Skip to main content

Nanobiosensors in Food Science and Technology

  • Chapter
  • First Online:
Food Nanoscience and Nanotechnology

Abstract

Nanotechnology has already been applied in several fields, up to now, most of the research on nanotechnology focused on electronics such as communication, energy production, and pharmaceutical and the food industry. The knowledge gained from these sectors could be adapted for the improvement of food products, such as for applications in food safety and quality (e.g., detecting pesticides and microorganism identification), encapsulation, improving the efficiency of delivery of nutraceutical and bioactive compounds, and packing systems and food storage. The nanoscale devices are often manufactured with the view to imitate the nanodevices found in nature; one way to get these results is by means of the biosensors to detect, among others, proteins, DNA, enzymes, cells, membranes, and other natural biomolecules used as bioreceptors and selecting the right transduction method (electrochemical, mechanical, or optical) in order to get more sensitive, specific, and real-time results. This chapter provides an introduction to the nanosensor field including specific consideration of three main application areas (food, environmental, and pharmaceutical); it also describes the typical biosensor assay format used and is subsequently structured according to the biorecognition elements used (i.e., enzymes, cellular structures/cells, antibody/antigen, nucleic acids/DNA, bacteriophages). In addition, information about lab on a chip based on microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS) technology is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akyilmaz E, Erdogan A, Öztürk R, Yasa I (2007) Sensitive determination of L-lysine with a new amperometric micriobial biosensor based on Saccharomyces cerevisiae yeast cells. Biosens Bioelectron 22(6):1055–1060

    Article  CAS  Google Scholar 

  • Baeummer A (2004) Nanosensors identify pathogens in food. Food Technol 58:51–55

    Google Scholar 

  • Basanta KD, Tlili C, Badhulika S, Cella L, Chen W, Mulchandani A (2011) Single-walled carbon nanotubes chemiresistor aptasensors for small molecules: picomolar level detection of adenosine triphosphatew. Chem Commun 47:793–795

    Google Scholar 

  • Bashir R (2004) BioMEMS: state-of-the-art in detection, opportunities and prospects. Adv Drug Deliv Rev 56:1565–1586

    Google Scholar 

  • Buonocore GG, Conte A, Corbo MR, Sinigaglia M, Del Nobile MA (2005) Mono- and multilayer active films containing lysozyme as antimicrobial agent. Innov Food Sci Emerg 6:459–464

    Article  CAS  Google Scholar 

  • Byrne B, Stack E, Gilmartin N, O’Kennedy R (2009) Antibody-based sensors: principles, problems and potential for detection of pathogens and associated toxins. Sensors 9:4407–445

    Article  CAS  Google Scholar 

  • Cai H, Xu C, He P, Fang Y (2001) Colloid Au-enhanced DNA immobilization for the electrochemical detection of sequence-specific DNA. J Electroanal Chem 510:78–85

    Article  CAS  Google Scholar 

  • Chen SH, Wu VCH, Chuang YC, Lin CS (2008) Using oligonucleotide-functionalized Au nanoparticles to rapidly detect food borne pathogens on a piezoelectric biosensor. J Microbiol Meth 73:7–17

    Article  CAS  Google Scholar 

  • Choi J-W, Oh B-K (2008) Optical detection of pathogens using protein chip. In: Kim YJ, Platt U (eds) Advanced environmental monitoring. Springer, New York, pp 348–362

    Chapter  Google Scholar 

  • Clark Jr LC Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann NY Acad Sci 102:29–45

    Article  CAS  Google Scholar 

  • Close DM, Ripp S, Sayler GS (2009) Reporter proteins in whole-cell optical bioreporter detection systems, biosensor integrations, and biosensing applications. Sensors 9:9147–9174

    Article  CAS  Google Scholar 

  • Coma V (2008) Bioactive packaging technologies for extended shelf life of meat-based products. Meat Sci 78(2):90–103

