Skip to main content

COSSAN: A Multidisciplinary Software Suite for Uncertainty Quantification and Risk Management

  • Reference work entry
  • First Online:
Handbook of Uncertainty Quantification

Abstract

Computer-aided modeling and simulation is now widely recognized as the third “leg” of scientific method, alongside theory and experimentation. Many phenomena can be studied only by using computational processes such as complex simulations or analysis of experimental data. In addition, in many engineering fields computational approaches and virtual prototypes are used to support and drive the design of new components, structures, and systems. One of the greatest challenges of virtual prototyping is to improve the fidelity of the computational analysis. This can only be achieved by explicitly including variability and uncertainties from different sources. Variability is inherent in many natural systems and therefore cannot be reduced. Uncertainty is also always present since it is not possible to perfectly model or predict future events for which no real-world data is available.

Although stochastic methods offer a much more realistic approach for analysis and design, their utilization in practical applications remains quite limited. One of the reasons is that the developments of software for stochastic analysis have received considerably less attention than their deterministic counterparts. Another common limitation is that the computational cost of stochastic analysis is often by orders of magnitude higher than the deterministic analysis. Hence, robust, efficient, and scalable computational tools are necessary, i.e., by making use of the computational power of a cluster and grid computing.

This chapter presents the COSSAN project: a developed multidisciplinary general-purpose software suite for uncertainty quantification and risk analysis . The computational tools satisfy the industry requirements regarding usability, numerical efficiency, flexibility, and scalability. The software can be used to solve a wide range of engineering and scientific problems. The availability of such software is particularly important for the analysis and design of resilient structures and systems. In fact, despite the different levels of uncertainty, decision makers still need to take clear choices based on the available information. They need to trust the methodology adopted to propagate the uncertainties through multidisciplinary analysis, in order to quantify the risk with the current level of information and to avoid wrong decisions due to artificial restrictions introduced by the modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alvarez, D.A.: Infinite random sets and applications in uncertainty analysis. PhD thesis, Arbeitsbereich für Technische Mathematik am Institut für Grundlagen der Bauingenieurwissenschaften. Leopold-Franzens-Universität Innsbruck, Innsbruck. Available at https://sites.google.com/site/Diegoandresalvarezmarin/RSthesis.pdf (2007)

  2. Alvarez, D.A.: Reduction of uncertainty using sensitivity analysis methods for infinite random sets of indexable type. Int. J. Approx. Reason. 50(5), 750–762 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alvarez, D.A., Hurtado, J.E.: An efficient method for the estimation of structural reliability intervals with random sets, dependence modelling and uncertain inputs. Comput. Struct. 142, 54–63 (2014)

    Article  Google Scholar 

  4. Au, S.K., Beck, J.: Estimation of small failure probabilities in high dimensions by subset simulation. Probab. Eng. Mech. 16(4), 263–277 (2001)

    Article  Google Scholar 

  5. Au, S.K., Patelli, E.: Subset Simulation in finite-infinite dimensional space. Reliab. Eng. Syst. Saf. 2016, 148, 66–77

    Article  Google Scholar 

  6. Aven, T., Zio, E.: Some considerations on the treatment of uncertainties in risk assessment for practical decision making. Reliab. Eng. Syst. Saf. 96, 64–74 (2011)

    Article  Google Scholar 

  7. Barber, S., Voss, J., Webster, M.: The rate of convergence for approximate Bayesian computation. arXiv preprint, arXiv:13112038 (2013)

    Google Scholar 

  8. Beaurepaire, P., Valdebenito, M., Schuëller, G.I., Jensen, H.: Reliability-based optimization of maintenance scheduling of mechanical components under fatigue. CMAME 221–222, 24–40 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Beck, J.L., Katafygiotis, L.S.: Updating models and their uncertainties. I: Bayesian statistical framework. J. Eng. Mech. ASCE 124(4), 455–461 (1998)

