. M. A. (2013). The origins of scaling in cities. Science, 340, 1438–1441.

    Article  MathSciNet  ADS  Google Scholar 

  4. Pan, W., Ghoshal, G., Krumme, C., Cebrian, M., & Pentland, A. (2013) Urban characteristics attributable to density-driven tie formation. Nature Communications, 4, 1961.

    ADS  Google Scholar 

  5. Cottrill, C. D. A., Pereira, F. C. A., Zhao, F. A., Dias, I. F. B., Lim, H. B. C., Ben-Akiva, M. E. D., et al. (2013) Future mobility survey. Transportation Research Record, 2354, 59–67.

    Article  Google Scholar 

  6. Ben-Akiva, M. E., & Lerman, S. R. (1985). Discrete choice analysis: Theory and application to travel demand. Cambridge: MIT Press.

    Google Scholar 

  7. Hall, R. W. (Ed.) (1999). Handbook of transportation science. International series in operations research & management science (Vol. 23). Boston: Springer.

    Google Scholar 

  8. de Dios Ortúzar, J., & Willumsen, L. G. (2011). Modelling transport. Chichester: Wiley.

    Book  Google Scholar 

  9. de Montjoye, Y.-A., Hidalgo, C. A., Verleysen, M., & Blondel, V. D. (2013). Unique in the Crowd: The privacy bounds of human mobility. Nature Scientific Reports, 3, 1376.

    Google Scholar 

  10. de Montjoye, Y.-A., Shmueli, E., Wang, S. S., & Pentland, A. S. (2014). OpenPDS: Protecting the privacy of metadata through SafeAnswers. PLoS ONE, 9, e98790.

    Article  ADS  Google Scholar 

  11. Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabasi, A. L., Brewer, D., et al. (2009). Computational social science. Science, 323(5915), 721–723.

    Article  Google Scholar 

  12. de Montjoye, Y. A., Smoreda, Z., Trinquart, R., Ziemlicki, C., & Blondel, V. D. (2014, July). D4D-Senegal: The second mobile phone data for development challenge.

    Google Scholar 

  13. Aharony, N., Pan, W., Ip, C., Khayal, I., & Pentland, A. (2011). Social fMRI: Investigating and shaping social mechanisms in the real world. In Pervasive and mobile computing (Vol. 7, pp. 643–659).

    Google Scholar 

  14. Eagle, N., & Pentland, A. S. (2009). Eigenbehaviors: Identifying structure in routine. Behavioral Ecology and Sociobiology, 63, 1057–1066.

    Article  Google Scholar 

  15. Kosta, E., Graux, H., & Dumortier, J. (2014). Collection and storage of personal data: A critical view on current practices in the transportation sector. In Privacy technologies and policy SE - 10 (Vol. 8319, pp. 157–176).

    Google Scholar 

  16. Ranjan, G., Zang, H., Zhang, Z.-L., & Bolot, J. (2012). Are call detail records biased for sampling human mobility? ACM SIGMOBILE Mobile Computing and Communications Review, 16(3), 33–44. http://dl.acm.org/citation.cfm?id=2412101.

  17. González, M. C., Hidalgo, C. A., & Barabási, A. L. (2008). Understanding individual human mobility patterns. Nature, 453(7196), 779–782.

    Article  ADS  Google Scholar 

  18. Song, C., Koren, T., Wang, P., & Barabási, A.-L. (2010, September). Modelling the scaling properties of human mobility. Nature Physics, 6(10), 818–823

    Article  ADS  Google Scholar 

  19. Song, C., Qu, Z., Blumm, N., & Barabási, A.-L. (2010) Limits of predictability in human mobility. Science, 327(5968), 1018–1021.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Brockmann, D., Hufnagel, L., & Geisel, T. (2006). The scaling laws of human travel. Nature, 439, 462–465.

    Article  ADS  Google Scholar 

  21. Cheng, Z., Caverlee, J., Lee, K., & Sui, D. Z. (2011). Exploring millions of footprints in location sharing services. In ICWSM (pp. 81–88).

    Google Scholar 

  22. Kim, H. S. (2003, January). QoS provisioning in cellular networks based on mobility prediction techniques. IEEE communications magazine, 41(1), 86–92.

    Article  Google Scholar 

  23. Liu, T., Bahl, P., Chlamtac, I. (1998). Mobility modeling, location tracking, and trajectory prediction in wireless ATM networks. IEEE Journal on Selected Areas in Communications, 16, 922–935.

    Article  Google Scholar 

  24. Thiagarajan, A., Ravindranath, L., LaCurts, K., Madden, S., Balakrishnan, H., & Toledo, S. (2009). VTrack: accurate, energy-aware road traffic delay estimation using mobile phones. In Proceedings of the 7th ACM conference on embedded networked sensor systems - SenSys ’09 (pp. 85–98).

    Google Scholar 

  25. Krumm, J., Horvitz, E., Dourish, P., & Friday, A. (2006). Predestination: Inferring destinations from partial trajectories. UbiComp 2006: Ubiquitous Computing, 4206, 243–260.

