Skip to main content

Recognising Top-Down Causation

  • Chapter
  • First Online:
Questioning the Foundations of Physics

Part of the book series: The Frontiers Collection ((FRONTCOLL))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A fuller description is given here: http://www.mth.uct.ac.za/~ellis/cos0.html.

  2. 2.

    For a comprehensive discussion, see the many links on Denis Noble’s webpage at http://musicoflife.co.uk/.

  3. 3.

    This derivation does not refer to the time irreversibility of the weak interaction, which has no direct effect on everyday life: it cannot be the source of the arrow of time in physical chemistry and biology.

References

  1. D.Z. Albert, Time and Chance (Harvard University Press, Cambridge, 2000)

    MATH  Google Scholar 

  2. P.W. Anderson, More is different. Science 177, 393–396 (1972)

    Article  ADS  Google Scholar 

  3. P. Arrighi, J. Grattange, The quantum game of life. Phys. World (2012), http://physicsworld.com/cws/article/indepth/2012/may/31/the-quantum-game-of-life

  4. G. Auletta, G.F.R. Ellis, L. Jaeger, Top-down causation by information control: from a philosophical problem to a scientific research program. J. R. Soc. Interface 5, 1159–1172 (2008)

    Article  Google Scholar 

  5. P.L. Berger, T. Luckmann, The Social Construction of Reality: A Treatise in the Sociology of Knowledge (Penguin, London, 1991)

    Google Scholar 

  6. N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982)

    Book  MATH  Google Scholar 

  7. H. Bondi, Cosmology (Cambridge University Press, Cambridge, 1960)

    MATH  Google Scholar 

  8. G. Booch, Object-Oriented Analysis and Design with Applications (Addison-Wesley Professional, 1993)

    Google Scholar 

  9. H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Clarendon Press, Oxford, 2006)

    Google Scholar 

  10. C. Callender, Thermodynamic asymmetry in time (2011), http://plato.stanford.edu/entries/time-thermo/

  11. N.A. Campbell, J.B. Reece, Biology (Benjamin Cummings, San Francisco, 2005)

    Google Scholar 

  12. S. Carroll, From Eternity to Here: The Quest for the Ultimate Arrow of Time (Dutton, New York, 2010)

    Google Scholar 

  13. J.Y. Chiao, Cultural neuroscience. Prog. Brain Res. 178, 287–304 (2009)

    Article  Google Scholar 

  14. B.J. Copeland, The Essential Turing (Clarendon Press, Oxford, 2004)

    MATH  Google Scholar 

  15. F. Crick, Astonishing Hypothesis: The Scientific Search for the Soul (Scribner, New York, 1995)

    Google Scholar 

  16. J.P. Crutchfield, Between order and chaos. Nat. Phys. 8, 17–24 (2011)

    Article  Google Scholar 

  17. D. Deutsch, The Fabric of Reality (Penguin Books, London, 1998)

    Google Scholar 

  18. S. Dodelson, Modern Cosmology (Academic Press, New York, 2003)

    Google Scholar 

  19. A.S. Eddington, The Nature of the Physical World (Cambridge University Press, Cambridge, 1928)

    Google Scholar 

  20. G.F.R. Ellis, Cosmology and local physics. Int. J. Mod. Phys. A17, 2667–2672 (2002)

    Article  ADS  Google Scholar 

  21. G.F.R. Ellis, Physics, complexity and causality. Nature 435, 743 (2005)

    Article  ADS  Google Scholar 

  22. G.F.R. Ellis, Top down causation and emergence: some comments on mechanisms. J. Roy Soc Interface Focus 2, 126–140 (2012)

    Article  Google Scholar 

  23. G.F.R. Ellis, On the limits of quantum theory: contextuality and the quantumclassical cut. Ann. Phys. 327, 1890–1932 (2012)

    Article  ADS  MATH  Google Scholar 

  24. G.F.R. Ellis, Multi-level selection in biology (2013), arXiv:1303.4001

  25. G.F.R. Ellis, Necessity, purpose, and chance: the role of randomness and indeterminism in nature from complex macroscopic systems to relativistic cosmology (2014). Available at http://www.mth.uct.ac.za/~ellis/George_Ellis_Randomness.pdf

  26. G.F.R. Ellis, D. Ellis, D. Noble, T. O’Connor (eds.), Top-down causation. Interface Focus 2(1) (2012)

    Google Scholar 

  27. D.J. Felleman, D.C. Van Essen, Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1(1), 1–47 (1991)

    Article  Google Scholar 

  28. R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics: Volume III. Quantum Mechanics (Addison-Wesley, Reading, 1965)

    Google Scholar 

  29. R.P. Feynman, R.B. Leighton, M. Sands, Feynman Lectures in Physics Volume II: Electromagnetism (Addison-Wesley, Reading, 1964)

    Google Scholar 

  30. V. Frankl, Man’s Search for Meaning (Rider and Co., London, 2008)

    Google Scholar 

  31. K. Friston, A theory of cortical responses. Philos. Trans. R. Soc. (Lond.) B Biol. Sci. 36, 360–815 (2005)

    Google Scholar 

  32. C. Frith, Making Up the Mind: How the Brain Creates Our Mental World (Blackwell, Malden, 2007)

    Google Scholar 

  33. C.D. Gilbert, M. Sigman, Brain states: top-down influences in sensory processing. Neuron 54, 677–696 (2007)

    Article  Google Scholar 

  34. S. Gilbert, D. Epel, Ecological Developmental Biology (Sinauer, Sunderland, 2009)

    Google Scholar 

  35. G. Greenstein, A.G. Zajonc, The Quantum Challenge: Modern Research on the Foundations of Quantum Mechanics (Jones and Bartlett, Sudbury, Mass, 2006)

    Google Scholar 

  36. S. Hartmann, Effective field theories, reductionism and scientific explanation. Stud. Hist. Philos. Sci. Part B 32, 267–304 (2001)

    Article  MATH  Google Scholar 

  37. C.J. Isham, Lectures on Quantum Theory (Imperial College Press, London, 1995)

    Book  MATH  Google Scholar 

  38. M. Kac, Can one hear the shape of a drum? Am. Math. Mon. 73, 1–23 (1966)

    Article  MATH  Google Scholar 

  39. E.R. Kandel, The Age of Insight (Random House, New York, 2012)

    Google Scholar 

  40. J. Kurose, Computer Networking: A Top-Down Approach (Addison Wesley, Upper Saddle River, 2010)

    Google Scholar 

  41. R. Lafore, Data Structures and Algorithms in Java (SAMS, Indiana, 2002)

    Google Scholar 

  42. R.W. Laughlin, Fractional quantisation. Rev. Mod. Phys. 71, 863–874 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  43. J. MacCormick, 9 Algorithms that Changed the Future (Princeton University Press, New Jersey, 2012)

    Google Scholar 

  44. E.Z. Macosko, N. Pokala, E.H. Feinberg, S.H. Chalasani, R.A. Butcher, J. Clardy, C.I. Bargmann, A hub-and-spoke circuit drives pheromone attraction and social behaviour in C. elegans. Nature 458, 1171–1175 (2009)

    Article  ADS  Google Scholar 

  45. M.M. Mano, C.R. Kine, Logic and Computer Design Fundamentals (Pearson, 2008)

    Google Scholar 

  46. V. Mante, D. Sussillo, K.V. Shenoy, Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503, 78–84 (2013)

    Article  ADS  Google Scholar 

  47. M. Martnez, A. Moya, (2011) Natural selection and multi-level causation. Philos. Theory Biol. (2011), http://dx.doi.org/10.3998/ptb.6959004.0003.002. 3 May 2011

  48. C. Mitchell, J. Hobcraft, S.S. McLanahan, S.R. Siegel, A. Berg, J. Brooks-Gunn, I. Garfinkel, D. Nottermand, Social disadvantage, genetic sensitivity, and childrens telomere length. Proc. Nati. Acad. Sci. 111(16), 5944–5949 (2014)

    Article  ADS  Google Scholar 

  49. S. Mukhanov, Physical Foundations of Cosmology (Cambridge University Press, Cambridge, 2005)

    Book  MATH  Google Scholar 

  50. D. Noble, From the HodgkinHuxley axon to the virtual heart. J. Physiol. 580, 15–22 (2007)

    Article  Google Scholar 

  51. D. Noble, A theory of biological relativity: no privileged level of causation. Interface Focus 2, 55–64 (2012)

    Google Scholar 

  52. M.J. Page et al., The suppression of star formation by active galactic nuclei. Nature 485, 213–216 (2012)

    Article  ADS  Google Scholar 

  53. J. Pearl, Causal diagrams for empirical research. Biometrika 82, 669–688 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  54. J. Pearl, Causality: Models, Reasoning and Inference (MIT Press, 2000)