    Google Scholar 

  10. Beer, M., Ferson, S.: Fuzzy probability in engineering analyses. In: Ayyub, B. (ed.) Proceedings of the First International Conference on Vulnerability and Risk Analysis and Management (ICVRAM 2011) and the Fifth International Symposium on Uncertainty Modeling and Analysis (ISUMA), pp. 53–61, 11–13 Apr 2011, University of Maryland, ASCE, Reston (2011)

    Google Scholar 

  11. Beer, M., Ferson, S.: Special issue of mechanical systems and signal processing “imprecise probabilities-what can they add to engineering analyses?”. Mech. Syst. Signal Process. 37(1–2), 1–3 (2013). doi:http://dx.doi.org/10.1016/j.ymssp.2013.03.018, http://www.sciencedirect.com/science/article/pii/S0888327013001180

  12. Beer, M., Patelli, E.: Editorial: engineering analysis with vague and imprecise information. Struct. Saf. 52, Part B, 143 (2015). doi:http://dx.doi.org/10.1016/j.strusafe.2014.11.001, http://www.sciencedirect.com/science/article/pii/S0167473014001106. Special Issue: Engineering Analyses with Vague and Imprecise Information.

  13. Beer, M., Phoon, K.K., Quek, S.T. (eds.): Special issue: Modeling and analysis of rare and imprecise information. Struct. Saf. 32 (2010)

    Google Scholar 

  14. Beer, M., Zhang, Y., Quek, S.T., Phoon, K.K.: Reliability analysis with scarce information: Comparing alternative approaches in a geotechnical engineering context. Struct. Saf. 41(6), 1–10 (2013). doi:http://dx.doi.org/10.1016/j.strusafe.2012.10.003, http://www.sciencedirect.com/science/article/pii/S0167473012000689

  15. Benjamin, J., Schuëller, G., Wittmann, F. (eds.): Proceedings of the second international seminar on structural reliability of mechanical components and subassemblies of nuclear power plants, special volume. J. Nucl. Eng. Des. 59, 1–168 (1989)

    Google Scholar 

  16. Bratley, P., Fox, B.L.: Algorithm 659: implementing Sobol’s quasirandom sequence generator. ACM Trans. Math. Softw. 14(1), 88–100 (1988). doi:http://doi.acm.org/10.1145/42288.214372

  17. Bucher, C., Pradlwarter, H.J., Schuëller, G.I.: Computational stochastic structural analysis (COSSAN). In: Schuëller, G.I. (ed.) Structural Dynamics – Recent Advances, pp. 301–316. Springer, Berlin/Heidelberg (1991)

    Chapter  Google Scholar 

  18. Bucher, C., Pradlwarter, H.J., Schuëller, G.I.: COSSAN – (Computational stochastic structural analysis) – Perspectives of software developments. In: Schuëller, G.I., et al. (ed.) Proceedings of the 6th International Conference on Structural Safety and Reliability (ICOSSAR’93), pp. 1733–1740. A.A. Balkema Publications, Rotterdam/Innsbruck (1994)

    Google Scholar 

  19. Busacca, P.G., Marseguerra, M., Zio, E.: Multiobjective optimization by genetic algorithms: application to safety systems. Reliab. Eng. Syst. Saf. 72(1), 59–74 (2001). http://www.sciencedirect.com/science/article/B6V4T-42G751J-7/2/f0bf8189c921c1d6029d1f9b56524094

    Article  Google Scholar 

  20. Chiachio, M., Beck, J.L., Chiachio, J., Rus, G.: Approximate Bayesian computation by subset simulation. arXiv preprint, arXiv:14046225 (2014)

    Google Scholar 

  21. Ching, J., Chen, Y.: Transitional Markov Chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging. J. Eng. Mech. 133(7), 816–832 (2007). doi:10.1061/(ASCE)0733-9399(2007)133:7(816), http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%282007%29133%3A7%28816%29

    Article  Google Scholar 

  22. Crémona, C., Lukić, M.: Probability-based assessment and maintenance of welded joints damaged by fatigue. Nucl. Eng. Des. 182(3), 253–266 (1998)

    Article  Google Scholar 

  23. Crespo, L.G., Kenny, S.P., Giesy, D.P.: The NASA langley multidisciplinarty uncertainty quantification challenge. In: 16th AIAA Non-Deterministic Approaches Conference – AIAA SciTech, American Institute of Aeronautics and Astronautics (2014). doi:10.2514/6.2014-1347, http://dx.doi.org/10.2514/6.2014-1347

    Google Scholar 

  24. de Angelis, M., Patelli, E., Beer, M.: An efficient strategy for interval computations in risk-based optimization. In: ICOSSAR, 16–20 June 2013. Columbia University, New York (2013)

    Google Scholar 

  25. de Angelis, M., Patelli, E., Beer, M.: Advanced line sampling for efficient robust reliability analysis. Struct. Saf. 52, 170–182 (2015). doi:10.1016/j.strusafe.2014.10.002, http://www.sciencedirect.com/science/article/pii/S0167473014000927

    Article  Google Scholar 

  26. DeFinetti, B.: Theory of Probability: A Critical Introductory Treatment. Wiley, Chichester (1990)

    Google Scholar 

  27. Der Kiureghian, A., Dakessian, T.: Multiple design points in first and second-order reliability. Struct. Saf. 20(1), 37–49, doi:10.1016/S0167-4730(97)00026-X, http://www.sciencedirect.com/science/article/B6V54-3T2H6KD-3/2/241e203d3372ca22a2cc463c44cc98ca (1998)

  28. Ditlevsen, O., Madsen, H.O.: Structural Reliability Methods, Internet edition. Wiley, Chichester (2005)

    Google Scholar 

  29. Exler, O., Schittkowski, K.: A trust region SQP algorithm for mixed-integer nonlinear programming. Optim. Lett. (2007). doi:10.1007/s11590-006-0026-1

    MathSciNet  MATH  Google Scholar 

  30. Free Software Foundation: Free software foundation, GNU lesser general public license, version 3. http://www.gnu.org/licenses/lgpl.html (2007)

  31. Ghanem, R., Spanos, P.: Stochastic Finite Elements: A Spectral Approach. Springer, New York/Berlin/Heidelberg. Revised edition 2003, Dover Publications, Mineola/New York (1991)

    Google Scholar 

  32. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley, Reading (1989)

    MATH  Google Scholar 

  33. Goller, B., Pradlwarter, H.J., Schuëller, G.I.: Robust modal updating with insufficient data. Comput. Methods Appl. Mech. Eng. 198(37–40), 3096–3104 (2009). doi:10.1016/j.cma.2009.05.009

    Article  MATH  Google Scholar 

  34. Harder, R., Desmarais, R.: Interpolation using surface splines. J. Aircr. 2, 189–191 (1972)

    Article  Google Scholar 

  35. Hoshiya, M.: Kriging and conditional simulation of gaussian field. J. Eng. Mech. ASCE 121(2), 181–186 (1995)

    Article  Google Scholar 

  36. Jensen, H., Catalan, M.: On the effects of non-linear elements in the reliability-based optimal design of stochastic dynamical systems. Int. J. Nonlinear Mech. 42(5), 802–816 (2007)

    Article  MATH  Google Scholar 

  37. Jensen, H., Valdebenito, M., Schuëller, G.: An efficient reliability-based optimization scheme for uncertain linear systems subject to general gaussian excitation. Comput. Methods Appl. Mech. Eng. 198(1), 72–87 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kijawatworawet, W.: Reliability of structural systems using adaptive importance directional sampling. PhD thesis, Institute of Engineering Mechanics, Leopold-Franzens University, Innsbruck, EU (1992)

    Google Scholar 

  39. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science, Number 4598, 13 May 1983 220, 4598, 671–680 (1983). citeseer.ist.psu.edu/kirkpatrick83optimization.html

  40. Koutsourelakis, P.S., Pradlwarter, H.J., Schuëller, G.I.: Reliability of structures in high dimensions, part I: algorithms and applications. Probab. Eng. Mech. 19(4), 409–417 (2004). doi:10.1016/j.probengmech.2004.05.001

    Article  Google Scholar 

  41. Kucherenko, S., Delpuech, B., Iooss, B., Tarantola, S.: Application of the control variate technique to estimation of total sensitivity indices. Reliab. Eng. Syst. Saf. 134, 251–259 (2015). doi:10.1016/j.ress.2014.07.008

    Article  Google Scholar 

  42. Laplace, P.S.: A Philosophical Essay on Probabilities. Dover Publications, New York (1814)

    MATH  Google Scholar 

  43. Liu, J.: Monte Carlo Strategies in Scientific Computing. Springer Series in Statistics. Springer, New York (2001)

    MATH  Google Scholar 

  44. Melchers, R.E.: Structural reliability: analysis and prediction. Wiley, Chichester (2002)

    Google Scholar 

  45. Melchers, R.E., Ahammed, M.: Gradient estimation for applied Monte Carlo analyses. Reliab. Eng. Syst. Saf. 78(3), 283–288 (2002). http://www.sciencedirect.com/science/article/B6V4T-475R7RS-8/2/8eaa29f83ddacc51937b7005aed69481

    Article  Google Scholar 

  46. Mitseas, I., Kougioumtzoglou, I., Beer, M., Patelli, E., Mottershead, J.: Robust design optimization of structural systems under evolutionary stochastic seismic excitation. In: Vulnerability, Uncertainty, and Risk, American Society of Civil Engineers, pp. 215–224 (2014). doi:10.1061/9780784413609.022, http://dx.doi.org/10.1061/9780784413609.022

  47. Molchanov, I.: Theory of Random Sets. Springer, London (2005)

    MATH  Google Scholar 

  48. Möller, B., Beer, M.: Fuzzy-Randomness – Uncertainty in Civil Engineering and Computational Mechanics. Springer, Berlin/New York (2004)

    MATH  Google Scholar 

  49. Müller, B., Graf, W., Beer, M.: Fuzzy structural analysis using alpha-level optimization. Comput. Mech. 26, 547–565 (2000)

    Article  MATH  Google Scholar 

  50. NASA Standard for Models and Simulations: Tech. Rep. NASA-STD-7009, National Aeronautics and Space Administration (NASA) (2013)

    Google Scholar 

  51. Nelder, J., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  52. Nissen, S.: Implementation of a fast artificial neural network library (fann). Tech. rep., Department of Computer Science University of Copenhagen (DIKU), http://fann.sf.net (2003)

  53. Olsson, A., Sandberg, G., Dahlblom, O.: On Latin hypercube sampling for structural reliability analysis. Struct. Saf. 25, 47–68(22) (2003). doi:10.1016/S0167-4730(02)00039-5, http://www.ingentaconnect.com/content/els/01674730/2003/00000025/00000001/art00039

    Article  Google Scholar 

  54. Panayirci, H.M.: Efficient solution for Galerkin based polynomial chaos expansion systems. Adv. Eng. Softw. 41(412), 1277–1286 (2010). doi:10.1016/j.advengsoft.2010.09.004

    Article  MATH  Google Scholar 

  55. Paris, P., Erdogan, F.: A critical analysis of crack propagation laws. J. Basic Eng. Trans. ASME 85, 528–534 (1963)

    Article  Google Scholar 

  56. Patelli, E., Au, I.: Efficient Monte Carlo algorithm for rare failure event simulation. In: 12th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP12), Vancouver, 12–15 July 2015, http://hdl.handle.net/2429/53247 (2015)

  57. Patelli, E., Broggi, M.: On general purpose software for the efficient uncertainty management of large finite element models. In: NAFEMS World Congress, 9–12 June 2013, Salzburg, NAFEMS, http://academia.edu/attachments/31544367/download_file (2013)

  58. Patelli, E., de Angelis, M.: Line sampling approach for extreme case analysis in presence of aleatory and epistemic uncertainties. In: European Safety and Reliability Conference – ESREL – 7–10 Sept 2015. CRC Press/Balkema (2015)

    Google Scholar 

  59. Patelli, E., Pradlwarter, H.: Monte Carlo gradient estimation in high dimensions. Int. J. Numer. Methods Eng. 81(2), 172–188 (2010). doi:10.1002/nme.2687

    MathSciNet  MATH  Google Scholar 

  60. Patelli, E., Schuëller, G.I.: Computational optimization strategies for the simulation of random media and components. Comput. Optim. Appl. 1–29 (2012). doi:10.1007/s10589-012-9463-1, http://dx.medra.org/10.1007/s10589-012-9463-1

  61. Patelli, E., Pradlwarter, H.J., Schuëller, G.I.: Global sensitivity of structural variability by random sampling. Comput. Phys. Commun. 181, 2072–2081 (2010). doi:10.1016/j.cpc.2010.08.007

    Article  MathSciNet  MATH  Google Scholar 

  62. Patelli, E., Pradlwarter, H., Schuëller, G.: On multinormal integrals by importance sampling for parallel system reliability. Struct. Saf. 33, 1–7 (2011). doi:10.1016/j.strusafe.2010.04.002

    Article  Google Scholar 

  63. Patelli, E., Pradlwarter, H.J., Schuëller, G.I.: On multinormal integrals by importance sampling for parallel system reliability. Struct. Saf. 33, 1–7 (2011). doi:10.1016/j.strusafe.2010.04.002

    Article  Google Scholar 

  64. Patelli, E., Valdebenito, M.A., Schuëller, G.I.: General purpose stochastic analysis software for optimal maintenance scheduling: application to a fatigue-prone structural component. Int. J. Reliab. Saf. 5, 211–228 (2011). Special Issue on: “Robust Design – Coping with Hazards Risk and Uncertainty”

    Google Scholar 

  65. Patelli, E., Panayirci, H.M., Broggi, M., Goller, B., Pradlwarter, P.B.H.J., Schuëller, G.I.: General purpose software for efficient uncertainty management of large finite element models. Finite Elem. Anal. Des. 51, 31–48 (2012). doi:10.1016/j.finel.2011.11.003, http://dx.medra.org/10.1016/j.finel.2011.11.003

    Article  Google Scholar 

  66. Patelli, E., Alvarez, D.A., Broggi, M., de Angelis, M.: An integrated and efficient numerical framework for uncertainty quantification: application to the NASA Langley multidisciplinary uncertainty quantification challenge. In: 16th AIAA Non-Deterministic Approaches Conference (SciTech 2014), American Institute of Aeronautics and Astronautics, AIAA SciTech (2014). doi:10.2514/6.2014-1501

    Google Scholar 

  67. Patelli, E., Broggi, M., de Angelis, M., Beer, M.: Opencossan: an efficient open tool for dealing with epistemic and aleatory uncertainties. In: Vulnerability, Uncertainty, and Risk, American Society of Civil Engineers, pp. 2564–2573 (2014). doi:10.1061/9780784413609.258, http://dx.doi.org/10.1061/9780784413609.258

  68. Patelli, E., Alvarez, D.A., Broggi, M., de Angelis, M.: Uncertainty management in multidisciplinary design of critical safety systems. J. Aerosp. Inf. Syst. 12, 140–169 (2015). doi:10.2514/1.I010273

    Google Scholar 

  69. Pedroni, N., Zio, E., Ferrario, E., Pasanisi, A., Couplet, M.: Propagation of aleatory and epistemic uncertainties in the model for the design of a food protection dike. In: PSAM 11 & ESREL, Jun 2012, Helsinki, pp. 1–10 (2012)

    Google Scholar 

  70. Powell, M.: Direct search algorithms for optimization calculations. Acta Numer. 7, 287–336 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  71. Powell, M.J.D.: The BOBYQA algorithm for bound constrained optimization without derivatives. Tech. rep., Department of Applied Mathematics and Theoretical Physics, Cambridge, http://fann.sf.net (2009)

  72. Pradlwarter, H., Schuëller, G.: Reliability assessment of uncertain linear systems in structural dynamics. In: Belyaev, A.K., Langley, R.S. (eds.) IUTAM Symposium on the Vibration Analysis of Structures with Uncertainties, Saint Petersburg, pp. 363–378 (2011)

    Chapter  Google Scholar 

  73. Romero, V., Mullins, J., Swiler, L., Urbina, A.: A comparison of methods for representing and aggregating uncertainties involving sparsely sampled random variables – more results. SAE Int. J. Mater. Manuf. 6(3) (2013). http://www.scopus.com/inward/record.url?eid=2-s2.0-84876425264&partnerID=40&md5=72ea116c4e8d25c856e55d3d07afd890

  74. Roux, W.J., Stander, N., Haftka, R.T.: Response surface approximation for structural optimization. Int. J. Numer. Methods Eng. 42, 517–534 (1998)

    Article  MATH  Google Scholar 

  75. Rubinstein, R.: Simulation and the Monte Carlo Method. John Wiley & Sons, New York/Chichester/Brisbane/Toronto (1981)

    Book  MATH  Google Scholar 

  76. Saltelli, A., Bolado, R.: An alternative way to compute fourier amplitude sensitivity test (fast). Comput. Stat. Data Anal. 26(4), 445–460 (1998). doi:10.1016/S0167-9473(97)00043-1, http://www.sciencedirect.com/science/article/B6V8V-3SX829Y-5/2/1147936f52dcb9461d1f69aa319bb117

    Article  MATH  Google Scholar 

  77. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Salsana, M., Tarantola, S.: Global Sensitivity Analysis: The Primer. Wiley, Chichester (2008)

    MATH  Google Scholar 

  78. Schenk, C.A., Schuëller, G.I.: Uncertainty Assessment of Large Finite Element Systems, Lecture Notes in Applied and Computational Mechanics, vol 24. Springer, Berlin/Heidelberg/New York (2005). http://www.springer.com/materials/mechanics/book/978-3-540-25343-3, ISBN:978-3-540-25343-3

    Google Scholar 

  79. Schuëller, G.: Efficient Monte Carlo simulation procedures in structural uncertainty and reliability analysis – recent advances. J. Struct. Eng. Mech. 32(1), 1–20 (2009)

    Article  Google Scholar 

  80. Schuëller, G.I.: On procedures for reliability assessment of mechanical systems and structures. J. Struct. Eng. Mech. 25(3), 275–289 (2007)

    Article  Google Scholar 

  81. Schuëller, G.I., Pradlwarter, H.J.: Computational stochastic structural analysis(COSSAN) – a software tool. Struct. Saf. 28(1–2), 68–82 (2006). doi:10.1016/j.strusafe.2005.03.005

    Article  Google Scholar 

  82. Schuëller, G.I., Pradlwarter, H.J.: Uncertainty analysis of complex structural systems. Int. J. Numer. Methods Eng. 80(6–7), 881–913 (2009). doi:10.1002/nme.2549

    Article  MathSciNet  MATH  Google Scholar 

  83. Schuëller, G.I., Stix, R.: A critical appraisal of methods to determine failure probabilities. J. Struct. Saf. 4(4), 293–309 (1987)

    Article  Google Scholar 

  84. Schuëller, G.I. (ed.): GI Uncertainties in structural mechanics and analysis – computational methods. Comput. Struct. – Special Issue 83(14), 1031–1149 (2005). doi:10.1016/j.compstruc.2005.01.004

    Google Scholar 

  85. Schuëller, G.I. (ed.): GI Structural reliability software. Struct. Saf. – Special Issue 28(1–2), 1–216 (2006). doi:10.1016/j.strusafe.2005.03.001

    Google Scholar 

  86. Schuëller, G., Jensen, H.: Computational methods in optimization considering uncertainties – an overview. Comput. Methods Appl. Mech. Eng. 198(1), 2–13 (2008)

    Article  MATH  Google Scholar 

  87. Sobol’, I.: Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp. 1(4), 407–414 (1993)

    Google Scholar 

  88. Sobol’, I.: Global sensitivity indices for nonlinear mathematical modes and their Monte Carlo estimates. Math. Comput. Simul. 55, 217–280 (2001)

    Google Scholar 

  89. Sudret, B.: Meta-models for structural reliability and uncertainty quantification. ArXiv e-prints 1203.2062 (2012)

    Google Scholar 

  90. Sudret, B., Der Kiureghian, A.: Stochastic finite element methods and reliability a state-of-the-art report. Tech. rep., Department of Civil and Environmental Engineering, University of California, Berkeley (2000)

    Google Scholar 

  91. Thomas, B.: Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press, New York (1996). doi:0-19-509971-0

    Google Scholar 

  92. Valdebenito, M.: Reliability-based optimization: Efficient strategies for high dimensional reliability problems. PhD thesis, Institute of Engineering Mechanics, University of Innsbruck, Innsbruck (2010)

    Google Scholar 

  93. Valdebenito, M., Schuëller, G.: Design of maintenance schedules for fatigue-prone metallic components using reliability-based optimization. Comput. Methods Appl. Mech. Eng. 199, 2305–2318 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  94. Valdebenito, M., Patelli, E., Schuëller, G.: A general purpose software for reliability-based optimal design. In: Muhanna, M.B.R., Mullen, R. (eds.) 4th International Workshop on Reliable Engineering Computing: Robust Design – Coping with Hazards, Risk and Uncertainty, Research Publishing Services, Singapore, pp. 3–22 (2010). doi:10.3850/978-981-08-5118-7_plenary-1

    Google Scholar 

  95. Valdebenito, M., Pradlwarter, H., Schuëller, G.: The role of the design point for calculating failure probabilities in view of dimensionality and structural non linearities. Struct. Saf. 32(2), 101–111 (2010). doi:10.1016/j.strusafe.2009.08.004

    Article  Google Scholar 

  96. Vanmarcke, E.: Random fields: analysis and synthesis. Published by MIT Press, Cambridge, MA (1983); Web Edition by Rare Book Services, Princeton University. Princeton, Cambridge, MA (1998)

    Google Scholar 

  97. Wang, P., Lu, Z., Tang, Z.: A derivative based sensitivity measure of failure probability in the presence of epistemic and aleatory uncertainties. Comput. & Math. Appl. 65(1), 89–101 (2013). doi:10.1016/j.camwa.2012.08.017, http://www.sciencedirect.com/science/article/pii/S0898122112006438

    Article  MathSciNet  MATH  Google Scholar 

  98. Youssef, H., Sait, S.M., Adiche, H.: Evolutionary algorithms, simulated annealing and tabu search: a comparative study. Eng. Appl. Artif. Intell. 14(2), 167–181 (2001). doi:10.1016/S0952-1976(00)00065-8, http://www.sciencedirect.com/science/article/B6V2M-42JRD52-6/2/a02150bf476eeff0d9f64652698ddea7

    Article  Google Scholar 

  99. Zhang, H., Mullen, R.L., Muhanna, R.L.: Interval Monte Carlo methods for structural reliability. Struct. Saf. 32(3), 183–190 (2010)

    Article  Google Scholar 

  100. Zhang, M., Beer, M., Quek, S.T., Choo, Y.S.: Comparison of uncertainty models in reliability analysis of offshore structures under marine corrosion. Struct. Saf. 32(6), 425–432 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edoardo Patelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Patelli, E. (2017). COSSAN: A Multidisciplinary Software Suite for Uncertainty Quantification and Risk Management. In: Ghanem, R., Higdon, D., Owhadi, H. (eds) Handbook of Uncertainty Quantification. Springer, Cham. https://doi.org/10.1007/978-3-319-12385-1_59

Download citation

Publish with us

Policies and ethics