    Google Scholar 

  26. Minkyong, K., Kotz, D., & Songkuk, K. (2006). Extracting a mobility model from real user traces. In Proceedings - IEEE INFOCOM.

    Google Scholar 

  27. Lee, K., Hong, S., Kim, S. J., Rhee, I., & Chong, S. (2009). SLAW: a new mobility model for human walks. In IEEE INFOCOM 2009.

    Google Scholar 

  28. Cho, E., Myers, S. A., & Leskovec, J. (2011). Friendship and mobility. In Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, KDD 11 (p. 1082). New York: ACM Press.

    Google Scholar 

  29. De Domenico, M. (2012). Interdependence and predictability of human mobility and social interactions. Journal Pervasive and Mobile Computing, 9, 798–807.

    Article  Google Scholar 

  30. Scellato, S., Musolesi, M., Mascolo, C., Latora, V., & Campbell, A. T. (2011). NextPlace: A spatio-temporal prediction framework for pervasive systems. In Pervasive computing, Lecture notes in computer science (Vol. 6696, pp. 152–169). Heidelberg: Springer.

    Google Scholar 

  31. Eagle, N., & Pentland, A. (2006). Reality mining: Sensing complex social systems. Personal and Ubiquitous Computing, 10, 255–268.

    Article  Google Scholar 

  32. Sadilek, A., & Krumm, J. (2012). Far out: Predicting long-term human mobility. In AAAI (pp. 814–820).

    Google Scholar 

  33. Schneider, C. M., Belik, V., Couronné, T., Smoreda, Z., & González, M. C. (2013). Unravelling daily human mobility motifs. Journal of the Royal Society, Interface the Royal Society, 10(84), 20130246.

    Google Scholar 

  34. Sun, L., Axhausen, K. W., Lee, D.-H., & Huang, X. (2013, August). Understanding metropolitan patterns of daily encounters. Proceedings of the National Academy of Sciences, 110(34), 13774–13779.

    Article  ADS  Google Scholar 

  35. Simini, F., González, M. C., Maritan, A., & Barabási, A.-L. (2012). A universal model for mobility and migration patterns. Nature, 484(7392), 8–12.

    Article  Google Scholar 

  36. Wang, P., Hunter, T., Bayen, A. M., Schechtner, K., & González, M. C. (2012, January). Understanding road usage patterns in urban areas. Scientific Reports, 2, 1001.

    ADS  Google Scholar 

  37. McNally, M. G. (2008, November). The four step model. Irvine: Center for Activity Systems Analysis.

    Google Scholar 

  38. Hansen, W. G. (1959, May). How accessibility shapes land use. Journal of the American Institute of Planners, 25(2), 73–76.

    Article  Google Scholar 

  39. Yang, Y., Herrera, C., Eagle, N., & González, M. C. (2014, January). Limits of predictability in commuting flows in the absence of data for calibration. Scientific Reports, 4, 5662.

    ADS  Google Scholar 

  40. Iqbal, Md. S., Choudhury, C. F., Wang, P., & González, M. C. (2014, March). Development of origin-destination matrices using mobile phone call data. Transportation Research Part C: Emerging Technologies, 40, 63–74.

    Google Scholar 

  41. Spiess, H. (1990, May). Technical note-conical volume-delay functions. Transportation Science, 24(2), 153–158.

    Article  Google Scholar 

  42. Samaranayake, S., Blandin, S., & Bayen, A. (2011). Learning the dependency structure of highway networks for traffic forecast. In Proceedings of the IEEE conference on decision and control (pp. 5983–5988).

    Google Scholar 

  43. Herring, R., Nasr, T. A., Khalek, A. A., & Bayen, A. (2010). Using mobile phones to forecast arterial traffic through statistical learning. Electrical Engineering, 59, 1–22.

    Google Scholar 

  44. Herrera, J. C., Work, D. B., Herring, R., Ban, X., Jacobson, Q., & Bayen, A. M. (2010). Evaluation of traffic data obtained via GPS-enabled mobile phones: The mobile century field experiment. Transportation Research Part C: Emerging Technologies, 18, 568–583.

    Article  Google Scholar 

  45. Jariyasunant, J. (2012). Improving traveler information and collecting behavior data with smartphones. PhD thesis.

    Google Scholar 

  46. Wang, J., Mao, Y., Li, J., Xiong, Z., & Wang, W.-X. (2015). Predictability of road traffic and congestion in urban areas. PLoS One, 10(4), e0121825. doi:10.1371/journal.pone.0121825. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0121825.

  47. Wang, P., Liu, L., Li, X., Li, G., & González, M. C. (2014, January). Empirical study of long-range connections in a road network offers new ingredient for navigation optimization models. New Journal of Physics, 16(1), 013012.

    Article  ADS  Google Scholar 

  48. Lorenzo, G. D., Sbodio, M. L., Calabrese, F., Berlingerio, M., Nair, R., & Pinelli, F. (2014, January). AllAboard. In Proceedings of the 19th international conference on Intelligent User Interfaces - IUI ’14 (pp. 335–340). New York: ACM Press.

    Chapter  Google Scholar 

  49. Ching, A. M. L. (2012). A user-flocksourced bus intelligence system for Dhaka. Diss. Massachusetts Institute of Technology.

    Google Scholar 

  50. Santi, P., Resta, G., Szell, M., Sobolevsky, S., Strogatz, S. H., & Ratti, C. (2014). Quantifying the benefits of vehicle pooling with shareability networks. Proceedings of the National Academy of Sciences 111(37), 13290–13294. http://www.pnas.org/content/111/37/13290.short.

  51. Nicolaides, C., Cueto-Felgueroso, L., González, M. C., & Juanes, R. (2012). A metric of influential spreading during contagion dynamics through the air transportation network. PLoS ONE, 7, e40961.

    Article  ADS  Google Scholar 

  52. Liben-Nowell, D., Novak, J., Kumar, R., Raghavan, P., & Tomkins, A. (2005). Geographic routing in social networks. Proceedings of the National Academy of Sciences of the United States of America, 102(33), 11623–11628.

    Article  ADS  Google Scholar 

  53. Chetty, R., Hendren, N., Kline, P., & Saez, E. (2014). Where is the land of opportunity? The geography of intergenerational mobility in the United States. No. w19843. National Bureau of Economic Research. http://qje.oxfordjournals.org/content/early/2014/10/16/qje.qju022.full#cited-by.

  54. Wesolowski, A., Eagle, N., Noor, A. M., Snow, R. W., & Buckee, C. O. (2013, April). The impact of biases in mobile phone ownership on estimates of human mobility. Journal of the Royal Society, Interface / the Royal Society, 10(81), 20120986.

    Google Scholar 

  55. Balcan, D., Colizza, V., Gonçalves, B., Hu, H., Ramasco, J. L., & Vespignani, A. (2009, December). Multiscale mobility networks and the spatial spreading of infectious diseases. Proceedings of the National Academy of Sciences of the United States of America, 106(51), 21484–21489.

    Article  ADS  Google Scholar 

  56. Meloni, S., Perra, N., Arenas, A., Gómez, S., Moreno, Y., & Vespignani, A. (2011, January). Modeling human mobility responses to the large-scale spreading of infectious diseases. Scientific Reports, 1, 62.

    Article  ADS  Google Scholar 

  57. Backstrom, L., Sun, E., & Marlow, C. (2010). Find me if you can: Improving geographical prediction with social and spatial proximity. In Proceedings of the 19th international conference on World wide web (pp. 61–70).

    Google Scholar 

  58. Grabowicz, P. A., Ramasco, J. J., Gonçalves, B., & Eguiluz, V. M. (2013). Entangling mobility and interactions in social media. PLoS One, 9(3), e92196. http://dx.plos.org/10.1371/journal.pone.0092196.

  59. Toole, J. L., Cha, M., & González, M. C. (2012). Modeling the adoption of innovations in the presence of geographic and media influences. PLoS ONE, 7(1), e29528.

    Article  ADS  Google Scholar 

  60. Herrera-Yagüe, C., Schneider, C. M., Smoreda, Z., Couronné, T., Zufiria, P. J., & González, M. C. (2014). The elliptic model for communication fluxes. Journal of Statistical Mechanics: Theory and Experiment, 2014(4), P04022.

    Article  Google Scholar 

  61. van den Berg, P., Arentze, T. A., & Timmermans, H. J. P. (2010). Size and composition of ego-centered social networks and their effect on geographic distance and contact frequency. Transportation Research Record, 2135, 1–9.

    Article  Google Scholar 

  62. Kim, S. (1989). Labor specialization and the extent of the market. Journal of Political Economy, 97, 692–705.

    Article  Google Scholar 

  63. Freedman, M. L. (2008). Job hopping, earnings dynamics, and industrial agglomeration in the software publishing industry. Journal of Urban Economics, 64, 590–600.

    Article  Google Scholar 

  64. Yankow, J. J. (2006). Why do cities pay more? An empirical examination of some competing theories of the urban wage premium. Journal of Urban Economics, 60, 139–161.

    Article  Google Scholar 

  65. Bettencourt, L. M. A., Lobo, J., Helbing, D., Kühnert, C., & West, G. B. (2007, April). Growth, innovation, scaling, and the pace of life in cities. Proceedings of the National Academy of Sciences of the United States of America, 104(17), 7301–7306.

    Article  ADS  Google Scholar 

  66. Gurley, T., & Bruce, D. (2005). The effects of car access on employment outcomes for welfare recipients. Journal of Urban Economics, 58, 250–272.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jameson L. Toole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Toole, J.L., de Montjoye, YA., González, M.C., Pentland, A.(. (2015). Modeling and Understanding Intrinsic Characteristics of Human Mobility. In: Gonçalves, B., Perra, N. (eds) Social Phenomena. Computational Social Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-14011-7_2

Download citation

Publish with us

Policies and ethics