Skip to main content

Selecting an Optimal Antibody for Antibody- Drug Conjugate Therapy

  • Chapter
  • First Online:
Antibody-Drug Conjugates

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 17))

Abstract

Antibody–drug conjugates (ADCs) represent an increasing proportion of therapeutics in preclinical and clinical development for the treatment of oncology indications. ADC-based therapies are attractive due to their potential to increase efficacy and reduce the systemic toxicity produced by other conventional anticancer regimens. ADCs are complex molecules, however, and their clinical success depends both on properties of the target in the context of disease and properties of the ADC itself—the antibody, the toxin payload, and the linker to which it is coupled, and the site and chemistry of linkage. In this chapter, we review some of the strategies that can be utilized to generate and characterize optimal ADC antibodies including the selection of appropriate targets, the development of tools for antibody generation and screening, approaches to antibody isolation, advanced screening strategies for lead antibody selection, antibody engineering to increase selectivity and potency, and selection of appropriate combinations of linker, payload, and linker attachment strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams GP, Schier R, McCall AM, Simmons HH, Horak EM, Alpaugh RK, Marks JD, Weiner LM (2001) High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res 61(12):4750–4755

    CAS  PubMed  Google Scholar 

  • Akahori Y, Kurosawa G, Sumitomo M, Morita M, Muramatsu C, Eguchi K, Tanaka M, Suzuki K, Sugiura M, Iba Y, Sugioka A, Kurosawa Y (2009) Isolation of antigen/antibody complexes through organic solvent (ICOS) method. Biochem Biophys Res Commun 378(4):832–835. doi:10.1016/j.bbrc.2008.11.129

    Article  CAS  PubMed  Google Scholar 

  • An F, Drummond DC, Wilson S, Kirpotin DB, Nishimura SL, Broaddus VC, Liu B (2008) Targeted drug delivery to mesothelioma cells using functionally selected internalizing human single-chain antibodies. Mol Cancer Ther 7(3):569–578. doi:10.1158/1535-7163.MCT-07-2132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ashley DM, Sampson JH, Archer GE, Batra SK, Bigner DD, Hale LP (1997) A genetically modified allogeneic cellular vaccine generates MHC class I-restricted cytotoxic responses against tumor-associated antigens and protects against CNS tumors in vivo. J Neuroimmunol 78(1–2):34–46

    Article  CAS  PubMed  Google Scholar 

  • Axup JY, Bajjuri KM, Ritland M, Hutchins BM, Kim CH, Kazane SA, Halder R, Forsyth JS, Santidrian AF, Stafin K, Lu Y, Tran H, Seller AJ, Biroc SL, Szydlik A, Pinkstaff JK, Tian F, Sinha SC, Felding-Habermann B, Smider VV, Schultz PG (2012) Synthesis of site-specific antibody–drug conjugates using unnatural amino acids. Proc Natl Acad Sci U S A 109(40):16101–16106. doi:10.1073/pnas.1211023109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Becerril B, Poul MA, Marks JD (1999) Toward selection of internalizing antibodies from phage libraries. Biochem Biophys Res Commun 255(2):386–393. doi:10.1006/bbrc.1999.0177

    Article  CAS  PubMed  Google Scholar 

  • Behrens CR, Liu B (2013) Methods for site-specific drug conjugation to antibodies. MAbs 6(1):46–53

    Article  PubMed Central  Google Scholar 

  • Bernard A, Boumsell L (1984) The clusters of differentiation (CD) defined by the first international workshop on human leucocyte differentiation antigens. Hum Immunol 11(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Berry LM, Adams R, Airey M, Bracher MG, Bourne T, Carrington B, Cross AS, Davies GC, Finney HM, Foulkes R, Gozzard N, Griffin RA, Hailu H, Lamour SD, Lawson AD, Lightwood DJ, McKnight AJ, O'Dowd VL, Oxbrow AK, Popplewell AG, Shaw S, Stephens PE, Sweeney B, Tomlinson KL, Uhe C, Palframan RT (2009) In vitro and in vivo characterisation of anti-murine IL-13 antibodies recognising distinct functional epitopes. Int Immunopharmacol 9(2):201–206. doi:10.1016/j.intimp.2008.11.001

    Article  CAS  PubMed  Google Scholar 

  • Bickel PE, Lodish HF, Scherer PE (2000) Use and applications of subtractive antibody screening. Biotechnol Genet Eng Rev 17:417–430

    Article  CAS  PubMed  Google Scholar 

  • Bouchard L, Faucher G, Tchernof A, Deshaies Y, Lebel S, Hould FS, Marceau P, Vohl MC (2009) Comprehensive genetic analysis of the dipeptidyl peptidase-4 gene and cardiovascular disease risk factors in obese individuals. Acta Diabetol 46(1):13–21. doi:10.1007/s00592-008-0049-4

    Article  CAS  PubMed  Google Scholar 

  • Burris HA 3rd, Rugo HS, Vukelja SJ, Vogel CL, Borson RA, Limentani S, Tan-Chiu E, Krop IE, Michaelson RA, Girish S, Amler L, Zheng M, Chu YW, Klencke B, O'Shaughnessy JA (2011) Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy. J Clin Oncol 29(4):398–405. doi:10.1200/JCO.2010.29.5865

    Article  CAS  PubMed  Google Scholar 

  • Chaparro-Riggers J, Liang H, DeVay RM, Bai L, Sutton JE, Chen W, Geng T, Lindquist K, Casas MG, Boustany LM, Brown CL, Chabot J, Gomes B, Garzone P, Rossi A, Strop P, Shelton D, Pons J, Rajpal A (2012) Increasing serum half-life and extending cholesterol lowering in vivo by engineering antibody with pH-sensitive binding to PCSK9. J Biol Chem 287(14):11090–11097. doi:10.1074/jbc.M111.319764

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chatenoud L, Ferran C, Legendre C, Thouard I, Merite S, Reuter A, Gevaert Y, Kreis H, Franchimont P, Bach JF (1990) In vivo cell activation following OKT3 administration. Systemic cytokine release and modulation by corticosteroids. Transplantation 49(4):697–702

    Article  CAS  PubMed  Google Scholar 

  • Cizeau J, Torres MG, Cowling SG, Stibbard S, Premsukh A, Entwistle J, MacDonald GC (2011) Fusogenics: a recombinant immunotoxin-based screening platform to select internalizing tumor-specific antibody fragments. J Biomol Screen 16(1):90–100. doi:10.1177/1087057110387425

    Article  CAS  PubMed  Google Scholar 

  • Desnoyers LR, Vasiljeva O, Richardson JH, Yang A, Menendez EE, Liang TW, Wong C, Bessette PH, Kamath K, Moore SJ, Sagert JG, Hostetter DR, Han F, Gee J, Flandez J, Markham K, Nguyen M, Krimm M, Wong KR, Liu S, Daugherty PS, West JW, Lowman HB (2013) Tumor-specific activation of an EGFR-targeting probody enhances therapeutic index. Sci Transl Med 5(207):207ra144. doi: 10.1126/scitranslmed.3006682

    Google Scholar 

  • Ebersbach H, Geisse S (2012) Antigen generation and display in therapeutic antibody drug discovery—a neglected but critical player. Biotechnol J 7(12):1433–1443. doi:10.1002/biot.201200066

    Article  CAS  PubMed  Google Scholar 

  • Fishwild DM, O'Donnell SL, Bengoechea T, Hudson DV, Harding F, Bernhard SL, Jones D, Kay RM, Higgins KM, Schramm SR, Lonberg N (1996) High-avidity human IgG kappa monoclonal antibodies from a novel strain of minilocus transgenic mice. Nat Biotechnol 14(7):845–851. doi:10.1038/nbt0796-845

    Article  CAS  PubMed  Google Scholar 

  • Fransson J, Borrebaeck CA (2006) The nuclear DNA repair protein Ku70/80 is a tumor-associated antigen displaying rapid receptor mediated endocytosis. Int J Cancer 119(10):2492–2496. doi:10.1002/ijc.22212

    Article  CAS  PubMed  Google Scholar 

  • Fransson J, Borrebaeck CA (2009) Selection and characterization of antibodies from phage display libraries against internalizing membrane antigens. Methods Mol Biol 480:113–127. doi:10.1007/978-1-59745-429-2_8

