Skip to main content

Hsp70/Hsp90 Organising Protein (Hop): Beyond Interactions with Chaperones and Prion Proteins

  • Chapter
  • First Online:
The Networking of Chaperones by Co-chaperones

Part of the book series: Subcellular Biochemistry ((SCBI,volume 78))

Abstract

The Hsp70/Hsp90 organising protein (Hop), also known as stress-inducible protein 1 (STI1), has received considerable attention for diverse cellular functions in both healthy and diseased states. There is extensive evidence that intracellular Hop is a co-chaperone of the major chaperones Hsp70 and Hsp90, playing an important role in the productive folding of Hsp90 client proteins. Consequently, Hop is implicated in a number of key signalling pathways, including aberrant pathways leading to cancer. However, Hop is also secreted and it is now well established that Hop also serves as a receptor for the prion protein, PrPC. The intracellular and extracellular forms of Hop most likely represent two different isoforms, although the molecular determinants of these divergent functions are yet to be identified. There is also a growing body of research that reports the involvement of Hop in cellular activities that appear independent of either chaperones or PrPC. While Hop has been shown to have various cellular functions, its biological function remains elusive. However, recent knockout studies in mammals suggest that Hop has an important role in embryonic development. This review provides a critical overview of the latest molecular, cellular and biological research on Hop, critically evaluating its function in healthy systems and how this function is adapted in diseases states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarraberes FA, Dice JF (2001) A molecular chaperone complex at the lysosomal membrane is required for protein translocation. J Cell Sci 114:2491–2499

    CAS  PubMed  Google Scholar 

  • Allan RK, Ratajczak T (2011) Versatile TPR domains accommodate different modes of target protein recognition and function. Cell Stress Chaperones 16:353–367

    Article  CAS  Google Scholar 

  • Amemiya CT, Alfoldi J, Lee AP et al (2013) The African coelacanth genome provides insights into tetrapod evolution. Nature 496:311–316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Americo TA, Chiarini LB, Linden R (2007) Signaling induced by hop/STI-1 depends on endocytosis. Biochem Biophys Res Commun 358:620–625

    Article  CAS  PubMed  Google Scholar 

  • Andreassen R, Lunner S, Hoyheim B (2009) Characterization of full-length sequenced cDNA inserts (FLIcs) from Atlantic salmon (Salmo salar). BMC Genomics 10:502

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Angeletti PC, Walker D, Panganiban AT (2002) Small glutamine-rich protein/viral protein U-binding protein is a novel cochaperone that affects heat shock protein 70 activity. Cell Stress Chaperones 7:258–268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arantes C, Nomizo R, Lopes MH et al (2009) Prion protein and its ligand stress inducible protein 1 regulate astrocyte development. Glia 57:1439–1449

    Article  PubMed  Google Scholar 

  • Ardi VC, Alexander LD, Johnson VA et al (2011) Macrocycles that inhibit the binding between heat shock protein 90 and TPR-containing proteins. ACS Chem Biol 6:1357–1366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arruda-Carvalho M, Njaine B, Silveira MS et al (2007) Hop/STI1 modulates retinal proliferation and cell death independent of PrPC. Biochem Biophys Res Commun 361:474–480

    Article  CAS  PubMed  Google Scholar 

  • Barrott JJ, Haystead TAJ (2013) Hsp90, an unlikely ally in the war on cancer. FEBS J 280:1381–1396

    Article  CAS  PubMed  Google Scholar 

  • Beraldo FH, Arantes CP, Santos TG et al (2010) Role of α7 nicotinic acetylcholine receptor in calcium signaling induced by prion protein interaction with stress-inducible protein. J Biol Chem 285:36542–36550

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beraldo FH, Soares IN, Goncalves DF et al (2013) Stress-inducible phosphoprotein 1 has unique cochaperone activity during development and regulates cellular response to ischemia via the prion protein. FASEB J 27:3594–3607

    Article  CAS  PubMed  Google Scholar 

  • Blatch GL, Lässle M, Zetter BR et al (1997) Isolation of a mouse cDNA encoding mSTI1, a stress-inducible protein containing the TPR motif. Gene 194:277–282

    Article  CAS  PubMed  Google Scholar 

  • Boschelli F, Golas JM, Petersen R et al (2010) A cell-based screen for inhibitors of protein folding and degradation. Cell Stress Chaperones 15:913–927

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Braunschweig D, Krakowiak P, Duncanson P et al (2013) Autism-specific maternal autoantibodies recognize critical proteins in developing brain. Transl Psychiatry 3:e277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brinker A, Scheufler C, Von Der Mülbe F et al (2002) Ligand discrimination by TPR domains. Relevance and selectivity of EEVD-recognition in Hsp70·Hop·Hsp90 complexes. J Biol Chem 277:19265–19275

    Article  CAS  PubMed  Google Scholar 

  • Caetano FA, Lopes MH, Hajj GNM et al (2008) Endocytosis of prion protein is required for ERK1/2 signaling induced by stress-inducible protein 1. J Neurosci 28:6691–6702

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Caplan AJ, Mandal AK, Theodoraki MA (2007) Molecular chaperones and protein kinase quality control. Trends Cell Biol 17:87–92

    Article  CAS  PubMed  Google Scholar 

  • Carrigan PE, Nelson GM, Roberts PJ et al (2004) Multiple domains of the Co-chaperone Hop are important for Hsp70 binding. J Biol Chem 279:16185–16193

    Article  CAS  PubMed  Google Scholar 

  • Carrigan PE, Riggs DL, Chinkers M et al (2005) Functional comparison of human and Drosophila Hop reveals novel role in steroid receptor maturation. J Biol Chem 280:8906–8911

    Article  CAS  PubMed  Google Scholar 

  • Chang HCJ, Nathan DF, Lindquist S (1997) In vivo analysis of the Hsp90 cochaperone Sti1 (p60). Mol Cell Biol 17:318–325

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chao A, Lai CH, Tsai CL et al (2013) Tumor stress-induced phosphoprotein1 (STIP1) as a prognostic biomarker in ovarian cancer. PLoS One 8:e57084

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen S, Smith DF (1998) Hop as an adaptor in the heat shock protein 70 (Hsp70) and Hsp90 chaperone machinery. J Biol Chem 273:35194–35200

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Prapapanich V, Rimerman RA et al (1996) Interactions of p60, a mediator of progesterone receptor assembly, with heat shock proteins Hsp90 and Hsp70. Mol Endocrinol 10:682–693

    CAS  PubMed  Google Scholar 

  • Chen L, Hamada S, Fujiwara M et al (2010) The Hop/Sti1-Hsp90 chaperone complex facilitates the maturation and transport of a PAMP receptor in rice innate immunity. Cell Host Microbe 7:185–196

    Article  CAS  PubMed  Google Scholar 

  • Chiarini LB, Freitas ARO, Zanata SM et al (2002) Cellular prion protein transduces neuroprotective signals. EMBO J 21:3317–3326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chiosis G (2006) Targeting chaperones in transformed systems—a focus on Hsp90 and cancer. Expert Opin Ther Targets 10:37–50

    Article  CAS  PubMed  Google Scholar 

  • Citri A, Harari D, Shohat G et al (2006) Hsp90 recognizes a common surface on client kinases. J Biol Chem 281:14361–14369

    Article  CAS  PubMed  Google Scholar 

  • Clarke AR (1996) Molecular chaperones in protein folding and translocation. Curr Opin Struct Biol 6:43–50

    Article  CAS  PubMed  Google Scholar 

  • Coitinho AS, Lopes MH, Hajj GNM et al (2007) Short-term memory formation and long-term memory consolidation are enhanced by cellular prion association to stress-inducible protein 1. Neurobiol Dis 26:282–290

    Article  CAS  PubMed  Google Scholar 

  • da Fonseca ACC, Romão L, Amaral RF et al (2012) Microglial stress inducible protein 1 promotes proliferation and migration in human glioblastoma cells. Neuroscience 200:130–141

    Article  PubMed  CAS  Google Scholar 

  • Daniel S, Bradley G, Longshaw VM et al (2008) Nuclear translocation of the phosphoprotein Hop (Hsp70/Hsp90 organizing protein) occurs under heat shock, and its proposed nuclear localization signal is involved in Hsp90 binding. Biochim Biophys Acta 1783:1003–1014

    Article  CAS  PubMed  Google Scholar 

  • Daugaard M, Jäättelä M, Rohde M (2005) Hsp70-2 is required for tumor cell growth and survival. Cell Cycle 4:877–880

    Article  CAS  PubMed  Google Scholar 

  • de Souza LER, Moura Costa MD, Bilek ES et al (2014) STI1 antagonizes cytoskeleton collapse mediated by small GTPase Rnd1 and regulates neurite growth. Exp Cell Res 324:84–91

    Article  PubMed  CAS  Google Scholar 

  • Demand J, Lüders J, Höhfeld J (1998) The carboxy-terminal domain of Hsc70 provides binding sites for a distinct set of chaperone cofactors. Mol Cell Biol 18:2023–2028

    CAS  PubMed Central  PubMed  Google Scholar 

  • DeZwaan DC, Freeman BC (2008) HSP90: the Rosetta stone for cellular protein dynamics? Cell Cycle 7:1006–1012

    Article  CAS  PubMed  Google Scholar 

  • Dittmar KD, Hutchison KA, Owens-Grillo JK et al (1996) Reconstitution of the steroid receptor hsp90 heterocomplex assembly system of rabbit reticulocyte lysate. J Biol Chem 271:12833–12839

    Article  CAS  PubMed  Google Scholar 

  • Ellis J (1988) Proteins as molecular chaperones. Nature 328:378–379

    Article  Google Scholar 

  • Erlich RB, Kahn SA, Lima FRS et al (2007) STI1 promotes glioma proliferation through MAPK and PI3K pathways. Glia 55:1690–1698

    Article  PubMed  Google Scholar 

  • Flom G, Weekes J, Williams JJ et al (2006) Effect of mutation of the tetratricopeptide repeat and asparatate-proline 2 domains of Sti1 on Hsp90 signaling and interaction in Saccharomyces cerevisiae. Genetics 172:41–51

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Francis LK, Alsayed Y, Leleu X et al (2006) Combination mammalian target of rapamycin inhibitor rapamycin and HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin has synergistic activity in multiple myeloma. Clin Cancer Res 12:6826–6835

    Article  CAS  PubMed  Google Scholar 

  • Gaiser AM, Brandt F, Richter K (2009) The non-canonical Hop protein from Caenorhabditis elegans exerts essential functions and forms binary complexes with either Hsc70 or Hsp90. J Mol Biol 391:621–634

    Article  CAS  PubMed  Google Scholar 

  • Gitau GW, Mandal P, Blatch GL et al (2012) Characterisation of the Plasmodium falciparum Hsp70-Hsp90 organising protein (PfHop). Cell Stress Chaperones 17:191–202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Graf C, Stankiewicz M, Kramer G et al (2009) Spatially and kinetically resolved changes in the conformational dynamics of the Hsp90 chaperone machine. EMBO J 28:602–613

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grigus S, Burnett B, Margot N et al (1998) Drosophila homolog of Hsp70/Hsp90 Organizing Protein. GenBank accession number AF056198.1. NCBI. http://www.ncbi.nlm.nih.gov/nuccore/AF056198.1. Cited 17 Jan 2014

    Google Scholar 

  • Hajj GNM, Arantes CP, Dias MVS et al (2013) The unconventional secretion of stress-inducible protein 1 by a heterogeneous population of extracellular vesicles. Cell Mol Life Sci 70:3211–3227

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–580

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332

    Article  CAS  PubMed  Google Scholar 

  • Hendrick JP, Hartl FU (1995) The role of molecular chaperones in protein folding. FASEB J 9:1559–1569

    CAS  PubMed  Google Scholar 

  • Hessling M, Richter K, Buchner J (2009) Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90. Nat Struct Mol Biol 16:287–293

    Article  CAS  PubMed  Google Scholar 

  • Hildenbrand ZL, Molugu SK, Paul A et al (2010) High-yield expression and purification of the Hsp90-associated p23, FKBP52, HOP and SGTα proteins. J Chromatogr B Analyt Technol Biomed Life Sci 878:2760–2764

    Article  CAS  PubMed  Google Scholar 

  • Hombach A, Ommen G, Chrobak M et al (2013) The Hsp90-Sti1 interaction is critical for Leishmania donovani proliferation in both life cycle stages. Cell Microbiol 15:585–600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Honore B, Leffers H, Madsen P et al (1992) Molecular cloning and expression of a transformation-sensitive human protein containing the TPR motif and sharing identity to the stress-inducible yeast protein STI1. J Biol Chem 267:8485–8491

    CAS  PubMed  Google Scholar 

  • Horibe T, Kohno M, Haramoto M et al (2011) Designed hybrid TPR peptide targeting Hsp90 as a novel anticancer agent. J Transl Med 9:8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Horibe T, Torisawa A, Kohno M et al (2012) Molecular mechanism of cytotoxicity induced by Hsp90-targeted Antp-TPR hybrid peptide in glioblastoma cells. Mol Cancer 11:59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jakob U, Scheibel T, Bose S et al (1996) Assessment of the ATP binding properties of Hsp90. J Biol Chem 271:10035–10041

    Article  CAS  PubMed  Google Scholar 

  • Jego G, Hazoumé A, Seigneuric R et al (2013) Targeting heat shock proteins in cancer. Cancer Lett 332:275–285

    Article  CAS  PubMed  Google Scholar 

  • Johnson JL, Brown C (2009) Plasticity of the Hsp90 chaperone machine in divergent eukaryotic organisms. Cell Stress Chaperones 14:83–94

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson BD, Schumacher RJ, Ross ED et al (1998) Hop modulates Hsp70/Hsp90 interactions in protein folding. J Biol Chem 273:3679–3686

    Article  CAS  PubMed  Google Scholar 

  • Joo J, Dorsey F, Joshi A et al (2011) Hsp90-Cdc37 chaperone complex regulates Ulk1- and Atg13-mediated mitophagy. Mol Cell 43:572–585

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Joshi M, Dwyer DM, Nakhasi HL (1993) Cloning and characterization of differentially expressed genes from in vitro-grown ‘amastigotes’ of Leishmania donovani. Mol Biochem Parasitol 58:345–354

    Article  CAS  PubMed  Google Scholar 

  • Kamal A, Boehm MF, Burrows FJ (2004) Therapeutic and diagnostic implications of Hsp90 activation. Trends Mol Med 10:283–290

    Article  CAS  PubMed  Google Scholar 

  • Kampinga HH (2006) Chaperones in preventing protein denaturation in living cells and protecting against cellular stress. Handb Exp Pharmacol 172:1–42

    Article  CAS  PubMed  Google Scholar 

  • Kimmins S, MacRae TH (2000) Maturation of steroid receptors: an example of functional cooperation among molecular chaperones and their associated proteins. Cell Stress Chaperones 5:76–86

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Klein SL, Strausberg RL, Wagner L et al (2002) Genetic and genomic tools for Xenopus research: the NIH xenopus initiative. Dev Dyn 225:384–391

    Article  CAS  PubMed  Google Scholar 

  • Kubota H, Yamamoto S, Itoh E et al (2010) Increased expression of co-chaperone HOP with HSP90 and HSC70 and complex formation in human colonic carcinoma. Cell Stress Chaperones 15:1003–1011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lanneau D, Brunet M, Frisan E et al (2008) Heat shock proteins: essential proteins for apoptosis regulation: apoptosis review series. J Cell Mol Med 12:743–761

    Article  CAS  PubMed  Google Scholar 

  • Lee P, Shabbir A, Cardozo C et al (2004) Sti1 and Cdc37 can Stabilize Hsp90 in chaperone complexes with a protein kinase. Mol Biol Cell 15:1785–1792

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee CT, Graf C, Mayer FJ et al (2012) Dynamics of the regulation of Hsp90 by the co-chaperone Sti1. EMBO J 31:1518–1528

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li J, Soroka J, Buchner J (2012a) The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. Biochim Biophys Acta 1823:624–635

    Article  CAS  Google Scholar 

  • Li J, Sun X, Wang Z et al (2012b) Regulation of vascular endothelial cell polarization and migration by Hsp70/Hsp90-organizing protein. PLoS One 7:e36389

    Article  CAS  Google Scholar 

  • Lima FRS, Arantes CP, Muras AG et al (2007) Cellular prion protein expression in astrocytes modulates neuronal survival and differentiation. J Neurochem 103:2164–2176

    Article  CAS  PubMed  Google Scholar 

  • Longshaw VM, Chapple JP, Balda MS et al (2004) Nuclear translocation of the Hsp70/Hsp90 organizing protein mSTI1 is regulated by cell cycle kinases. J Cell Sci 117:701–710

    Article  CAS  PubMed  Google Scholar 

  • Longshaw VM, Baxter M, Prewitz M et al (2009) Knockdown of the co-chaperone Hop promotes extranuclear accumulation of Stat3 in mouse embryonic stem cells. Eur J Cell Biol 88:153–166

    Article  CAS  PubMed  Google Scholar 

  • Lopes MH, Santos TG (2012) Prion potency in stem cells biology. Prion 6:142–146

    Article  CAS  PubMed  Google Scholar 

  • Lopes MH, Hajj GNM, Muras AG et al (2005) Interaction of cellular prion and stress-inducible protein 1 promotes neuritogenesis and neuroprotection by distinct signaling pathways. J Neurosci 25:11330–11339

    Article  CAS  PubMed  Google Scholar 

  • Maciejewski A, Prado MA, Choy WY (2013) 1H, 15N and 13C backbone resonance assignments of the TPR1 and TPR2A domains of mouse STI1. Biomol NMR Assign 7:305–310

    Article  CAS  PubMed  Google Scholar 

  • Mahalingam D, Swords R, Carew JS et al (2009) Targeting HSP90 for cancer therapy. Br J Cancer 100:1523–1529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marozkina NV, Yemen S, Borowitz M et al (2010) Hsp 70/Hsp 90 organizing protein as a nitrosylation target in cystic fibrosis therapy. Proc Natl Acad Sci U S A 107:11393–11398

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martin J (2004) Chaperonin function—effects of crowding and confinement. J Mol Recognit 17:465–472

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin SH, Ventouras LA, Lobbezoo B et al (2004) Independent ATPase activity of Hsp90 subunits creates a flexible assembly platform. J Mol Biol 344:813–826

    Article  CAS  PubMed  Google Scholar 

  • Miyata Y, Nakamoto H, Neckers L (2013) The therapeutic target Hsp90 and cancer hallmarks. Curr Pharm Des 19:347–365

    Article  CAS  PubMed  Google Scholar 

  • Morales MA, Watanabe R, Dacher M et al (2010) Phosphoproteome dynamics reveal heat-shock protein complexes specific to the Leishmania donovani infectious stage. Proc Natl Acad Sci U S A 107:8381–8386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mosser DD, Morimoto RI (2004) Molecular chaperones and the stress of oncogenesis. Oncogene 23:2907–2918

    Article  CAS  PubMed  Google Scholar 

  • Müller L, Schaupp A, Walerych D et al (2004) Hsp90 regulates the activity of wild type p53 under physiological and elevated temperatures. J Biol Chem 279:48846–48854

    Article  PubMed  CAS  Google Scholar 

  • Muller P, Ruckova E, Halada P et al (2013) C-terminal phosphorylation of Hsp70 and Hsp90 regulates alternate binding to co-chaperones CHIP and HOP to determine cellular protein folding/degradation balances. Oncogene 32:3101–3110

    Article  CAS  PubMed  Google Scholar 

  • Nadeau K, Das A, Walsh CT (1993) Hsp90 chaperonins possess ATPase activity and bind heat shock transcription factors and peptidyl prolyl isomerases. J Biol Chem 268:1479–1487

    CAS  PubMed  Google Scholar 

  • Neckers L (2007) Heat shock protein 90: the cancer chaperone. J Biosci 32:517–530

    Article  CAS  PubMed  Google Scholar 

  • Nelson GM, Huffman H, Smith DF (2003) Comparison of the carboxy-terminal DP-repeat region in the co-chaperones Hop and Hip. Cell Stress Chaperones 8:125–133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nicolet CM, Craig EA (1989) Isolation and characterization of STI1, a stress-inducible gene from Saccharomyces cerevisiae. Mol Cell Biol 9:3638–3646

    CAS  PubMed Central  PubMed  Google Scholar 

  • Obermann WMJ, Sondermann H, Russo AA et al (1998) In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. J Cell Biol 143:901–910

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Odunuga OO, Hornby JA, Bies C et al (2003) Tetratricopeptide repeat motif-mediated Hsc70-mSTI1 interaction. Molecular characterization of the critical contacts for successful binding and specificity. J Biol Chem 278:6896–6904

    Article  CAS  PubMed  Google Scholar 

  • Odunuga OO, Longshaw VM, Blatch GL (2004) Hop: more than an Hsp70/Hsp90 adaptor protein. Bioessays 26:1058–1068

    Article  CAS  PubMed  Google Scholar 

  • Onuoha SC, Coulstock ET, Grossmann JG et al (2008) Structural studies on the co-chaperone Hop and its complexes with Hsp90. J Mol Biol 379:732–744

    Article  CAS  PubMed  Google Scholar 

  • Ostapchenko VG, Beraldo FH, Mohammad AH et al (2013) The prion protein ligand, stress-inducible phosphoprotein 1, regulates amyloid-β oligomer toxicity. J Neurosci 33:16552–16564

    Article  CAS  PubMed  Google Scholar 

  • Panaretou B, Prodromou C, Roe SM et al (1998) ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. EMBO J 17:4829–4836

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park JW, Yeh MW, Wong MG et al (2003) The heat shock protein 90-binding geldanamycin inhibits cancer cell proliferation, down-regulates oncoproteins, and inhibits epidermal growth factor-induced invasion in thyroid cancer cell lines. J Clin Endocrinol Metab 88:3346–3353

    Article  CAS  PubMed  Google Scholar 

  • Picard D (2002) Heat-shock protein 90, a chaperone for folding and regulation. Cell Mol Life Sci 59:1640–1648

    Article  CAS  PubMed  Google Scholar 

  • Pimienta G, Herbert KM, Regan L (2011) A compound that inhibits the HOP-Hsp90 complex formation and has unique killing effects in breast cancer cell lines. Mol Pharm 8:2252–2261

    Article  CAS  PubMed  Google Scholar 

  • Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med 228:111–133

    CAS  Google Scholar 

  • Prinsloo E, Setati MM, Longshaw VM et al (2009) Chaperoning stem cells: a role for heat shock proteins in the modulation of stem cell self-renewal and differentiation? Bioessays 31:370–377

    Article  CAS  PubMed  Google Scholar 

  • Prinsloo E, Kramer AH, Edkins AL et al (2011) STAT3 interacts directly with Hsp90. IUBMB Life 64:266–273

    Article  CAS  Google Scholar 

  • Prodromou C (2012) The ‘active life’ of Hsp90 complexes. Biochim Biophys Acta—Mol Cell Res 1823:614–623

    Article  CAS  Google Scholar 

  • Prodromou C, Panaretou B, Chohan S et al (2000) The ATPase cycle of Hsp90 drives a molecular ‘clamp’ via transient dimerization of the N-terminal domains. EMBO J 19:4383–4392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qing G, Yan P, Xiao G (2006) Hsp90 inhibition results in autophagy-mediated proteasome-independent degradation of IκB kinase (IKK). Cell Res 16:895–901

    Article  CAS  PubMed  Google Scholar 

  • Reikvam H, Ersvær E, Bruserud Ø (2009) Heat shock protein 90–a potential target in the treatment of human acute myelogenous leukemia. Curr Cancer Drug Targets 9:761–776

    Article  CAS  PubMed  Google Scholar 

  • Richter K, Muschler P, Hainzl O et al (2003) Sti1 is a non-competitive inhibitor of the Hsp90 ATPase. Binding prevents the N-terminal dimerization reaction during the ATPase cycle. J Biol Chem 278:10328–10333

    Article  CAS  PubMed  Google Scholar 

  • Richter K, Soroka J, Skalniak L et al (2008) Conserved conformational changes in the ATPase cycle of human Hsp90. J Biol Chem 283:17757–17765

    Article  CAS  PubMed  Google Scholar 

  • Roffé M, Beraldo FH, Bester R et al (2010) Prion protein interaction with stress-inducible protein 1 enhances neuronal protein synthesis via mTOR. Proc Natl Acad Sci U S A 107:13147–13152

    Article  PubMed Central  PubMed  Google Scholar 

  • Ruckova E, Muller P, Nenutil R et al (2012) Alterations of the Hsp70/Hsp90 chaperone and the HOP/CHIP co-chaperone system in cancer. Cell Mol Biol Lett 17:446–458

    Article  CAS  PubMed  Google Scholar 

  • Samali A, Cotter TG (1996) Heat shock proteins increase resistance to apoptosis. Exp Cell Res 223:163–170

    Article  CAS  PubMed  Google Scholar 

  • Santos TG, Silva IR, Costa-Silva B et al (2011) Enhanced neural progenitor/stem cells self-renewal via the interaction of stress-inducible protein 1 with the prion protein. Stem Cells 29:1126–1136

    Article  CAS  PubMed  Google Scholar 

  • Santos TG, Beraldo FH, Hajj GNM et al (2013) Laminin-γ1 chain and stress inducible protein 1 synergistically mediate PrPC-dependent axonal growth via Ca2+ mobilization in dorsal root ganglia neurons. J Neurochem 124:210–223

    Article  CAS  PubMed  Google Scholar 

  • Scheibel T, Neuhofen S, Weikl T et al (1997) ATP-binding properties of human Hsp90. J Biol Chem 272:18608–18613

    Article  CAS  PubMed  Google Scholar 

  • Scheufler C, Brinker A, Bourenkov G et al (2000) Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 101:199–210

    Article  CAS  PubMed  Google Scholar 

  • Schmid AB, Lagleder S, Gräwert MA et al (2012) The architecture of functional modules in the Hsp90 co-chaperone Sti1/Hop. EMBO J 31:1506–1517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Setati MM, Prinsloo E, Longshaw VM et al (2010) Leukemia inhibitory factor promotes Hsp90 association with STAT3 in mouse embryonic stem cells. IUBMB Life 62:61–66

    CAS  PubMed  Google Scholar 

  • Sims JD, McCready J, Jay DG (2011) Extracellular heat shock protein (Hsp)70 and Hsp90α assist in matrix metalloproteinase-2 activation and breast cancer cell migration and invasion. PLoS One 6:e18848

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Skalnikova H, Martinkova J, Hrabakova R et al (2011) Cancer drug-resistance and a look at specific proteins: Rho GDP-dissociation inhibitor 2, Y-box binding protein 1, and HSP70/90 organizing protein in proteomics clinical application. J Proteome Res 10:404–415

    Google Scholar 

  • Smith DF, Sullivan WP, Marion TN et al (1993) Identification of a 60-kilodalton stress-related protein, p60, which interacts with hsp90 and hsp70. Mol Cell Biol 13:869–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Soares IN, Caetano FA, Pinder J et al (2013) Regulation of stress-inducible phosphoprotein 1 nuclear retention by protein inhibitor of activated STAT PIAS1. Mol Cell Proteomics 12:3253–3270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song Y, Masison DC (2005) Independent regulation of Hsp70 and Hsp90 chaperones by Hsp70/Hsp90-organizing protein Sti1 (Hop1). J Biol Chem 280:34178–34185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song HO, Lee W, An K et al (2009) C. elegans STI-1, the Homolog of Sti1/Hop, is involved in aging and stress response. J Mol Biol 390:604–617

    Article  CAS  PubMed  Google Scholar 

  • Soti C, Csermely P (1998) Molecular chaperones in the etiology and therapy of cancer. Pathol Oncol Res 4:316–321

    Article  CAS  PubMed  Google Scholar 

  • Stepanova L, Finegold M, DeMayo F et al (2000) The oncoprotein kinase chaperone CDC37 functions as an oncogene in mice and collaborates with both c-myc and cyclin D1 in transformation of multiple tissues. Mol Cell Biol 20:4462–4473

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun W, Xing B, Sun Y et al (2007) Proteome analysis of hepatocellular carcinoma by two-dimensional difference gel electrophoresis. Mol Cell Proteomics 6:1798–1808

    Article  CAS  PubMed  Google Scholar 

  • Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11:515–528

    Article  CAS  PubMed  Google Scholar 

  • Tan SS, Ahmad I, Bennett HL et al (2011) GRP78 up-regulation is associated with androgen receptor status, Hsp70-Hsp90 client proteins and castrate-resistant prostate cancer. J Pathol 223:81–87

    Article  CAS  PubMed  Google Scholar 

  • Tastan Bishop O, Edkins AL, Blatch GL (2014) Sequence and domain conservation of the coelacanth Hsp40 and Hsp90 chaperones suggests conservation of function. J Exp Zool B Mol Dev Evol. 322:359–378

    Google Scholar 

  • Trepel J, Mollapour M, Giaccone G et al (2010) Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 10:537–549

    Article  CAS  PubMed  Google Scholar 

  • Tsai CL, Tsai CN, Lin CY et al (2012) Secreted Stress-Induced Phosphoprotein 1 Activates the ALK2-SMAD signaling pathways and promotes cell proliferation of ovarian cancer cells. Cell Rep 2:283–293

    Article  CAS  PubMed  Google Scholar 

  • Tsen F, Bhatia A, O’Brien K et al (2013) Extracellular heat shock protein 90 signals through subdomain II and the NPVY motif of LRP-1 receptor to Akt1 and Akt2: a circuit essential for promoting skin cell migration in vitro and wound healing in vivo. Mol Cell Biol 33:4947–4959

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tytell M, Hooper PL (2001) Heat shock proteins: new keys to the development of cytoprotective therapies. Expert Opin Ther Targets 5:267–287

    Article  CAS  PubMed  Google Scholar 

  • van der Spuy J, Kana BD, Dirr HW et al (2000) Heat shock cognate protein 70 chaperone-binding site in the co-chaperone murine stress-inducible protein 1 maps to within three consecutive tetratricopeptide repeat motifs. Biochem J 345:645–651

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walsh N, O’Donovan N, Kennedy S et al (2009) Identification of pancreatic cancer invasion-related proteins by proteomic analysis. Proteome Sci 7:3

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Walsh N, Larkin A, Swan N et al (2011) RNAi knockdown of Hop (Hsp70/Hsp90 organising protein) decreases invasion via MMP-2 down regulation. Cancer Lett 306:180–189

    Article  CAS  PubMed  Google Scholar 

  • Wandinger SK, Richter K, Buchner J (2008) The Hsp90 chaperone machinery. J Biol Chem 283:18473–18477

    Article  CAS  PubMed  Google Scholar 

  • Wang TH, Chao A, Tsai CL et al (2010) Stress-induced phosphoprotein 1 as a secreted biomarker for human ovarian cancer promotes cancer cell proliferation. Mol Cell Proteomics 9:1873–1884

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Webb JR, Campos-Neto A, Skeiky YAW et al (1997) Molecular characterization of the heat-inducible LmSTI1 protein of Leishmania major. Mol Biochem Parasitol 89:179–193

    Article  CAS  PubMed  Google Scholar 

  • Wegele H, Müller L, Buchner J (2004) Hsp70 and Hsp90-a relay team for protein folding. Rev Physiol Biochem Pharmacol 151:1–44

    Article  CAS  PubMed  Google Scholar 

  • Wegele H, Wandinger SK, Schmid AB et al (2006) Substrate transfer from the chaperone Hsp70 to Hsp90. J Mol Biol 356:802–811

    Article  CAS  PubMed  Google Scholar 

  • Welch WJ (1991) The role of heat-shock proteins as molecular chaperones. Curr Opin Cell Biol 3:1033–1038

    Article  CAS  PubMed  Google Scholar 

  • Whitelaw ML, Hutchison K, Perdew GH (1991) A 50-kDa cytosolic protein complexed with the 90-kDa heat shock protein (hsp90) is the same protein complexed with pp60v-src hsp90 in cells transformed by the rous sarcoma virus. J Biol Chem 266:16436–16440

    CAS  PubMed  Google Scholar 

  • Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5:761–772

    Article  CAS  PubMed  Google Scholar 

  • Willmer T, Contu L, Blatch GL et al (2013) Knockdown of Hop downregulates RhoC expression, and decreases pseudopodia formation and migration in cancer cell lines. Cancer Lett 328:252–260

    Article  CAS  PubMed  Google Scholar 

  • Wolfe KJ, Rena HY, Trepte P et al (2013) The Hsp70/90 cochaperone, Sti1, suppresses proteotoxicity by regulating spatial quality control of amyloid-like proteins. Mol Biol Cell 24:3588–3602

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Woods IG, Wilson C, Friedlander B et al (2005) The zebrafish gene map defines ancestral vertebrate chromosomes. Genome Res 15:1307–1314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu C, Liu J, Hsu LC et al (2011) Functional interaction of Heat Shock protein 90 and beclin 1 modulates toll-like receptor-mediated autophagy. FASEB J 25:2700–2710

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamamoto S, Subedi GP, Hanashima S et al (2014) ATPase Activity and ATP-dependent conformational change in the co-chaperone HSP70/HSP90-organizing protein (HOP). J Biol Chem 289:9880–9886

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yi F, Regan L (2008) A novel class of small molecule inhibitors of Hsp90. ACS Chem Biol 3:645–654

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zanata SM, Lopes MH, Mercadante AF et al (2002) Stress-inducible protein 1 is a cell surface ligand for cellular prion that triggers neuroprotection. EMBO J 21:3307–3316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Z, Quick MK, Kanelakis KC et al (2003) Characterization of a plant homolog of hop, a cochaperone of hsp90. Plant Physiol 131:525–535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

SB-H was supported to conduct this research under the Australian Commonwealth Collaborative Research Network (CRN) funding to Victoria University. ALE and GLB were supported by grants from the National Research Foundation (NRF) South Africa and the Cancer Research Initiative of South Africa (CARISA). ALE was also supported by grants from the Medical Research Council (MRC) South Africa and Cancer Association of South Africa (CANSA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory L. Blatch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baindur-Hudson, S., Edkins, A., Blatch, G. (2015). Hsp70/Hsp90 Organising Protein (Hop): Beyond Interactions with Chaperones and Prion Proteins. In: Blatch, G., Edkins, A. (eds) The Networking of Chaperones by Co-chaperones. Subcellular Biochemistry, vol 78. Springer, Cham. https://doi.org/10.1007/978-3-319-11731-7_3

Download citation

Publish with us

Policies and ethics