Skip to main content

Human-Specific Evolutionary Changes in the Biology of Siglecs

  • Conference paper
  • First Online:
Biochemical Roles of Eukaryotic Cell Surface Macromolecules

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 842))

Abstract

Siglecs are a family of sialic acid-recognizing immunoglobulin-like lectins that exhibit multiple human-specific and human-universal differences, including changes in binding specificity (Siglec-5, -7, -9, -11, -12 and 14); changes in expression pattern (Siglec-1, -5, -6, and -11); gene conversion (SIGLEC11); gene deletion (SIGLEC13) and pseudogenization (SIGLEC17). Human-unique pseudogenes of SIGLEC12, SIGLEC14 and SIGLEC16 are also polymorphic within human populations, suggesting ongoing selection on this family of genes. The apparently higher concentration of SIGLEC changes in the human lineage may have been selected by interactions with pathogens binding Siglecs, and/or as compensatory responses to the loss of the sialic acid N-glycolylneuraminic acid (Neu5Gc) in humans. Human-specific Siglec changes of particular interest include expression of Siglec-11 in brain microglia, expression of Siglec-6 on placental trophoblast, suppression of Siglec-5 expression on adaptive immune cells, new expression of Siglec-5 on amniotic epithelium, and elimination of Siglec-13 and -17 from innate immune cells. The Siglec-13 and -17 inactivation events fixed in the ancestral population shortly before the common ancestor of modern humans 100–200 thousand years ago, and resurrected Siglec-13 and -17 gene products bind potentially lethal pathogens of infants. While such pathogens may have contributed to population bottlenecks in human evolution, the resulting changes in sialic acid biology may also have altered multiple systems where sialic acid and Siglecs have endogenous roles. Thus, genes associated with sialic acid biology appear to be a “hot spot” of genetic and physiological change during human evolution, with implications for human origins, and for uniquely human features in health and disease.

Author contributed equally with all other contributors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali SR et al (2014) Siglec-5 and Siglec-14 are polymorphic paired receptors that modulate neutrophil and amnion signaling responses to group B Streptococcus. J Exp Med 211:1231–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altheide TK et al (2006) System-wide genomic and biochemical comparisons of sialic acid biology among primates and rodents: evidence for two modes of rapid evolution. J Biol Chem 281:25689–25702

    Article  CAS  PubMed  Google Scholar 

  • Andrews RG, Torok-Storb B, Bernstein ID (1983) Myeloid-associated differentiation antigens on stem cells and their progeny identified by monoclonal antibodies. Blood 62:124–132

    Article  CAS  PubMed  Google Scholar 

  • Angata T (2014) Associations of genetic polymorphisms of Siglecs with human diseases. Glycobiology 24(9):785–793

    Article  CAS  PubMed  Google Scholar 

  • Angata T, Varki NM, Varki A (2001) A second uniquely human mutation affecting sialic acid biology. J Biol Chem 276:40282–40287

    Article  CAS  PubMed  Google Scholar 

  • Angata T et al (2002) Cloning and characterization of human Siglec-11. A recently evolved signaling molecule that can interact with SHP-1 and SHP-2 and is expressed by tissue macrophages, including brain microglia. J Biol Chem 277:24466–24474

    Article  CAS  PubMed  Google Scholar 

  • Angata T et al (2004) Large-scale sequencing of the CD33-related Siglec gene cluster in five mammalian species reveals rapid evolution by multiple mechanisms. Proc Natl Acad Sci U S A 101:13251–13256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angata T et al (2006) Discovery of Siglec-14, a novel sialic acid receptor undergoing concerted evolution with Siglec-5 in primates. FASEB J 20:1964–1973

    Article  CAS  PubMed  Google Scholar 

  • Angata T et al (2013) Loss of Siglec-14 reduces the risk of chronic obstructive pulmonary disease exacerbation. Cell Mol Life Sci 70:3199–3210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barclay AN, Hatherley D (2008) The counterbalance theory for evolution and function of paired receptors. Immunity 29:675–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barreiro LB, Quintana-Murci L (2010) From evolutionary genetics to human immunology: how selection shapes host defence genes. Nat Rev Genet 11:17–30

    Article  CAS  PubMed  Google Scholar 

  • Barrow AD, Trowsdale J (2006) You say ITAM and I say ITIM, let’s call the whole thing off: the ambiguity of immunoreceptor signalling. Eur J Immunol 36:1646–1653

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw EM et al (2013) CD33 Alzheimer’s disease locus: altered monocyte function and amyloid biology. Nat Neurosci 16:848–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brinkman-Van der Linden ECM et al (2000) Loss of N-glycolylneuraminic acid in human evolution—implications for sialic acid recognition by siglecs. J Biol Chem 275:8633–8640

    Article  CAS  PubMed  Google Scholar 

  • Brinkman-Van der Linden EC et al (2003) CD33/Siglec-3 binding specificity, expression pattern, and consequences of gene deletion in mice. Mol Cell Biol 23:4199–4206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brinkman-Van der Linden EC et al (2007) Human-specific expression of Siglec-6 in the placenta. Glycobiology 17:922–931

    Article  CAS  PubMed  Google Scholar 

  • Cannons JL, Tangye SG, Schwartzberg PL (2011) SLAM family receptors and SAP adaptors in immunity. Annu Rev Immunol 29:665–705

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Crocker PR (2011) Evolution of CD33-related siglecs: regulating host immune functions and escaping pathogen exploitation? Immunology 132:18–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao H et al (2008) SIGLEC16 encodes a DAP12-associated receptor expressed in macrophages that evolved from its inhibitory counterpart SIGLEC11 and has functional and non-functional alleles in humans. Eur J Immunol 38:2303–2315

    Article  CAS  PubMed  Google Scholar 

  • Carlin AF et al (2007) Group B streptococcal capsular sialic acids interact with siglecs (immunoglobulin-like lectins) on human leukocytes. J Bacteriol 89:1231–1237

    Article  CAS  Google Scholar 

  • Carlin AF et al (2009a) Group B Streptococcus suppression of phagocyte functions by protein-mediated engagement of human Siglec-5. J Exp Med 206:1691–1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlin AF et al (2009b) Molecular mimicry of host sialylated glycans allows a bacterial pathogen to engage neutrophil Siglec-9 and dampen the innate immune response. Blood 113:3333–3336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee P et al (2014) Regulation of the anti-inflammatory cytokines interleukin-4 and interleukin-10 during pregnancy. Front Immunol 5:253

    PubMed  PubMed Central  Google Scholar 

  • Chou HH et al (2002) Inactivation of CMP-N-acetylneuraminic acid hydroxylase occurred prior to brain expansion during human evolution. Proc Natl Acad Sci U S A 99:11736–11741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins BE et al (1997) Binding specificities of the sialoadhesin family of I-type lectins. Sialic acid linkage and substructure requirements for binding of myelin-associated glycoprotein, Schwann cell myelin protein, and sialoadhesin. J Biol Chem 272:16889–16895

    Article  CAS  PubMed  Google Scholar 

  • Crocker PR, Varki A (2001) Siglecs, sialic acids and innate immunity. Trends Immunol 22:337–342

    Article  CAS  PubMed  Google Scholar 

  • Crocker PR et al (1991) Purification and properties of sialoadhesin, a sialic acid-binding receptor of murine tissue macrophages. EMBO J 10:1661–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crocker PR et al (1997) The potential role of sialoadhesin as a macrophage recognition molecule in health and disease. Glycoconj J 14:601–609

    Article  CAS  PubMed  Google Scholar 

  • Crocker PR, Paulson JC, Varki A (2007) Siglecs and their roles in the immune system. Nat Rev Immunol 7:255–266

    Article  CAS  PubMed  Google Scholar 

  • Freeman SD et al (1995) Characterization of CD33 as a new member of the sialoadhesin family of cellular interaction molecules. Blood 85:2005–2012

    Article  CAS  PubMed  Google Scholar 

  • Gearing M et al (1994) Neuropathology and apolipoprotein E profile of aged chimpanzees: implications for Alzheimer disease. Proc Natl Acad Sci U S A 91:9382–9386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griciuc A et al (2013) Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron 78:631–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamerman JA, Lanier LL (2006) Inhibition of immune responses by ITAM-bearing receptors. Sci STKE 2006:re1

    Article  PubMed  Google Scholar 

  • Hartnell A et al (2001) Characterization of human sialoadhesin, a sialic acid binding receptor expressed by resident and inflammatory macrophage populations. Blood 97:288–296