    Article  CAS  Google Scholar 

  • Davis JJ, Coleman KS, Azamian BR, Bagshaw CB, Green MLH (2003) Chemical and biochemical sensing with modified single walled carbon nanotubes. Chem-Eur J 9:3732–3739

    Article  CAS  Google Scholar 

  • Englebienne P, Hoonacker AV, Verhas M (2003) Surface plasmon resonance: principles, methods and applications in biomedical sciences. Spectroscopy 17:255–273

    Article  CAS  Google Scholar 

  • Ercole C, Del Gallo M, Mosiello L, Baccella S, Lepidi A (2003) Escherichia coli detection in vegetable food by a potentiometric biosensor. Sens Actuator B-Chem 91:163–168

    Article  CAS  Google Scholar 

  • Erickson D, Mandal S, Yang AHJ, Cordovez B (2008) Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale. Microfluid Nanofluid 4:33–52

    Article  CAS  Google Scholar 

  • Garcia M, Aleixandre M, Gutiérrez J, Horrillo MC (2006) Electronic nose for wine discrimination. Sensors Actuator B-Chemical 113:911–916

    Article  CAS  Google Scholar 

  • García-Aljaro C, Lakshmi C, Dhamanand S, Miso P, Muñoz JF, Yates V, Ashok M (2010) Carbon nanotubes-based chemiresistive biosensors for detection of microorganisms. Biosens Bioelectron 26:1437–1441

    Article  Google Scholar 

  • Gfeller KY, Nugaeva N, Herner M (2005) Micromechanical oscillators as rapid biosensor for the detection of active growth of Escherichia coli. Biosens Bioelectron 21:528–533

    Article  CAS  Google Scholar 

  • Gupta A, Akin D, Bashir R (2004) Single virus particle mass detection using microresonators with nanoscale thickness. Appl Phys Lett 84:1976–1978

    Article  CAS  Google Scholar 

  • Hahn MA, Keng PC, Krauss TD (2008) Flow cytometric analysis to detect pathogens in bacterial cell mixtures using semiconductor quantum dots. Anal Chem 80:864–872

    Article  CAS  Google Scholar 

  • Hall RH (2002) Biosensor technologies for detecting microbiological food borne hazards. Microbes Infect 4:425–432

    Article  Google Scholar 

  • Haruyama T (2003) Micro- and nanobiotechnology for biosensing cellular responses. Adv Drug Deliver Rev 55:393–401

    Article  CAS  Google Scholar 

  • Hsing IM, Xu Y, Zhao W (2007) Micro and nano magnetic particles for applications in biosensing. Electroanalysis 19:755–768

    Article  CAS  Google Scholar 

  • Huo Q, Worden JG (2007) Monofunctional gold nanoparticles: synthesis and applications. J Nanopar Res 9:1013–1025

    Article  CAS  Google Scholar 

  • Ivintski D, Abdel-Hamid I, Atanasov P, Wilkins E, Stricker S (2000) Application of electrochemical biosensors for detection of food pathogenic bacteria. Electroanalysis 12:317–325

    Article  Google Scholar 

  • Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM (2007) Biological applications of quantum dots. Biomaterials 28:4717–4732

    Article  CAS  Google Scholar 

  • Jianrong C, Yuqing M, Nongyue H, Xiaohua W, Sijiao L (2004) Nanotechnology and biosensors. Biotechnol Adv 22:505–518

    Article  Google Scholar 

  • Johnson BN, Mutharasan R (2012) Biosensing using dynamic-mode cantilever sensors: a review. Biosens Bioelectron 32:1–18

    Article  CAS  Google Scholar 

  • Kim S, Kim KC, Kihm KD (2007) Near-field thermometry sensor based on the thermal resonance of a microcantilever in aqueous medium. Sensors 7:3156–3165

    Google Scholar 

  • Kim J, Junkin M, Kim DH, Kwon S, Shin YS, Wong PK, Gale BK (2009) Applications, techniques, and microfluidic interfacing for nanoscale biosensing. Microfluid Nanofluid 7:149–167