    Article  CAS  PubMed  Google Scholar 

  • Fransson J, Ek S, Ellmark P, Soderlind E, Borrebaeck CA, Furebring C (2004) Profiling of internalizing tumor-associated antigens on breast and pancreatic cancer cells by reversed genomics. Cancer Lett 208(2):235–242. doi:10.1016/j.canlet.2003.11.036

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31(13):3784–3788

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goenaga AL, Zhou Y, Legay C, Bougherara H, Huang L, Liu B, Drummond DC, Kirpotin DB, Auclair C, Marks JD, Poul MA (2007) Identification and characterization of tumor antigens by using antibody phage display and intrabody strategies. Mol Immunol 44(15):3777–3788. doi:10.1016/j.molimm.2007.03.023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guo QM (2003) DNA microarray and cancer. Curr Opin Oncol 15(1):36–43

    Article  CAS  PubMed  Google Scholar 

  • Hamann PR, Hinman LM, Hollander I, Beyer CF, Lindh D, Holcomb R, Hallett W, Tsou HR, Upeslacis J, Shochat D, Mountain A, Flowers DA, Bernstein I (2002) Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody–calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug Chem 13(1):47–58

    Article  CAS  PubMed  Google Scholar 

  • Hamblett KJ, Senter PD, Chace DF, Sun MM, Lenox J, Cerveny CG, Kissler KM, Bernhardt SX, Kopcha AK, Zabinski RF, Meyer DL, Francisco JA (2004) Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clinical Cancer Res 10(20):7063–7070. doi:10.1158/1078-0432.CCR-04-0789

    Article  CAS  Google Scholar 

  • Harper J, Mao S, Strout P, Kamal A (2013) Selecting an optimal antibody for antibody–drug conjugate therapy: internalization and intracellular localization. Methods Mol Biol 1045:41–49. doi:10.1007/978-1-62703-541-5_3

    Article  PubMed  Google Scholar 

  • Hazen M, Bhakta S, Vij R, Randle S, Kallop D, Chiang V, Hötzel I, Jaiswal BS, Ervin KE, Li B, Weimer RM, Polakis P, Scheller RH, Junutula JR, Hongo JA (2014) An improved and robust DNA immunization method to develop antibodies against extra-cellular loops of multi-transmembrane proteins. MAbs 6(1):95–107. doi:10.4161/mabs.26761

    Article  PubMed Central  PubMed  Google Scholar 

  • Hellstrom I, Garrigues HJ, Garrigues U, Hellstrom KE (1990) Highly tumor-reactive, internalizing, mouse monoclonal antibodies to Le(y)-related cell surface antigens. Cancer Res 50(7):2183–2190

    CAS  PubMed  Google Scholar 

  • Hoogenboom HR, Lutgerink JT, Pelsers MM, Rousch MJ, Coote J, Van Neer N, De Bruine A, Van Nieuwenhoven FA, Glatz JF, Arends JW (1999) Selection-dominant and nonaccessible epitopes on cell-surface receptors revealed by cell-panning with a large phage antibody library. Eur J Biochem 260(3):774–784

    Article  CAS  PubMed  Google Scholar 

  • Israeli RS, Powell CT, Fair WR, Heston WD (1993) Molecular cloning of a complementary DNA encoding a prostate-specific membrane antigen. Cancer Res 53(2):227–230

    CAS  PubMed  Google Scholar 

  • Junutula JR, Raab H, Clark S, Bhakta S, Leipold DD, Weir S, Chen Y, Simpson M, Tsai SP, Dennis MS, Lu Y, Meng YG, Ng C, Yang J, Lee CC, Duenas E, Gorrell J, Katta V, Kim A, McDorman K, Flagella K, Venook R, Ross S, Spencer SD, Lee Wong W, Lowman HB, Vandlen R, Sliwkowski MX, Scheller RH, Polakis P, Mallet W (2008) Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol 26(8):925–932. doi:10.1038/nbt.1480

    Article  CAS  PubMed  Google Scholar 

  • Junutula JR, Flagella KM, Graham RA, Parsons KL, Ha E, Raab H, Bhakta S, Nguyen T, Dugger DL, Li G, Mai E, Lewis Phillips GD, Hiraragi H, Fuji RN, Tibbitts J, Vandlen R, Spencer SD, Scheller RH, Polakis P, Sliwkowski MX (2010) Engineered thio-trastuzumab-DM1 conjugate with an improved therapeutic index to target human epidermal growth factor receptor 2-positive breast cancer. Clin Cancer Res 16(19):4769–4778. doi:10.1158/1078-0432.CCR-10-0987

    Article  CAS  PubMed  Google Scholar 

  • Kellner C, Bleeker WK, Lammerts van Bueren JJ, Staudinger M, Klausz K, Derer S, Glorius P, Muskulus A, de Goeij BE, van de Winkel JG, Parren PW, Valerius T, Gramatzki M, Peipp M (2011) Human kappa light chain targeted Pseudomonas exotoxin A–identifying human antibodies and Fab fragments with favorable characteristics for antibody–drug conjugate development. J Immunol Methods 371(1–2):122–133. doi:10.1016/j.jim.2011.06.023

    Article  CAS  PubMed  Google Scholar 

  • Kilpatrick KE, Wring SA, Walker DH, Macklin MD, Payne JA, Su JL, Champion BR, Caterson B, McIntyre GD (1997) Rapid development of affinity matured monoclonal antibodies using RIMMS. Hybridoma 16(4):381–389

    Article  CAS  PubMed  Google Scholar 

  • Klussman K, Mixan BJ, Cerveny CG, Meyer DL, Senter PD, Wahl AF (2004) Secondary mAb–vcMMAE conjugates are highly sensitive reporters of antibody internalization via the lysosome pathway. Bioconjug Chem 15(4):765–773. doi:10.1021/bc049969t

    Article  CAS  PubMed  Google Scholar 

  • Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256(5517):495–497

    Article  CAS  PubMed  Google Scholar 

  • Kohls MD, Lappi DA (2000) Mab-ZAP: a tool for evaluating antibody efficacy for use in an immunotoxin. Biotechniques 28(1):162–165

    CAS  PubMed  Google Scholar 

  • Kulasingam V, Diamandis EP (2008) Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nat Clin Pract Oncol 5(10):588–599. doi:10.1038/ncponc1187

    Article  CAS  PubMed  Google Scholar 

  • Kung P, Goldstein G, Reinherz EL, Schlossman SF (1979) Monoclonal antibodies defining distinctive human T cell surface antigens. Science 206(4416):347–349

    Article  CAS  PubMed  Google Scholar 

  • Kurosawa G, Akahori Y, Morita M, Sumitomo M, Sato N, Muramatsu C, Eguchi K, Matsuda K, Takasaki A, Tanaka M, Iba Y, Hamada-Tsutsumi S, Ukai Y, Shiraishi M, Suzuki K, Kurosawa M, Fujiyama S, Takahashi N, Kato R, Mizoguchi Y, Shamoto M, Tsuda H, Sugiura M, Hattori Y, Miyakawa S, Shiroki R, Hoshinaga K, Hayashi N, Sugioka A, Kurosawa Y (2008) Comprehensive screening for antigens overexpressed on carcinomas via isolation of human mAbs that may be therapeutic. Proc Natl Acad Sci U S A 105(20):7287–7292. doi:10.1073/pnas.0712202105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kurosawa G, Sumitomo M, Akahori Y, Matsuda K, Muramatsu C, Takasaki A, Iba Y, Eguchi K, Tanaka M, Suzuki K, Morita M, Sato N, Sugiura M, Sugioka A, Hayashi N, Kurosawa Y (2009) Methods for comprehensive identification of membrane proteins recognized by a large number of monoclonal antibodies. J Immunol Methods 351(1–2):1–12. doi:10.1016/j.jim.2009.09.003

    Article  CAS  PubMed  Google Scholar 

  • Kurosawa N, Yoshioka M, Fujimoto R, Yamagishi F, Isobe M (2012) Rapid production of antigen-specific monoclonal antibodies from a variety of animals. BMC Biol 10:80. doi:10.1186/1741-7007-10-80