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa T et al (2005) A human-specific gene in microglia. Science 309:1693

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Caselles T et al (2006) A study of CD33 (SIGLEC-3) antigen expression and function on activated human T and NK cells: two isoforms of CD33 are generated by alternative splicing. J Leukoc Biol 79:46–58

    Article  CAS  PubMed  Google Scholar 

  • Ishida-Kitagawa N et al (2012) Siglec-15 protein regulates formation of functional osteoclasts in concert with DNAX-activating protein of 12 kDa (DAP12). J Biol Chem 287:17493–17502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jandus C et al (2014) Interactions between Siglec-7/9 receptors and ligands influence NK cell-dependent tumor immunosurveillance. J Clin Invest 124(4):1810–1820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kameda Y et al (2013) Siglec-15 regulates osteoclast differentiation by modulating RANKL-induced phosphatidylinositol 3-kinase/Akt and Erk pathways in association with signaling adaptor DAP12. J Bone Miner Res 28(12):2463–2475

    Article  CAS  PubMed  Google Scholar 

  • Lanier LL (2009) DAP10- and DAP12-associated receptors in innate immunity. Immunol Rev 227:150–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linnartz-Gerlach B, Kopatz J, Neumann H (2014) Siglec functions of microglia. Glycobiology 24(9):794–799

    Article  CAS  PubMed  Google Scholar 

  • Lock K et al (2004) Expression of CD33-related siglecs on human mononuclear phagocytes, monocyte-derived dendritic cells and plasmacytoid dendritic cells. Immunobiology 209:199–207

    Article  CAS  PubMed  Google Scholar 

  • Malik M et al (2013) CD33 Alzheimer’s risk-altering polymorphism, CD33 expression, and exon 2 splicing. J Neurosci 33:13320–13325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitra N et al (2011) SIGLEC12, a human-specific segregating (pseudo)gene, encodes a signaling molecule expressed in prostate carcinomas. J Biol Chem 286:23003–23011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen DH et al (2006) Loss of Siglec expression on T lymphocytes during human evolution. Proc Natl Acad Sci U S A 103:7765–7770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padler-Karavani V et al (2014) Rapid evolution of binding specificities and expression patterns of inhibitory CD33-related Siglecs in primates. FASEB J 28:1280–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel N et al (1999) OB-BP1/Siglec-6—a leptin- and sialic acid-binding protein of the immunoglobulin superfamily. J Biol Chem 274:22729–22738

    Article  CAS  PubMed  Google Scholar 

  • Perez SE et al (2013) Alzheimer’s disease pathology in the neocortex and hippocampus of the western lowland gorilla (Gorilla gorilla gorilla). J Comp Neurol 521:4318–4338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Oliva AB et al (2011) Epitope mapping, expression and post-translational modifications of two isoforms of CD33 (CD33M and CD33m) on lymphoid and myeloid human cells. Glycobiology 21:757–770

    Article  CAS  PubMed  Google Scholar 

  • Pillai S et al (2012) Siglecs and immune regulation. Annu Rev Immunol 30:357–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raj T et al (2014) CD33: increased inclusion of exon 2 implicates the Ig V-set domain in Alzheimer’s disease susceptibility. Hum Mol Genet 23:2729–2736

    Article  CAS  PubMed  Google Scholar 

  • Ravetch JV, Lanier LL (2000) Immune inhibitory receptors. Science 290:84–89

    Article  CAS  PubMed  Google Scholar 

  • Rempel H et al (2008) Sialoadhesin expressed on IFN-induced monocytes binds HIV-1 and enhances infectivity. PLoS One 3:e1967

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rumer KK et al (2013) Siglec-6 expression is increased in placentas from pregnancies complicated by preterm preeclampsia. Reprod Sci 20:646–653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rutishauser U (2008) Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nat Rev Neurosci 9:26–35

    Article  CAS  PubMed  Google Scholar 

  • Sonnenburg JL, Altheide TK, Varki A (2004) A uniquely human consequence of domain-specific functional adaptation in a sialic acid-binding receptor. Glycobiology 14:339–346

