Skip to main content

Efficiency of Phytohormone-Producing Pseudomonas to Improve Salt Stress Tolerance in Jew’s Mallow (Corchorus olitorius L.)

  • Chapter
  • First Online:
Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants

Part of the book series: Soil Biology ((SOILBIOL,volume 42))

Abstract

This study examined the effects of phytohormone-producing Pseudomonas extremorientalis TSAU6 and plant growth regulators indole-3-acetic acid (IAA) and gibberellic acid (GA) on the growth parameters of jew’s mallow (Corchorus olitorius L.) under salt stress conditions. The inoculated jew’s mallow seeds with IAA- and GA-producing P. extremorientalis TSAU6 strain significantly increased root length by 45 %, shoot length by 84 %, and fresh weight by 28 % at 100 mM NaCl compared to uninoculated control plants. All concentrations of IAA and GA showed stimulatory effect on the root and shoot growth of jew’s mallow seedling under nonsaline and salt stress conditions. Plant growth-promoting properties of the strain in pot experiments with saline soil showed that P. extremorientalis TSAU 6 significantly increased shoot length by 21 % and dry matter of jew’s mallow by 18 %. Based on the results, it may be concluded that the integrative use of phytohormone-producing plant growth-promoting P. extremorientalis strain could be an eco-friendly strategy for increasing plant growth and development of jew’s mallow under saline soil condition. It is also indicated that plant growth regulators such as auxins and gibberellins play an important role in plant salinity tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Afzal I, Basra S, Iqbal A (2005) The effect of seed soaking with plant growth regulators on seedling vigor of wheat under salinity stress. J Stress Physiol Biochem 1:6–14

    Google Scholar 

  • Almansouri M, Kinet JM, Lutts S (2001) Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil 231:243–254

    Article  CAS  Google Scholar 

  • Arbona V, Marco AJ, Iglesias DJ, Lopez-Climent MF, Talon M, Gomez-Cadenas A (2005) Carbohydrate depletion in roots and leaves of salt-stressed potted Citrus clementina L. Plant Growth Regul 46:153–160

    Article  CAS  Google Scholar 

  • Ashraf M (2004) Photosynthetic capacity and ion accumulation in a medicinal plant henbane (Hyoscyamus niger L.) under salt stress. J Appl Bot 78:91–96

    CAS  Google Scholar 

  • Atak M, Kaya MD, Kaya G, Çıkılı Y, Çiftçi CY (2006) Effects of NaCl on the germination, seedling growth and water uptake of triticale. Turk J Agric For 30:39–47

    CAS  Google Scholar 

  • Attia FA, Saad OAO (2001) Biofertilizers as potential alternative of chemical fertilizer for Catharanthus roseus G. Don. J Agric Sci 26:7193–7208

    Google Scholar 

  • Baher ZF, Mirza M, Ghorbanli M, Rezaii MB (2002) The influence of water stress on plant height, herbal and essential oil yield and composition in Satureja hortansis L. Flavour Fragrance J 17:275–277

    Article  CAS  Google Scholar 

  • Berg G, Egamberdieva D, Lugtenberg B, Hagemann M (2010) Symbiotic plant-microbe interactions: stress protection, plant growth promotion and biocontrol by Stenotrophomonas. In: Seckbach J, Grube M (eds) “Symbioses and Stress”, cellular origin, life in extreme habitats and astrobiology, vol 17. Springer, Berlin, pp 445–460

    Google Scholar 

  • Bianco C, Defez R (2010) Improvement of phosphate solubilization and Medicago plant yield by an indole-3-acetic acid-overproducing strain of Sinorhizobium meliloti. Appl Environ Microbiol 76:4626–4632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chaudhuri K, Choudhuri MA (1997) Effect of short-term NaCl stress on water relations and gas exchange of two jute species. Biol Plant 40:373–380

    Article  CAS  Google Scholar 

  • Colom MR, Vazzana C (2002) Water stress effects on three cultivars of Eragrostis curvula. Italy J Agron 6:127–132

    Google Scholar 

  • Debez A, Chaibi W, Bouzid S (2001) Effect du NaCl et de regulatoeurs de croissance sur la germination d’ Atriplex halimus L. Cahiers Agric 10:135–138

    Google Scholar 

  • Egamberdieva D (2008) Alleviation of salinity stress in radishes with phytohormone producing rhizobacteria. J Biotechnol 136:262

    Article  Google Scholar 

  • Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31:861–864

    Article  CAS  Google Scholar 

  • Egamberdieva D (2013) The role of phytohormone producing bacteria in alleviating salt stress in crop plants. In: Miransari M (ed) Biotechnological techniques of stress tolerance in plants. Studium, Houston, TX, pp 21–39