    Article  CAS  Google Scholar 

  • Ko SH, Grant SA (2006) A novel FRET-based optical fiber biosensor for rapid detection of Salmonella typhimurium. Biosens Bioelectron 21:1283–1290

    Article  CAS  Google Scholar 

  • Länge K, Rapp BE, Rapp M (2008) Surface acoustic wave biosensors: a review. Anal Bioanal Chem 391:1509–1519

    Article  Google Scholar 

  • Lazcka O, Del Campo FJ, Muñoz, FX (2007) Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron 22:1205–1217

    Article  CAS  Google Scholar 

  • Lermo A, Campoy S, Barbe J, Hernandez S, Alegret S, Pividori M (2007) In situ DNA amplification with magnetic primers for the electrochemical detection of food pathogens. Biosens Bioelectron 22:2010–2017

    Article  CAS  Google Scholar 

  • Li M, Tang X, Roukes ML (2007) Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nature Nanotechnol 2:114–120

    Article  CAS  Google Scholar 

  • Li H, Liu S, Dai Z, Bao J, Yang X (2009) Applications of nanomaterials in electrochemical enzyme biosensors. Sensors 9:8547–8561

    Article  CAS  Google Scholar 

  • Magliulo M, Simoni P, Guardigli M, Michelini E, Luciani M, Lelli R et al (2007) A rapid multiplexed chemiluminescent immunoassay for the detection of Escherichia coli O157: H7, Yersinia enterocolitica, Salmonella typhimurium, and Listeria monocytogenes pathogen bacteria. J Agric Food Chem 55:4933–4939

    Article  CAS  Google Scholar 

  • Maxwell DJ, Taylor JR, Nie S (2002) Self-assembled nanoparticles probes for recognition and detection of biomolecules. J Am Chem Soc 124:9606–9612

    Google Scholar 

  • Muhammad-Tahir Z, Alocilja EC (2003a) A conductometric biosensor for biosecurity. Biosens Bioelectron 18:813–819

    Article  CAS  Google Scholar 

  • Muhammad-Tahir Z, Alocilja E. C (2003b) Fabrication of a disposable biosensor for Escherichia coli O157: H7 detection. IEEE Sens J 3:345–351

    Article  CAS  Google Scholar 

  • Munoz-Berbel X, Vigues N, Jenkins AT, Mas J, Munoz FJ (2008) Impedimetric approach for quantifying low bacteria concentrations based on the changes produced in the electrode-solution interface during the pre-attachment stage. Biosens Bioelectron 23:1540–1546

    Article  CAS  Google Scholar 

  • Neethirajan S, Jayas DS (2007) Sensors for grain storage. In: Abstracts of the 2007 ASABE Annual International Meeting, Minneapolis, 17–20 June 2007

    Google Scholar 

  • Neethirajan S, Jayas DS (2011) Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol 4:39–47

    Article  CAS  Google Scholar 

  • Nguyena B, Taniousa FA, Wilson WD (2007) Biosensor-surface plasmon resonance: quantitative analysis of small molecule–nucleic acid interactions. Methods 42:150–161

    Article  Google Scholar 

  • Nugaeva N, Gfeller KY, Backmann N, Lang HP, Düggelin M, Hegner M (2005) Micromechanical cantilever array sensors for selective fungal immobilization and fast growth detection. Biosens Bioelectron 21:849–856

    Article  CAS  Google Scholar 

  • Oh B-K, Lee W, Chun BS, Bae YM, Lee WH, Choi J-W (2005) The fabrication of protein chip based on surface plasmon resonance for detection of pathogens. Biosens Bioelectron 20:1847–1850

    Article  CAS  Google Scholar 

  • Ponmozhi J, Frias C, Marques T, Frazao O (2012) Smart sensors/actuators for biomedical applications: a review. Measurement 45:1675–1688

    Article  Google Scholar 

  • Radke SM, Alocija EC (2005) A high density microelectrode array biosensor for detection of E. coli O157:H7. Biosens Bioelectron 20:1662–1667

    Article  CAS  Google Scholar 

  • Ramirez-Frometa N (2006) Cantilever biosensors. Biotechnol Appl Biochem 23:320–323

    Google Scholar 

  • Rivett J, Speer DV (2009) Oxygen scavenging film with good interplay adhesion. US Patent 75141512

    Google Scholar 

  • Shefer A (2008) The application of nanotechnology in the food industry. http://bionanotech.uniss.it/?p=703. Accessed 28 Sep 2014

  • Singh A, Glass N, Tolba M, Brovko L, Griffiths M, Evoy S (2009) Immobilization of bacteriophages on gold surfaces for the specific capture of pathogens. Biosens Bioelectron 24:3645–3651

    Article  CAS  Google Scholar 

  • Sósol-Fernández RE, Marín-Lizárraga VM, Rosales-Cruzaley E, Lapizco-Encinas BH (2012) Análisis de células en dispositivos microfluídicos. Rev Mex Ing Quím 11(2):227–248

    Google Scholar 

  • Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27:82–89

    Article  CAS  Google Scholar 

  • Su L, Jia W, Hou C, Lei Y (2011) Microbial biosensors: a review. Biosens Bioelectron 26:1788–1799

    Article  CAS  Google Scholar 

  • Sungkanak U, Sappat A, Wisitsoraat A, Promptmas C, Tuantranon A (2010) Ultrasensitive detection of Vibrio cholerae O1 using microcantilever-based biosensor with dynamic force microscopy. Biosens Bioelectron 26:784–789

    Article  CAS  Google Scholar 

  • Van Dorst B Mehta J Bekaert K Rouah-Martin E De Coen W Dubruel P Blust R Robbens J (2010) Recent advances in recognition elements of food and environmental biosensors: a review. Biosens Bioelectron 26:1178–1194

    Article  Google Scholar 

  • Vaughan RD, O´Sullivan CK, Guilbault GG (2001) Development of a quartz crystal microbalance (QCM) immunosensor for the detection of Listeria monocytogenes. Enzyme Microb Technol 29:635–638

    Article  CAS  Google Scholar 

  • Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C (2010) An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnol Adv 28:232–254

    Article  CAS  Google Scholar 

  • Villamizar R, Maroto A, Rius F (2009) Improved detection of Candida albicans with carbon nanotube field-effect transistors. Sens Actuator B-Chem 136:451–457

    Article  CAS  Google Scholar 

  • Vo-Dinh, T, Cullum, B. M, Stokes, D. L (2001) Nanosensors and biochips: frontiers in biomolecular diagnostics. Sens Actuator 74:2–11

    Article  CAS  Google Scholar 

  • Waggoner P, Craighead H (2007) Micro- and nanomechanical sensors for environmental, chemical, and biological detection. Lab Chip 7:1238–1255

    Article  CAS  Google Scholar 

  • Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297

    Article  CAS  Google Scholar 

  • Zhang G-J, Zhang G, Chua JH, Chee R-E, Wong EH, Agarwal A, Buddharaju KD, Singh N, Gao Z, Balasubramanian N (2008) DNA sensing by silicon nanowire: charge layer distance dependence. Nano Lett 8:1066–1070

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Angelica Gabriela Mendoza Madrigal wishes to thank CONACyT and COFAA for the scholarships provided. This research was supported through the projects 20110627 and 20121001 at the Instituto Politécnico Nacional (SIP-IPN), as well as “Cátedra Coca-Cola para jóvenes investigadores 2011” (Coca-Cola CONACyT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Chanona-Pérez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science + Business Media New York

About this chapter

Cite this chapter

Mendoza-Madrigal, A. et al. (2015). Nanobiosensors in Food Science and Technology. In: Hernández-Sánchez, H., Gutiérrez-López, G. (eds) Food Nanoscience and Nanotechnology. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-13596-0_13

Download citation

Publish with us

Policies and ethics