Skip to main content

An Indoor Navigation Ontology for Production Assets in a Production Environment

  • Conference paper
Geographic Information Science (GIScience 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8728))

Included in the following conference series:

Abstract

This article highlights an indoor navigation ontology for an indoor production environment. The ontology focuses on the movement of production assets in an indoor environment, to support autonomous navigation in the indoor space. Due to the fact that production environments have a different layout than ordinary indoor spaces, like buildings for office or residential use, an ontology focusing on indoor navigation looks different than ontologies in recent publications. Hence, rooms, corridors and doors to separate rooms and corridors are hardly present in an indoor production environment. Furthermore, indoor spaces for production purposes are likely to change in terms of physical layout and in terms of equipment location. The indoor navigation ontology highlighted in this paper utilizes an affordance based approach, which can be exploited for navigation purposes. A brief explanation of the routing methodology based on affordances is given in this paper, to justify the need for an indoor navigation ontology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jenkins, P., Phillips, T., Mulberg, E., Hui, S.: Activity patterns of Californians: Use of and proximity to indoor pollutant sources. Atmospheric Environment — Part A General Topics 26A(12), 2141–2148 (1992)

    Article  Google Scholar 

  2. Worboys, M.: Modeling indoor space. In: Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Indoor Spatial Awareness, pp. 1–6. ACM (2011)

    Google Scholar 

  3. Yang, L., Worboys, M.: A navigation ontology for outdoor-indoor space (work-in-progress). In: Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Indoor Spatial Awareness, pp. 31–34. ACM (2011)

    Google Scholar 

  4. Klepeis, N., Nelson, W., Ott, W., Robinson, J., Tsang, A., Switzer, P., Behar, J., Hern, S., Engelmann, W.: The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. Journal of Exposure Analysis and Environmental Epidemiology 11(3), 231–252 (2001)

    Article  Google Scholar 

  5. Raubal, M., Worboys, M.: A formal model of the process of wayfinding in built environments. In: Freksa, C., Mark, D.M. (eds.) COSIT 1999. LNCS, vol. 1661, pp. 381–399. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  6. Raubal, M.: Ontology and epistemology for agent-based wayfinding simulation. International Journal of Geographical Information Science 15(7), 653–665 (2001)

    Article  Google Scholar 

  7. Goetz, M.: Using Crowdsourced Indoor Geodata for the Creation of a Three-Dimensional Indoor Routing Web Application. Future Internet 4, 575–591 (2012)

    Article  Google Scholar 

  8. Goetz, M., Zipf, A.: Formal definition of a user-adaptive and length-optimal routing graph for complex indoor environments. Geo-Spatial Information Science 14(2), 119–128 (2011)

    Article  Google Scholar 

  9. Meijers, M., Zlatanova, S., Preifer, N.: 3D geoinformation indoors: structuring for evaluation. In: Proceedings of the Next Generation 3D City Models, Bonn, Germany, pp. 11–16 (2005)

    Google Scholar 

  10. Jensen, C.S., Lu, H., Yang, B.: Graph model based indoor tracking. In: Tenth International Conference on Mobile Data Management: Systems, Services and Middleware, pp. 122–131. IEEE (2009)

    Google Scholar 

  11. Howell, I., Batcheler, B.: Building Information Modeling Two Years Later – Huge Poten-tial, Some Success and Several Limitations. The Laiserin Letter 22 (2005), http://www.laiserin.com/features/bim/newforma_bim.pdf (last accessed: December 7, 2013

  12. Stoffel, E.P., Schoder, K., Ohlbach, H.J.: Applying hierarchical graphs to pedestrian indoor navigation. In: Proceedings of the 16th ACM SIG Spatial International Conference on Advances in Geographic Information Systems (2008)

    Google Scholar 

  13. Lorenz, B., Ohlbach, H.J., Stoffel, E.-P.: A hybrid spatial model for representing indoor environments. In: Carswell, J.D., Tezuka, T. (eds.) W2GIS 2006. LNCS, vol. 4295, pp. 102–112. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Becker, T., Nagel, C., Kolbe, T.: A multilayered space-event model for navigation in indoor spaces. In: 3D Geo-Information Sciences, pp. 61–77. Springer, Berlin (2009)

    Chapter  Google Scholar 

  15. Hagedorn, B., Trapp, M., Glander, T., Döllner, J.: Towards an indoor level-of-detail model for route visualization. In: Tenth International Conference on Mobile Data Management: Systems, Services and Middleware, pp. 692–697 (2009)

    Google Scholar 

  16. Stoffel, E.P., Lorenz, B., Ohlbach, H.J.: Towards a semantic spatial model for pedestrian indoor navigation. In: Hainaut, J.-L., et al. (eds.) ER Workshops 2007. LNCS, vol. 4802, pp. 328–337. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Richter, K.F., Winter, S., Rüetschi, U.J.: Constructing hierarchical representations of indoor spaces. In: Tenth International Conference on Mobile Data Management: Systems, Services and Middleware, pp. 686–691. IEEE (2009)

    Google Scholar 

  18. Niebel, B.W., Freivalds, A.: Methods, standards, and work design. McGraw-Hill (2003)

    Google Scholar 

  19. Nyström, R.H., Harjunkoski, I., Kroll, A.: Production optimization for continuously operated processes with optimal operation and scheduling of multiple units. Computers & Chemical Engineering 30(3), 392–406 (2006)