    Google Scholar 

  • Egamberdieva D, Hoflich G (2002) Root colonization and growth promotion of winter wheat and pea by Cellulomonas spp. at different temperatures. J Plant Growth Regul 38:219–224

    Article  Google Scholar 

  • Egamberdieva D, Hoflich G (2003) The effect of associative bacteria from different climates on plant growth of pea at different soils and temperatures. Arch Agron Soil Sci 49:203–213

    Article  Google Scholar 

  • Egamberdieva D, Jabborova D (2012) The use of plant growth promoting bacteria for improvement plant growth of wheat, maize and cotton in serosem soil. Uzb Biol J 2:51–54

    Google Scholar 

  • Egamberdieva D, Jabborova D (2013a) Improvement of cotton production in arid saline soils by beneficial microbes. In: Huang L, Zhao Q (eds) Crop yields: production, management practices and impact of climate change. Nova, New York, pp 109–122

    Google Scholar 

  • Egamberdieva D, Jabborova D (2013b) Diversity and physiological characterization of root associated bacteria of cotton. Uzb Biol J 2:50–53

    Google Scholar 

  • Egamberdieva D, Lugtenberg B (2014) PGPR to alleviate salinity stress on plant growth. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses, vol 1. Springer, New York, pp 73–96

    Chapter  Google Scholar 

  • Egamberdieva D, Tulyasheva Z (2007) IAA producing salt tolerant bacteria: its stimulatory effect on celery in nutrient poor arid soils. Uzb J Agric Sci 3:65–69

    Google Scholar 

  • Egamberdieva D, Hoflich G, Davranov K (2001) Influence of growth-promoting bacteria on the growth and nutrient uptake of cotton and wheat. In: Horst WJ et al (eds) Developments in plant and soil sciences, plant nutrition: food security and sustainability of agro-ecosystems through basic and applied research, vol 92. Kluwer, Dordrecht, pp 674–675

    Google Scholar 

  • Egamberdieva D, Juraeva D, Haitov B (2004) Stimulation of wheat and maize growth through plant growth promoting rhizobacteria. Uzb J Agric Sci 2:44–47

    Google Scholar 

  • Egamberdieva D, Shurigin V, Davranov K (2011) Colonisation of Pseudomonas chlororaphis TSAU13 and P. extremorientalis TSAU20 in the rhizosphere of wheat under salt stress. Uzb Biol J 4:26–30

    Google Scholar 

  • Egamberdieva D, Shurigin V, Lyan Y, Davranov K (2012) Physiological characterization of Arthrobacter species isolated from salinated soil of Uzbekistan. Uzb Biol J 2:49–53

    Google Scholar 

  • Egamberdieva D, Jabborova D, Mamadalieva N (2013a) Salt tolerant Pseudomonas extremorientalis able to stimulate growth of Silybum marianum under salt stress condition. Med Aromat Plant Sci Biotechnol 7:7–10

    Google Scholar 

  • Egamberdieva D, Berg G, Lindström K, Räsänen LA (2013b) Alleviation of salt stress of symbiotic Galega officinalis L. (goat’s rue) by co-inoculation of Rhizobium with root colonising Pseudomonas. Plant Soil 1:453–465

    Article  Google Scholar 

  • Fawusi MOA, Ormrod DP, Eastham AM (1984) Response to water stress of Celosia argentea and Corchorus olitorius in controlled environments. Sci Hortic 22:163–171

    Article  Google Scholar 

  • Figueiredo MV, Burity HA, Martınez CR, Chanway C (2008) Alleviation of drought stress in the common bean Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 4:182–188

    Article  Google Scholar 

  • Gandour G (2002) Effect of salinity on development and production of chickpea genotypes. PhD Thesis, Aleppo University, Syria

    Google Scholar 

  • Golpayegani A, Tilebeni HG (2011) Effect of biological fertilizers on biochemical and physiological parameters of Basil (Ocimum basilicum L.) medicine plant. Am Eurasian J Agric Environ Sci 11:411–416

    CAS  Google Scholar 

  • Gregorio S, Passerini P, Picciarelli P, Ceccarelli N (1995) Free and conjugated Indole-3-acetic acid in developing seeds of Sechium edule Sw. J Plant Physiol 145:736–740

    Article  Google Scholar 

  • Gul B, Khan MA, Weber DJ (2000) Alleviation salinity and dark-enforced dormancy in Allenrolfea occidentalis seeds under various thermoperiods. Aust J Bot 48:745–752

    Article  Google Scholar 

  • Gupta SC (1971) Effect of NAA, IAA and GA on germination of brinjal (Solanum melongena L.) seeds. Indian J Agric Res 5:215–216

    CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  • Hayat R, Ali S, Siddique MT, Chatha TH (2008) Biological nitrogen fixation of summer legumes and their residual effects on subsequent rainfed wheat yield. Pak J Bot 40:711–722

    CAS  Google Scholar 

  • Heidari M, Mosavinik SM, Golpayegani A (2011) Plant growth promoting rhizobacteria (PGPR) effect on physiological parameters and mineral uptake in basil (Ocimum basilicum L.) under water stress. ARPN J Agric Biol Sci 6:6–11

    Google Scholar 

  • Itai C, Richmond AE, Vaada Y (1968) The role of root cytokinins during water and salinity stress. Israel J Bot 17:187–195

    CAS  Google Scholar 

  • Jabborova D, Egamberdieva D, Räsänen L, Liao H (2013a) Salt tolerant Pseudomonas strain improved growth, nodulation and nutrient uptake of soybean grown under hydroponic salt stress condition. In: XVII international plant nutrition colloquium and boron satellite meeting proceedings book, pp 260–261

    Google Scholar 

  • Jabborova D, Qodirova D, Egamberdieva D (2013b) Improvement of seedling establishment of soybean using IAA and IAA producing bacteria under saline conditions. Soil Water J 2:531–539

    Google Scholar 

  • Jaleel CA, Manivavannan P, Sankar P, Krishnakumar B, Gopi AR, Somasundaram R, Pannerselvam R (2007) Pseudomonas fluorescens enhances biomass yield and Ajmalicine production in Catharanthus roseus under water deficit stress. Colloids Surf B Biointerfaces 60:7–11

    Article  CAS  PubMed  Google Scholar 

  • Jamil M, Lee DB, Jung KY, Ashraf M, Lee SC, Rha ES (2006) Effect of salt (NaCl) stress on germination and early seedling growth of four vegetables species. Cent Eur Agric 7:273–282

    Google Scholar 

  • Javid MG, Sorooshzadeh A, Moradi F, Sanavy SAMM, Allahdadi I (2011) The role of phytohormones in alleviating salt stress in crop plants. Aust J Crop Sci 5:726–734

    CAS  Google Scholar 

  • Karthikeyan B, Joe MM, Jaleel CA, Deiveekasundaram M (2010) Effect of root inoculation with plant growth promoting rhizobacteria (PGPR) on plant growth, alkaloid content and nutrient control of Catharanthus roseus (L.) G. Don. Nat Croat 1:205–212

    Google Scholar 

  • Khan MA, Gul B, Weber D (2004) Action of plant growth regulators and salinity on seed germination of Ceratoides lanata. Can J Bot 82:37–42

    Article  CAS  Google Scholar 

  • Khodarahmpour Z, Ifar M, Motamedi M (2012) Effects of NaCl salinity on maize (Zea mays L.) at germination and early seedling stage. Afr J Biotechnol 11:298–304

    CAS  Google Scholar 

  • Kuiper I, Bloemberg GV, Lugtenberg BJ (2001) Selection of a plant-bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon-(PAH)-degrading bacteria. Mol Plant Microbe Interact 14:1197–1205

    Article  CAS  PubMed  Google Scholar 

  • Kumar AA, Gill KS (1995) Performance of aromatic grasses under saline and sodic stress condition. Salt tolerance of aromatic grasses. Indian Perfumer 39:39–44

    Google Scholar 

  • Leung WTH, Busson F, Jardin C (1968) Food composition table for use in Africa. FAO, Rome, 306

    Google Scholar 

  • Li W, Liu X, Khan MA, Yamaguchi S (2005) The effect of plant growth regulators, nitric oxide, nitrate, nitrite and light on the germination of dimorphic seeds of Suaeda salsa under saline conditions. J Plant Res 118:207–214

    Article  CAS  PubMed  Google Scholar 

  • Lin CC, Kao CH (1995) NaCl stress in rice seedlings: starch mobilization and the influence of gibberellic acid on seedling growth. Bot Bull Acad Sin 36:169–173

    CAS  Google Scholar 

  • Lyan Y, Shurigin V, Egamberdieva D, Davranov K (2013) Isolation and characterization of new Pseudomonas species. Ann Uzb Acad Sci 4:65–70

    Google Scholar 

  • Matiru VN, Dakora FD (2004) Potential use of rhizobial bacteria as promoters of plant growth for increased yield in landraces of African cereal crops. Afr J Biotechnol 3:1–7

    CAS  Google Scholar 

  • Naidu CV (2001) Improvement of seed germination in red sanders (Pterocarpus santalinus Linn. F) by plant growth regulators. Indian J Plant Physiol 6:205–207

    CAS  Google Scholar 

  • Neamatollahi E, Bannayan M, Souhani DA, Ghanbari A (2009) Does hydro and osmo-priming improve fennel (Foeniculum vulgare) seeds germination and seedlings growth? Notulae Botanicae Horti Agrobotanici Cluj-Napoca 37:190–194

    CAS  Google Scholar 

  • Nwangburuka CC, Olawuyi OJ, Oyekale K, Ogunwenmo KO, Denton OA, Nwankwo E (2012) Arbuscular mycorrhizae(AM), poultry manure(PM), combination of AM-PM and inorganic fertilizer (NPK). Adv Appl Sci Res 3:1466–1471

    Google Scholar 

  • Ondrasek G, Rengel Z, Romic D, Poljak M, Romic M (2009) Accumulation of non/essential elements in radish plants grown in salt-affected and cadmium contaminated environment. Cereal Res Commun 37:9–12

    CAS  Google Scholar 

  • Othman Y, Al-Karaki G, Al-Tawaha AR, Al-Horani A (2006) Variation in germination and ion uptake in barley genotypes under salinity conditions. World J Agric Sci 2:11–15

    Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Prakash L, Parthapasenan G (1990) Interactive effect of NaCl salinity and gibberellic acid on shoot growth, content of abscisic acid and gibberellin like substances and yield of rice (Oryza sativa). Plant Sci 100:173–181

    CAS  Google Scholar 

  • Razmjoo K, Heydarizadeh P, Sabzalian MR (2008) Effect of salinity and drought stresses on growth parameters and essential oil content of Matricaria chamomila. Int J Agric Biol 10:451–454

    Google Scholar 

  • Remans R, Croonenborghs A, Torres Gutierrez R, Michiels J, Vanderleyden J (2007) Effects of plant growth promoting rhizobacteria on nodulation of Phaseolus vulgaris L. are dependent on plant P nutrition. Eur J Plant Pathol 119:341–351

    Article  CAS  Google Scholar 

  • Simons M, van der Bij AJ, Brand I, de Weger LA, Wijffelman CA, Lugtenberg BJ (1996) Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol Plant Microbe Interact 9:600–607

    Article  CAS  PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J (2010) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 17. doi:10.1101/cshperspect.a001438

  • Spaepen S, Boddelaere S, Croonenborghs A, Vanderleyden J (2008) Effect of Azospirillum brasilense indole-3-acetic acid production on inoculated wheat plants. Plant Soil 312:15–23

    Article  CAS  Google Scholar 

  • Teixeira da Silva JA, Egamberdieva D (2013) Plant-growth promoting rhizobacteria and medicinal plants. In: Govil JN et al (eds) Recent progress in medicinal plants, vol 38, Essential oils III and phytopharmacology. Studium, Houston, pp 26–42

    Google Scholar 

  • Tsukui M, Uchino M, Takano K (2004) Fractionation and properties of the mucilage from jew’s marrow. Kanto Gakuin Univ Soc Humanity Environ Bull 1:143–152

    Google Scholar 

  • Vadez V, Krishnamurthy L, Serraj R, Gaur PM, Upadhyaya HD, Hoisington DA, Varshney RK, Turner NC, Siddique KHM (2007) Large variation in salinity tolerance in chickpea is explained by differences in sensitivity at the reproductive stage. Field Crop Res 104:123–129

    Article  Google Scholar 

  • Velempini P, Riddoch I, Batisani N (2003) Seed treatments for enhancing germination of wild okra Corchorus olitorius. Exp Agric 39:441–447

    Article  Google Scholar 

  • Wahyuni S, Sinniah UR, Amarthalingam R, Yusop MK (2003) Enhancement of seedling establishment in rice by selected growth regulators as seed treatment. J Penelitian Pertanian Tanaman Pangan 22:51–55

    Google Scholar 

  • Xu GY, Rocha PS, Wang ML, Xu ML, Cui YC, Li LY, Zhu YX, Xia X (2011) A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta 234:47–59

    Article  CAS  PubMed  Google Scholar 

  • Yildirim E, Taylor AG (2005) Effect of biological treatments on growth of bean plants under salt stress. Ann Rep Bean Improv Coop 48:176–177

    Google Scholar 

  • Yue HT, Mo WP, Li C, Zheng YY, Li H (2007) The salt stress relief and growth promotion effect of Rs-5 on cotton. Plant Soil 297:139–145

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilfuza Egamberdieva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Egamberdieva, D., Jabborova, D. (2015). Efficiency of Phytohormone-Producing Pseudomonas to Improve Salt Stress Tolerance in Jew’s Mallow (Corchorus olitorius L.). In: Egamberdieva, D., Shrivastava, S., Varma, A. (eds) Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants. Soil Biology, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-319-13401-7_9

Download citation

Publish with us

Policies and ethics