Skip to main content

Time Integration in the Discontinuous Galerkin Code MIGALE - Steady Problems

  • Chapter
IDIHOM: Industrialization of High-Order Methods - A Top-Down Approach

Abstract

This chapter presents the high-order Discontinuous Galerkin (DG) solver named MIGALE for the steady solution of the RANS and k − ω turbulence model equations. During the IDIHOM project theMIGALE features have been enhanced both in terms of the prediction capability and solver efficiency, due to the implementation of an Explicit Algebraic Reynolds Stress Model (EARSM) and of the h- and p-multigrid (MG), respectively. algorithm. Several high-order DG results of 2D and 3D subsonic/ transonic turbulent test cases, proposed within the IDIHOM EU project, demonstrated the capability of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bassi, F., Botti, L., Colombo, A., Rebay, S.: Agglomeration based discontinuous Galerkin discretization of the Euler and Navier–Stokes equations. Computers & Fluids 61, 77–85 (2012)

    Article  MathSciNet  Google Scholar 

  2. Bassi, F., Botti, L., Colombo, A., Crivellini, A., Franchina, N., Ghidoni, A., Rebay, S.: Very high-order discontinuous Galerkin computations of transonic turbulent flows on aeronautical configurations. Notes on Fluid Mechanics 113, 25–38 (2010)

    Google Scholar 

  3. Hartmann, R., Held, J., Leicht, T., Prill, F.: Discontinuous Galerkin methods for computational aerodynamics – 3d adaptive flow simulation with the DLR PADGE code. Aerospace Science and Technology 14(7), 512–519 (2010)

    Article  Google Scholar 

  4. Modisette, J.M., Darmofal, D.L.: An output–based adaptive and higher-order method for a rotor in hover. AIAA Paper 7343. AIAA Paper 7343, AIAA (2008), doi:10.2514/6.2008-7343

    Google Scholar 

  5. Cantwell, C., Sherwin, S., Kirby, R., Kelly, P.: From h to p efficiently: Strategy selection for operator evaluation on hexahedral and tetrahedral elements. Comput. & Fluids 43, 23–28 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bassi, F., Franchina, N., Ghidoni, A., Rebay, S.: A numerical investigation of a spectral-type nodal collocation discontinuous Galerkin approximation of the Euler and Navier-Stokes equations. Int. J. Numer. Meth. Fluids 71, 1322–1339 (2013)

    Article  MathSciNet  Google Scholar 

  7. Bassi, F., Franchina, N., Ghidoni, A., Rebay, S.: Spectral p-multigrid discontinuous Galerkin solution of the Navier-Stokes equations. Int. J. Numer. Meth. Fluids 67, 1540–1558 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Crivellini, A., Bassi, F.: An implicit matrix-free discontinuous Galerkin solver for viscous and turbulent aerodynamics simulations. Comput. & Fluids 50(1), 81–93 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wallraff, M., Leicht, T., Lange-Hegermann, M.: Numerical flux functions for Reynolds-averaged Navier-Stokes and k-ω turbulence model computations with a line-preconditioned p-multigrid discontinuous Galerkin solver. International Journal for Numerical Methods in Fluids 71(8), 1055–1072 (2013), doi:10.1002/fld.3702

    Article  MathSciNet  Google Scholar 

  10. Wilcox, D.C.: Turbulence Modelling for CFD. DCW industries Inc., La Canada (1993)

    Google Scholar 

  11. Bassi, F., Crivellini, A., Rebay, S., Savini, M.: Discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes and k-ω turbulence model equations. Comput. & Fluids 34, 507–540 (2005)

    Article  MATH  Google Scholar 

  12. Menter, F.R.: Two-equation eddy-viscosity turbulence model for engineering applications. AIAA Journal 32(8), 1598–1605 (1994)

    Article  Google Scholar 

  13. Bassi, F., Botti, L., Colombo, A., Ghidoni, A., Rebay, S.: Discontinuous Galerkin for turbulent flows. In: Wang, Z.J. (ed.) Adaptive High-Order Methods in Computational Fluid Dynamics, ch. 3. Advances in Computational Fluid Dynamics, pp. 1–32. World Science Books (2011), http://www.worldscibooks.com/mathematics/7792.html

  14. Bassi, F., Botti, L., Colombo, A., Di Pietro, D., Tesini, P.: On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations. Journal of Computational Physics 231(1), 45–65 (2012), doi:http://dx.doi.org/10.1016/j.jcp.2011.08.018

    Google Scholar 

  15. Bassi, F., Rebay, S., Mariotti, G., Pedinotti, S., Savini, M.: A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows. In: Decuypere, R., Dibelius, G. (eds.) 2nd European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, pp. 99–108. Technologisch Instituut, Antwerpen (1997)

    Google Scholar 

  16. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gottlieb, J., Groth, C.: Assessment of Riemann solvers for unsteady one-dimensional inviscid flows of perfect gases. J. Comput. Phys. 78, 437–458 (1988)

    Article  MATH  Google Scholar 

  18. Hänel, D., Schwane, R., Seider, G.: On the accuracy of upwind schemes for the solution of the Navier–Stokes equations. In: Proceedings of the AIAA 8th Computational Fluid Dynamics Conference, AIAA Paper, CP, AIAA, pp. 87–1105 (July 1987)

    Google Scholar 

  19. ADIGMA, Adaptive higher-order variational methods for aerodynamic applications in industry, Specific Targeted Research Project no. 30719 supported by European Commison, http://www.dlr.de/as/en/Desktopdefault.aspx/tabid-2035/2979_read-4582/

  20. Balay, S., Brown, J., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc users manual, Tech. Rep. ANL-95/11 - Revision 3.4, Argonne National Laboratory (2013)

    Google Scholar 

  21. Hoheisel, H.: Entwicklung neuer entwurfskonzepte fur zwei turbinengitter, teil iii, ergebnisse T106, Technical report, Institut fur Entwurfsaerodynamik, Braunschweig (1981)

    Google Scholar 

  22. Ghidoni, A., Colombo, A., Rebay, S., Bassi, F.: Simulation of the transitional flow in a low pressure gas turbine cascade with a high-order discontinuous Galerkin method. Journal of Fluids Engineeing 135(7), doi:10.1115/1.4024107

    Google Scholar 

  23. Bassi, F., Botti, L., Colombo, A., Ghidoni, A., Rebay, S.: Investigation of near-wall grid spacing effect in High-Order Discontinuous Galerkin RANS computations of turbomachinery flows. In: Azaïez, M., EI Fekih, H., Hesthaven, J.S. (eds.) Spectral and High Order Methods for Partial Differential Equations - ICOSAHOM 2012. LNCSE, vol. 95, pp. 125–134. Springer, Heidelberg (1980)

    Google Scholar 

  24. Wallin, S., Johansson, A.V.: An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows. J. Fluid Mech. 403, 89–132 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dunham, J.: CFD validation for propulsion system components, Tech. Rep. AGARD AR-355, AIAA (1994)

    Google Scholar 

  26. Chima, R.: Calculation of tip clearance effects in a transonic compressor rotor (96-GT-114)

    Google Scholar 

  27. IDIHOM, Industrialisation of High-Order Methods – a top-down approach, Specific Targeted Research Project supported by European Commison, http://www.dlr.de/as/en/desktopdefault.aspx/tabid-7027/11654_read-27492/

  28. Ghidoni, A., Colombo, A., Bassi, F., Rebay, S.: Efficient p-multigrid discontinuous Galerkin solver for complex viscous flows on stretched grids. International Journal for Numerical Methods in Fluids 75(2), 134–154 (2014)

    Article  MathSciNet  Google Scholar 

  29. Konrath, R., Klein, C., Schrøder, A.: PSP and PIV investigations on the VFE-2 configuration in sub- and transonic flow. AIAA Paper 2008-379 (2008)

    Google Scholar 

  30. Crippa, S.: Advances in vortical flow prediction methods for design of delta-winged aircraft, Trita-AVE 2008:30. KTH, Aeronautical and Vehicle Engineering (2008)

    Google Scholar 

  31. Tesini, P.: An h-multigrid approach for high-order Discontinuous Galerkin methods. Università degli Studi di Bergamo (2008)

    Google Scholar 

  32. Bassi, F., Botti, L., Colombo, A.: Agglomeration based physical frame DG discretizations: an attempt to be mesh free. Mathematical Models and Methods in Applied Sciences (in Press, 2014), doi:10.1142/S0218202514400028

    Google Scholar 

  33. Integrated Performance Analysis of Computer Systems – Benchmarks for distributed computer systems (2005), http://www.ipacs-benchmark.org

  34. Ghidoni, A., Pelizzari, E., Rebay, S., Selmin, V.: 3D anisotropic unstructured grid generation. Int. J. Numer. Meth. Fl. 51, 1097–1115 (2006)

    Article  MATH  Google Scholar 

  35. Hummel, D.: The second international vortex flow experiment (VFE-2): Objectives and first results. J. Aerosp. Eng. 220(6), 559–568 (2006); 2nd International Symposium on Integrating CFD and Experiments in Aerodynamics

    Google Scholar 

  36. Konrath, R., Klein, C., Schrøder, A.: PSP and PIV investigations on the VFE-2 configuration in sub- and transonic flow. Aerosp. Sci. Technol. 24(1), 22–31 (2013)

    Article  Google Scholar 

  37. GridPro 5.5.1, http://www.gridpro.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Bassi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bassi, F. et al. (2015). Time Integration in the Discontinuous Galerkin Code MIGALE - Steady Problems. In: Kroll, N., Hirsch, C., Bassi, F., Johnston, C., Hillewaert, K. (eds) IDIHOM: Industrialization of High-Order Methods - A Top-Down Approach. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-319-12886-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12886-3_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12885-6

  • Online ISBN: 978-3-319-12886-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics