Skip to main content

Abstract

In this chapter, we give a survey of the main results of RET concerning rarefied monatomic gases, some of which are explained in the Müller–Ruggeri book of RET (Müller and Ruggeri, Rational Extended Thermodynamics, Springer, New York, 1998). We start from the phenomenological RET theory with 13 fields and prove that the closure of RET coincides with the one obtained by Grad using kinetic arguments and with the MEP procedure. The theory with N-moments is also presented with the proof of nesting theories that emerge from the concept of principal subsystem. The problematic of bounded domain in RET is also considered, and a simple example of heat conduction is explained to show a significant difference of the results between RET and NSF. A lower bound for the maximum characteristic velocity is obtained in terms of the truncation tensor index N. This quantity increases as the number of moments grows and it is unbounded when \(N \rightarrow \infty \). The relativistic counterpart is also described briefly. In this framework, the maximum characteristic velocity is bounded for any number of moments, and converges to the light velocity from the below for \(N \rightarrow \infty \). The chapter contains also comparison between the RET theory and experiments in sound waves and light scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I.-S. Liu, I. Müller, Extended thermodynamics of classical and degenerate ideal gases. Arch. Ration. Mech. Anal. 83, 285 (1983)

    Article  MATH  Google Scholar 

  2. H. Grad, On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2(4), 331 (1949)

    Google Scholar 

  3. W. Dreyer, Maximization of the entropy in non-equilibrium. J. Phys. A: Math. Gen. 20, 6505 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. I. Müller, T. Ruggeri, Rational Extended Thermodynamics, 2nd edn. (Springer, New York, 1998)

    Book  MATH  Google Scholar 

  5. T. Ruggeri, The entropy principle: from continuum mechanics to hyperbolic systems of balance laws. Bollettino dell’Unione Matematica Italiana (8)8-B, 1 (2005)

    Google Scholar 

  6. G. Boillat, T. Ruggeri, Hyperbolic principal subsystems: entropy convexity and subcharacteristic conditions. Arch. Ration. Mech. Anal. 137, 305 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. I. Müller, T. Ruggeri, Stationary heat conduction in radially, symmetric situations – an application of extended thermodynamics. J. Non-Newtonian Fluid Mech. 119, 139 (2004)

    Article  MATH  Google Scholar 

  8. H. Struchtrup, W. Weiss, Maximum of the local entropy production becomes minimal in stationary processes. Phys. Rev. Lett. 80, 5048 (1998)

    Article  Google Scholar 

  9. E. Barbera, I. Müller, D. Reitebuch, N. Zhao, Determination of boundary conditions in extended thermodynamics via fluctuation theory. Continuum Mech. Thermodyn. 16, 411 (2004)

    Article  MATH  Google Scholar 

  10. T. Ruggeri, J. Lou, Heat conduction in multi-temperature mixtures of fluids: the role of the average temperature. Phys. Lett. A 373, 3052 (2009)

    Article  MATH  Google Scholar 

  11. F. Brini, T. Ruggeri, Entropy principle for the moment systems of degree α associated to the Boltzmann equation. Critical derivatives and non controllable boundary data. Continuum Mech. Thermodyn. 14, 165 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. H. Struchtrup, Heat transfer in the transition regime: solution of boundary value problems for Grad’s moment equations via kinetic schemes. Phys. Rev. E 65, 041204 (2002)

    Article  Google Scholar 

  13. H. Struchtrup, W. Weiss, Temperature jump and velocity slip in the moment method. Continuum Mech. Thermodyn. 12, 1 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Struchtrup, Macroscopic Transport Equations for Rarefied Gas Flow: Approximation Methods in Kinetic Theory (Springer, Berlin/Heidelberg, 2005)

    Google Scholar 

  15. N. Zhao, M. Sugiyama, Analysis of hear conduction in a rarefied gas at rest with a temperature jump at the boundary by consistent-order extended thermodynamics. Continuum Mech. Thermodyn. 18, 367 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Taniguchi, A. Iwasaki, M. Sugiyama, Relationship between Maxwell boundary condition and two kinds of stochastic thermal wall. J. Phys. Soc. Jpn. 77, 124004 (2008)

    Article  Google Scholar 

  17. G. Boillat, T. Ruggeri, Moment equations in the kinetic theory of gases and wave velocities. Continuum Mech. Thermodyn. 9, 205 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. W. Weiss, Zur Hierarchie der Erweiterten Thermodynamik. Dissertation, TU Berlin, 1990

    Google Scholar 

  19. G. Boillat, T. Ruggeri, Maximum wave velocity in the moments system of a relativistic gas. Continuum Mech. Thermodyn. 11, 107 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. G. Boillat, T. Ruggeri, Relativistic gas: moment equations and maximum wave velocity. J. Math. Phys. 40, 6399 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. F. Brini, T. Ruggeri, Maximum velocity for wave propagation in a relativistic rarefied gas. Continuum Mech. Thermodyn. 11, 331 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. T. Ruggeri, Non-linear maximum entropy principle for a polyatomic gas subject to the dynamic pressure. Bull. Inst. Math. Acad. Sin. Special Issue in honor of Tai-Ping Liu 70 birthday. 11 (2016)

    Google Scholar 

  23. I.-S. Liu, I. Müller, T. Ruggeri, Relativistic thermodynamics of gases. Ann. Phys. 169, 191 (1986)

    Article  Google Scholar 

  24. C. Marle, Sur l’établissement des équations de l’hydrodynamique des fluides relativistes dissipatifs I et II. Ann. Inst. Henri Poincaré A 10, 67 (1969); A 10, 127 (1969)

    Google Scholar 

  25. T. Ruggeri, Relativistic Extended Thermodynamics: General Assumptions and Mathematical Procedure Corso CIME Noto (Giugno 1987), ed. by A. Anile, Y. Choquet-Bruhat. Lecture Notes in Mathematics, vol. 1385 (Springer, Berlin, 1989), pp. 269–277

    Google Scholar 

  26. I. Müller, Extended thermodynamics: a theory of symmetric hyperbolic field equations. Entropy 10, 477 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. T. Ruggeri, The entropy principle from continuum mechanics to hyperbolic systems of balance laws: the modern theory of extended thermodynamics. Entropy 10, 319 (2008)

    Article  MATH  Google Scholar 

  28. A.M. Anile, S. Pennisi, Thermodynamic derivation of the hydrodynamical model for charge transport in semiconductors. Phys. Rev. B 46, 13186 (1992)

    Article  MATH  Google Scholar 

  29. A.M. Anile, V. Romano, Non parabolic band transport in semiconductors: closure of the moment equations. Continuum Mech. Thermodyn. 11, 307 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Trovato, L. Reggiani, Maximum entropy principle and hydrodynamic models in statistical mechanics. Riv. Nuovo Cimento Soc. Ital. Fis. 35, 99 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ruggeri, T., Sugiyama, M. (2015). RET of Rarefied Monatomic Gas. In: Rational Extended Thermodynamics beyond the Monatomic Gas. Springer, Cham. https://doi.org/10.1007/978-3-319-13341-6_4

Download citation

Publish with us

Policies and ethics