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Langer F, Ingersoll SB, Amirkhosravi A, Meyer T, Siddiqui FA, Ahmad S, Walker JM, Amaya M, Desai H, Francis JL (2005) The role of CD40 in CD40L- and antibody–mediated platelet activation. Thromb Haemost 93(6):1137–1146. doi:10.1267/THRO05061137

    CAS  PubMed  Google Scholar 

  • Lin K, Tibbitts J (2012) Pharmacokinetic considerations for antibody drug conjugates. Pharm Res 29(9):2354–2366. doi:10.1007/s11095-012-0800-y

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Conrad F, Cooperberg MR, Kirpotin DB, Marks JD (2004) Mapping tumor epitope space by direct selection of single-chain Fv antibody libraries on prostate cancer cells. Cancer Res 64(2):704–710

    Article  CAS  PubMed  Google Scholar 

  • Lonberg N (2005) Human antibodies from transgenic animals. Nat Biotechnol 23(9):1117–1125. doi:10.1038/nbt1135

    Article  CAS  PubMed  Google Scholar 

  • Lyon RP, Meyer DL, Setter JR, Senter PD (2012) Conjugation of anticancer drugs through endogenous monoclonal antibody cysteine residues. Methods Enzymol 502:123–138. doi:10.1016/B978-0-12-416039-2.00006-9

    Article  CAS  PubMed  Google Scholar 

  • Ma B, Osborn MJ, Avis S, Ouisse LH, Menoret S, Anegon I, Buelow R, Bruggemann M (2013) Human antibody expression in transgenic rats: comparison of chimeric IgH loci with human VH, D and JH but bearing different rat C-gene regions. J Immunol Methods 400–401:78–86. doi:10.1016/j.jim.2013.10.007

    Article  PubMed  Google Scholar 

  • Mazor Y, Barnea I, Keydar I, Benhar I (2007) Antibody internalization studied using a novel IgG binding toxin fusion. J Immunol Methods 321(1–2):41–59. doi:10.1016/j.jim.2007.01.008

    Article  CAS  PubMed  Google Scholar 

  • McDonagh CF, Kim KM, Turcott E, Brown LL, Westendorf L, Feist T, Sussman D, Stone I, Anderson M, Miyamoto J, Lyon R, Alley SC, Gerber HP, Carter PJ (2008) Engineered anti-CD70 antibody–drug conjugate with increased therapeutic index. Mol Cancer Ther 7(9):2913–2923. doi:10.1158/1535-7163.MCT-08-0295

    Article  CAS  PubMed  Google Scholar 

  • Mendez MJ, Green LL, Corvalan JR, Jia XC, Maynard-Currie CE, Yang XD, Gallo ML, Louie DM, Lee DV, Erickson KL, Luna J, Roy CM, Abderrahim H, Kirschenbaum F, Noguchi M, Smith DH, Fukushima A, Hales JF, Klapholz S, Finer MH, Davis CG, Zsebo KM, Jakobovits A (1997) Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice. Nat Genet 15(2):146–156. doi:10.1038/ng0297-146

    Article  CAS  PubMed  Google Scholar 

  • Morelli JK, Buehrle M, Pognan F, Barone LR, Fieles W, Ciaccio PJ (2006) Validation of an in vitro screen for phospholipidosis using a high-content biology platform. Cell Biol Toxicol 22(1):15–27. doi:10.1007/s10565-006-0176-z

    Article  CAS  PubMed  Google Scholar 

  • Nguyen DH, Ball ED, Varki A (2006) Myeloid precursors and acute myeloid leukemia cells express multiple CD33-related Siglecs. Exp Hematol 34(6):728–735. doi:10.1016/j.exphem.2006.03.003

    Article  CAS  PubMed  Google Scholar 

  • Nielsen UB, Kirpotin DB, Pickering EM, Drummond DC, Marks JD (2006) A novel assay for monitoring internalization of nanocarrier coupled antibodies. BMC Immunol 7:24. doi:10.1186/1471-2172-7-24

    Article  PubMed Central  PubMed  Google Scholar 

  • Okeley NM, Miyamoto JB, Zhang X, Sanderson RJ, Benjamin DR, Sievers EL, Senter PD, Alley SC (2010) Intracellular activation of SGN-35, a potent anti-CD30 antibody–drug conjugate. Clinical Cancer Res 16(3):888–897. doi:10.1158/1078-0432.CCR-09-2069

    Article  CAS  Google Scholar 

  • Osborn MJ, Ma B, Avis S, Binnie A, Dilley J, Yang X, Lindquist K, Menoret S, Iscache AL, Ouisse LH, Rajpal A, Anegon I, Neuberger MS, Buelow R, Bruggemann M (2013) High-affinity IgG antibodies develop naturally in Ig-knockout rats carrying germline human IgH/Igkappa/Iglambda loci bearing the rat CH region. J Immunol 190(4):1481–1490. doi:10.4049/jimmunol.1203041

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pak Y, Zhang Y, Pastan I, Lee B (2012) Antigen shedding may improve efficiencies for delivery of antibody-based anticancer agents in solid tumors. Cancer Res 72(13):3143–3152. doi:10.1158/0008-5472.CAN-11-3925

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Poul M, Jarry G, Elhkim MO, Poul JM (2009) Lack of genotoxic effect of food dyes amaranth, sunset yellow and tartrazine and their metabolites in the gut micronucleus assay in mice. Food Chem Toxicol 47(2):443–448. doi:10.1016/j.fct.2008.11.034

    Article  CAS  PubMed  Google Scholar 

  • Poul MA, Becerril B, Nielsen UB, Morisson P, Marks JD (2000) Selection of tumor-specific internalizing human antibodies from phage libraries. J Mol Biol 301(5):1149–1161. doi:10.1006/jmbi.2000.4026

    Article  CAS  PubMed  Google Scholar 

  • Robinson HL, Pertmer TM (2001) Nucleic acid immunizations. Curr Protoc Immunol Chap. 2:Unit 2 14. doi:10.1002/0471142735.im0214s27

    Google Scholar 

  • Ruan W, Sassoon A, An F, Simko JP, Liu B (2006) Identification of clinically significant tumor antigens by selecting phage antibody library on tumor cells in situ using laser capture microdissection. Mol Cell Proteomics 5(12):2364–2373. doi:10.1074/mcp.M600246-MCP200

    Article  CAS  PubMed  Google Scholar 

  • Rudnick SI, Lou J, Shaller CC, Tang Y, Klein-Szanto AJ, Weiner LM, Marks JD, Adams GP (2011) Influence of affinity and antigen internalization on the uptake and penetration of Anti-HER2 antibodies in solid tumors. Cancer Res 71(6):2250–2259. doi:10.1158/0008-5472.CAN-10-2277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rust S, Guillard S, Sachsenmeier K, Hay C, Davidson M, Karlsson A, Karlsson R, Brand E, Lowne D, Elvin J, Flynn M, Kurosawa G, Hollingsworth R, Jermutus L, Minter R (2013) Combining phenotypic and proteomic approaches to identify membrane targets in a 'triple negative' breast cancer cell type. Mol Cancer 12:11. doi:10.1186/1476-4598-12-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rybak JN, Roesli C, Kaspar M, Villa A, Neri D (2007) The extra-domain A of fibronectin is a vascular marker of solid tumors and metastases. Cancer Res 67(22):10948–10957. doi:10.1158/0008-5472.CAN-07-1436

    Article  CAS  PubMed  Google Scholar 

  • Sapra P, Damelin M, Dijoseph J, Marquette K, Geles KG, Golas J, Dougher M, Narayanan B, Giannakou A, Khandke K, Dushin R, Ernstoff E, Lucas J, Leal M, Hu G, O'Donnell CJ, Tchistiakova L, Abraham RT, Gerber HP (2013) Long-term tumor regression induced by an antibody–drug conjugate that targets 5T4, an oncofetal antigen expressed on tumor-initiating cells. Mol Cancer Ther 12(1):38–47. doi:10.1158/1535-7163.MCT-12-0603

    Article  CAS  PubMed  Google Scholar 

  • Sawada R, Sun SM, Wu X, Hong F, Ragupathi G, Livingston PO, Scholz WW (2011) Human monoclonal antibodies to sialyl-Lewis (CA19.9) with potent CDC, ADCC, and antitumor activity. Clinical Cancer Res 17(5):1024–1032. doi:10.1158/1078-0432.CCR-10-2640

    Article  CAS  Google Scholar 

  • Schmidt MM, Wittrup KD (2009) A modeling analysis of the effects of molecular size and binding affinity on tumor targeting. Mol Cancer Ther 8(10):2861–2871. doi:10.1158/1535-7163.MCT-09-0195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shiio Y, Aebersold R (2006) Quantitative proteome analysis using isotope-coded affinity tags and mass spectrometry. Nat Protoc 1(1):139–145. doi:10.1038/nprot.2006.22

    Article  CAS  PubMed  Google Scholar 

  • Shukla GS, Krag DN, Peletskaya EN, Pero SC, Sun YJ, Carman CL, McCahill LE, Roland TA (2013) Intravenous infusion of phage-displayed antibody library in human cancer patients: enrichment and cancer-specificity of tumor-homing phage-antibodies. Cancer Immunol Immunother 62(8):1397–1410. doi:10.1007/s00262-013-1443-5

    Article  CAS  PubMed  Google Scholar 

  • Sleister HM, Rao AG (2002) Subtractive immunization: a tool for the generation of discriminatory antibodies to proteins of similar sequence. J Immunol Methods 261(1–2):213–220

    Article  CAS  PubMed  Google Scholar 

  • Starkuviene V, Pepperkok R (2007) The potential of high-content high-throughput microscopy in drug discovery. Br J Pharmacol 152(1):62–71. doi:10.1038/sj.bjp.0707346

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stefano JE, Busch M, Hou L, Park A, Gianolio DA (2013) Micro- and mid-scale maleimide-based conjugation of cytotoxic drugs to antibody hinge region thiols for tumor targeting. Methods Mol Biol 1045:145–171. doi:10.1007/978-1-62703-541-5_9

    Article  PubMed  Google Scholar 

  • Stohrer M, Boucher Y, Stangassinger M, Jain RK (2000) Oncotic pressure in solid tumors is elevated. Cancer Res 60(15):4251–4255

    CAS  PubMed  Google Scholar 

  • Strop P, Liu SH, Dorywalska M, Delaria K, Dushin RG, Tran TT, Ho WH, Farias S, Casas MG, Abdiche Y, Zhou D, Chandrasekaran R, Samain C, Loo C, Rossi A, Rickert M, Krimm S, Wong T, Chin SM, Yu J, Dilley J, Chaparro-Riggers J, Filzen GF, O'Donnell CJ, Wang F, Myers JS, Pons J, Shelton DL, Rajpal A (2013) Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Chem Biol 20(2):161–167. doi:10.1016/j.chembiol.2013.01.010

    Article  CAS  PubMed  Google Scholar 

  • Tian F, Lu Y, Manibusan A, Sellers A, Tran H, Sun Y, Phuong T, Barnett R, Hehli B, Song F, Deguzman MJ, Ensari S, Pinkstaff JK, Sullivan LM, Biroc SL, Cho H, Schultz PG, Dijoseph J, Dougher M, Ma D, Dushin R, Leal M, Tchistiakova L, Feyfant E, Gerber HP, Sapra P (2014) A general approach to site-specific antibody drug conjugates. Proc Natl Acad Sci U S A 111(5):1766–1771. doi:10.1073/pnas.1321237111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Till M, May RD, Uhr JW, Thorpe PE, Vitetta ES (1988) An assay that predicts the ability of monoclonal antibodies to form potent ricin A chain-containing immunotoxins. Cancer Res 48(5):1119–1123

    CAS  PubMed  Google Scholar 

  • Uchida J, Lee Y, Hasegawa M, Liang Y, Bradney A, Oliver JA, Bowen K, Steeber DA, Haas KM, Poe JC, Tedder TF (2004) Mouse CD20 expression and function. Int Immunol 16(1):119–129

    Article  CAS  PubMed  Google Scholar 

  • UniProt C (2013) Update on activities at the Universal Protein Resource (UniProt) in 2013. Nucleic Acids Res 41(Database issue):D43–D47. doi:10.1093/nar/gks1068