    Article  CAS  PubMed  Google Scholar 

  • Soto PC et al (2012) Cell-intrinsic mechanism involving Siglec-5 associated with divergent outcomes of HIV-1 infection in human and chimpanzee CD4 T cells. J Mol Med (Berl) 91:261–270

    Article  CAS  Google Scholar 

  • Takamiya R et al (2013) The interaction between Siglec-15 and tumor-associated sialyl-Tn antigen enhances TGF-beta secretion from monocytes/macrophages through the DAP12-Syk pathway. Glycobiology 23:178–187

    Article  CAS  PubMed  Google Scholar 

  • Tourdot BE et al (2013) Immunoreceptor tyrosine-based inhibitory motif (ITIM)-mediated inhibitory signaling is regulated by sequential phosphorylation mediated by distinct nonreceptor tyrosine kinases: a case study involving PECAM-1. Biochemistry 52:2597–2608

    Article  CAS  PubMed  Google Scholar 

  • Varki A (2010) Colloquium paper: uniquely human evolution of sialic acid genetics and biology. Proc Natl Acad Sci U S A 107(Suppl 2):8939–8946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varki A (2011) Since there are PAMPs and DAMPs, there must be SAMPs? Glycan “self-associated molecular patterns” dampen innate immunity, but pathogens can mimic them. Glycobiology 21:1121–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varki A, Angata T (2006) Siglecs—the major subfamily of I-type lectins. Glycobiology 16:1R–27R

    Article  CAS  PubMed  Google Scholar 

  • Varki NM et al (2011) Biomedical differences between human and nonhuman hominids: potential roles for uniquely human aspects of sialic acid biology. Annu Rev Pathol 6:365–393

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Neumann H (2010) Alleviation of neurotoxicity by microglial human Siglec-11. J Neurosci 30:3482–3488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X et al (2011) Expression of Siglec-11 by human and chimpanzee ovarian stromal cells, with uniquely human ligands: implications for human ovarian physiology and pathology. Glycobiology 21:1038–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X et al (2012a) Evolution of Siglec-11 and Siglec-16 genes in hominins. Mol Biol Evol 29:2073–2086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X et al (2012b) Specific inactivation of two immunomodulatory SIGLEC genes during human evolution. Proc Natl Acad Sci U S A 109:9935–9940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winn VD et al (2009) Severe preeclampsia-related changes in gene expression at the maternal-fetal interface include sialic acid-binding immunoglobulin-like lectin-6 and pappalysin-2. Endocrinology 150:452–462

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka M et al (2009) Deletion polymorphism of SIGLEC14 and its functional implications. Glycobiology 19:841–846

    Article  CAS  PubMed  Google Scholar 

  • Yngvadottir B et al (2009) A genome-wide survey of the prevalence and evolutionary forces acting on human nonsense SNPs. Am J Hum Genet 84:224–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Z et al (2001) Identification and characterization of S2V, a novel putative siglec that contains two V set Ig-like domains and recruits protein-tyrosine phosphatases SHPs. J Biol Chem 276:23816–23824

    Article  CAS  PubMed  Google Scholar 

  • Zhang JQ et al (2000) Siglec-9, a novel sialic acid binding member of the immunoglobulin superfamily expressed broadly on human blood leukocytes. J Biol Chem 275:22121–22126

    Article  CAS  PubMed  Google Scholar 

  • Zou Z et al (2011) Siglecs facilitate HIV-1 infection of macrophages through adhesion with viral sialic acids. PLoS One 6:e24559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the members of the Varki lab group for fruitful discussions, and Yuko Naito-Matsui, Anel Lizcano, Shoib Siddiqui, Corinna Landig, Stevan Springer and John T. Ngo for comments on the manuscript. Research in the Varki laboratory is supported by grants from the NIH and by the NHLBI Program of Excellence in Glycosciences. F.S. is supported by a fellowship from the Novartis Foundation for medical-biological research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit Varki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Schwarz, F., Fong, J.J., Varki, A. (2015). Human-Specific Evolutionary Changes in the Biology of Siglecs. In: Chakrabarti, A., Surolia, A. (eds) Biochemical Roles of Eukaryotic Cell Surface Macromolecules. Advances in Experimental Medicine and Biology, vol 842. Springer, Cham. https://doi.org/10.1007/978-3-319-11280-0_1

Download citation

Publish with us

Policies and ethics