    Google Scholar 

  55. R. Penrose, Cycles of Time: An Extraordinary New View of the Universe (Knopf, New York, 2011)

    Google Scholar 

  56. M. Pigliucci, An extended synthesis for evolutionary biology. Ann. N. Y. Acad. Sci. 1168, 218228 (2009)

    Article  Google Scholar 

  57. H. Poincare, The Value of Science. Originally published in 1913 (trans: G.B. Halstead), Cosimo Classics, 21(1913). ISBN: 978-1-60206-504-8

    Google Scholar 

  58. D. Purves, W. Wojtach, W.C. Howe, Visual ilusions. Scholarpedia (2007)

    Google Scholar 

  59. D. Purves, Brains: How They Seem to Work (FT Press Science, Upper Saddle River, 2010)

    Google Scholar 

  60. S. Schweber, Physics, community, and the crisis in physical theory. Phys. Today 46, 34–40 (1993)

    Article  Google Scholar 

  61. M. Sigman, H. Pan, Y. Yang, E. Stern, D. Silbersweig, C.D. Gilbert, Top-down reorganization of activity in the visual pathway after learning a shape identification task. Neuron 46, 823–835 (2005)

    Article  Google Scholar 

  62. A.S. Tanenbaum, Structured Computer Organisation (Prentice Hall, Englewood Cliffs, 1990)

    Google Scholar 

  63. R. van den Bos, J.W. Jolles, J.R. Homberg, Social modulation of decision-making: a cross-species review. Front. Hum. Neurosci. 7, 301 (2013). www.frontiersin.org

  64. S.I. Walker, L. Cisneros, P.C.W, Davies, Evolutionary transitions and top-down causation, in Proceedings of Artificial Life XIII (2012), http://xxx.lanl.gov/abs/1207.4808

  65. D.R. Weinberg, C.J. Gagliardi, J.F. Hull, C.F. Murphy, C.A. Kent, B. Westlake, A. Paul, D.H. Ess, D.G. McCafferty, T.J. Meyer, Proton-coupled electron transfer. Chem. Rev. 107, 5004–5064 (2007)

    Article  Google Scholar 

  66. S. Weinberg, The Quantum Theory of Fields. Volume 1: Foundations (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  67. J.M. Ziman, Principles of the Theory of Solids (Cambridge University Press, Cambridge, 1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Ellis .

Editor information

Editors and Affiliations

Appendix: Equivalence Classes

Appendix: Equivalence Classes

The key idea is that of functional equivalence classes. Whenever you can identify existence of such equivalence classes, that is an indication that top-down causation is taking place [4]. Indeed this is essentially the ontological nature of the higher level effective entity: a computer program is in its nature the same as the set of all possible implementations of the set of logical operations it entails. These are what enter into the higher level effective relations; they can be described in many different ways, and implemented in many different ways; what remains the same in those variants is the core nature of the entity itself.

An equivalence relation is a binary relation \(\sim \) satisfying three properties:

  1. 1.

    For every element \(a\) in \(X\), \(a \sim a\) (reflexivity),

  2. 2.

    For every two elements \(a\) and \(b\) in \(X\), if \(a \sim b\), then \(b \sim a\) (symmetry), and

  3. 3.

    For every three elements \(a\), \(b\), and \(c\) in \(X\), if \(a \sim b\) and \(b \sim c\), then \(a \sim c\) (transitivity).

The equivalence class of an element \(a\) is denoted \([a]\) and may be defined as the set of elements that are related to \(a\) by \(\sim \).

Fig. 3.1
figure 1

The lower level dynamics does not lead to coherent higher level dynamics when the lower level dynamics acting on different lower level states corresponding to a single higher level state, give new lower level states corresponding to different higher level states

Fig. 3.2
figure 2

The lower level dynamics leads to coherent higher level dynamics when the lower level dynamics acting on different lower level states corresponding to a single higher level state, give new lower level states corresponding to the same higher level state

The way this works is illustrated in (Figs. 3.1 and 3.2) higher level states H1 can be realised via various slower level states L1. This may or may not result in coherent higher level action arising out of the lower level dynamics.

When coherent dynamics emerges, the set of all lower states corresponding to a single higher level state form an equivalence class as far as the higher level actions are concerned. They are indeed the effective variables that matter, rather than the specific lower level state that instantiates the higher level one. This is why lower level equivalence classes are the key to understanding the dynamics (Figs. 3.1).

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ellis, G. (2015). Recognising Top-Down Causation. In: Aguirre, A., Foster, B., Merali, Z. (eds) Questioning the Foundations of Physics. The Frontiers Collection. Springer, Cham. https://doi.org/10.1007/978-3-319-13045-3_3

Download citation

Publish with us

Policies and ethics