    Google Scholar 

  • Vira S, Mekhedov E, Humphrey G, Blank PS (2010) Fluorescent-labeled antibodies: balancing functionality and degree of labeling. Anal Biochem 402(2):146–150. doi:10.1016/j.ab.2010.03.036

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wakankar A, Chen Y, Gokarn Y, Jacobson FS (2011) Analytical methods for physicochemical characterization of antibody drug conjugates. MAbs 3(2):161–172

    Article  PubMed Central  PubMed  Google Scholar 

  • Weber M, Weiss E, Engel AM (2003) Combining EL4-B5-based B-cell stimulation and phage display technology for the successful isolation of human anti-Scl-70 autoantibody fragments. J Immunol Methods 278(1–2):249–259

    Article  CAS  PubMed  Google Scholar 

  • Weinstein JN, van Osdol W (1992) Early intervention in cancer using monoclonal antibodies and other biological ligands: micropharmacology and the "binding site barrier";. Cancer Res 52(Suppl 9):2747s–2751s

    CAS  PubMed  Google Scholar 

  • Weltman JK, Pedroso P, Johnson SA, Davignon D, Fast LD, Leone LA (1987) Rapid screening with indirect immunotoxin for monoclonal antibodies against human small cell lung cancer. Cancer Res 47(21):5552–5556

    CAS  PubMed  Google Scholar 

  • Wen L, Hanvanich M, Werner-Favre C, Brouwers N, Perrin LH, Zubler RH (1987) Limiting dilution assay for human B cells based on their activation by mutant EL4 thymoma cells: total and antimalaria responder B cell frequencies. Eur J Immunol 17(6):887–892. doi:10.1002/eji.1830170624

    Article  CAS  PubMed  Google Scholar 

  • Williams AF, Galfre G, Milstein C (1977) Analysis of cell surfaces by xenogeneic myeloma-hybrid antibodies: differentiation antigens of rat lymphocytes. Cell 12(3):663–673

    Article  CAS  PubMed  Google Scholar 

  • Wing MG, Moreau T, Greenwood J, Smith RM, Hale G, Isaacs J, Waldmann H, Lachmann PJ, Compston A (1996) Mechanism of first-dose cytokine-release syndrome by CAMPATH 1-H: involvement of CD16 (FcgammaRIII) and CD11a/CD18 (LFA-1) on NK cells. J Clin Invest 98(12):2819–2826. doi:10.1172/JCI119110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yaziji H, Gown AM (2004) Testing for epidermal growth factor receptor in lung cancer: have we learned anything from HER-2 testing? J Clin Oncol 22(17):3646; author reply 3646–3648. doi:10.1200/JCO.2004.99.015

    Article  PubMed  Google Scholar 

  • Yoshikawa M, Mukai Y, Okada Y, Tsumori Y, Tsunoda S, Tsutsumi Y, Aird WC, Yoshioka Y, Okada N, Doi T, Nakagawa S (2013) Robo4 is an effective tumor endothelial marker for antibody–drug conjugates based on the rapid isolation of the anti-Robo4 cell-internalizing antibody. Blood 121(14):2804–2813. doi:10.1182/blood-2012-12-468363

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Marks JD (2012) Discovery of internalizing antibodies to tumor antigens from phage libraries. Methods Enzymol 502:43–66. doi:10.1016/B978-0-12-416039-2.00003-3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou Y, Zou H, Zhang S, Marks JD (2010) Internalizing cancer antibodies from phage libraries selected on tumor cells and yeast-displayed tumor antigens. J Mol Biol 404(1):88–99. doi:10.1016/j.jmb.2010.09.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou Y, Zhao L, Marks JD (2012) Selection and characterization of cell binding and internalizing phage antibodies. Arch Biochem Biophys 526(2):107–113. doi:10.1016/j.abb.2012.05.007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puja Sapra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Ritchie, M., Bloom, L., Carven, G., Sapra, P. (2015). Selecting an Optimal Antibody for Antibody- Drug Conjugate Therapy. In: Wang, J., Shen, WC., Zaro, J. (eds) Antibody-Drug Conjugates. AAPS Advances in the Pharmaceutical Sciences Series, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-13081-1_3

Download citation

Publish with us

Policies and ethics