    Article  Google Scholar 

  20. Scholl, A., Becker, C.: State-of-the-art exact and heuristic solution procedures for simple assembly line balancing. European Journal of Operational Research 168(3), 666–693 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Bogorny, V., Palma, A.T., Engel, P., Alvares, L.O.: Weka-gdpm: Integrating classical data mining toolkit to geographic information systems. In: SBBD Workshop on Data Mining Algorithms and Aplications (WAAMD 2006), Florianopolis, Brasil, pp. 16–20 (2006)

    Google Scholar 

  22. Andrienko, G., Andrienko, N., Jankowski, P., Keim, D., Kraak, M.J., MacEachren, A., Wrobel, S.: Geovisual analytics for spatial decision support: Setting the research agenda. International International Journal of Geographic Information Science 21(8), 839–857 (2007)

    Article  Google Scholar 

  23. Compieta, P., Marion, D.S., Bertolotto, M., Ferrucci, F., Kechadi, T.: Exploratory spatio-temporal data mining and visualization. Journal of Visual Languages and Computing 18, 255–279 (2007)

    Article  Google Scholar 

  24. Smith, B.: Objects and their environments: from Aristotle to ecological ontology. In: Frank, A., Raper, J., Cheylan, J.P. (eds.) Life and Motion of Socio-economic Units, Taylor & Francis, London, pp. 79–97. Taylor & Francis, Abington (2001)

    Google Scholar 

  25. Davis, E.: Representations of Commonsense Knowledge. Representation and Reasoning. Morgan Kaufmann Publishers (1990)

    Google Scholar 

  26. Gibson, J.J.: The theory of affordances. In: Shaw, R., Bransford, J. (eds.) Perceiving, Acting, and Knowing, pp. 67–82. Lawrence Erlbaum (1977)

    Google Scholar 

  27. Gibson, J.J.: The Ecological Approach to Visual Perception. Houghton Mifflin Company (1979)

    Google Scholar 

  28. Raubal, M., Moratz, R.: A functional model for affordance-based agents. In: Rome, E., Hertzberg, J., Dorffner, G. (eds.) Towards Affordance-Based Robot Control. LNCS (LNAI), vol. 4760, pp. 91–105. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  29. Turner, A., Penn, A.: Encoding natural movement as an agent-based system: an investigation into human pedestrian behaviour in the built environment. Environment and Planning B: Planning and Design 29, 473–490 (2002)

    Article  Google Scholar 

  30. Kapadia, M., Singh, S., Hewlett, B., Faloutsos, P.: Egocentric Affordance Fields in Pedestrian Steering. In: Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games (2009)

    Google Scholar 

  31. Anagnostopoulos, C., Tsetsos, V., Kikiras, P., Hadjiefthymiades, S.: OntoNav: A semantic indoor navigation system. In: 1st Workshop on Semantics in Mobile Environments (SME 2005), Cyprus (2005)

    Google Scholar 

  32. Tsetsos, V., Anagnostopoulos, C., Kikiras, P., Hadjiefthymiades, S.: Semantically enriched navigation for indoor environments. International Journal of Web and Grid Services 2(4), 453–478 (2006)

    Article  Google Scholar 

  33. Geng, H. (ed.): Semiconductor manufacturing handbook. McGraw-Hill (2005)

    Google Scholar 

  34. Osswald, S., Weiss, A., Tscheligi, M.: Designing wearable devices for the factory: Rapid contextual experience prototyping. In: International Conference on Collaboration Technologies and Systems (CTS), pp. 517–521. IEEE (2013)

    Google Scholar 

  35. Thiesse, F., Fleisch, E., Dierkes, M.: LotTrack: RFID-based process control in the semiconductor industry. IEEE Pervasive Computing 5(1), 47–53 (2006)

    Article  Google Scholar 

  36. Jonietz, D., Timpf, S.: An Affordance-Based Simulation Framework for Assessing Spatial Suitability. In: Tenbrink, T., Stell, J., Galton, A., Wood, Z. (eds.) COSIT 2013. LNCS, vol. 8116, pp. 169–184. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  37. Skupin, A.: Tri-space: Conceptualization, transformation, visualization. In: Proceedings of Sixth International Conference on Geographic Information Science, Zurich, pp. 14–17 (2010)

    Google Scholar 

  38. Skupin, A., Esperbé, A.: An alternative map of the united states based on an n-dimensional model of geographic space. Journal of Visual Languages & Computing 22(4), 290–304 (2011)

    Article  Google Scholar 

  39. Kohonen, T.: The self-organizing map. Neurocomputing 21(1), 1–6 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Scholz, J., Schabus, S. (2014). An Indoor Navigation Ontology for Production Assets in a Production Environment. In: Duckham, M., Pebesma, E., Stewart, K., Frank, A.U. (eds) Geographic Information Science. GIScience 2014. Lecture Notes in Computer Science, vol 8728. Springer, Cham. https://doi.org/10.1007/978-3-319-11593-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11593-1_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11592-4

  • Online ISBN: 978-3-319-11593-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics