Skip to main content

Hybrid Guided Artificial Bee Colony Algorithm for Earthquake Time Series Data Prediction

  • Conference paper
  • First Online:
Communication Technologies, Information Security and Sustainable Development (IMTIC 2013)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 414))

Included in the following conference series:

Abstract

Backpropagation is a well-known learning algorithm used to train Multilayer Perceptron (MLP) with the iterative process. However, one of the critical shortcomings with the BP learning strategy is that it can sometimes trapped in the local minima with suboptimal weights due to the existence of many local optima in the solution space. To remove the above drawbacks of BP algorithm, researchers interested in naturally swarm intelligence algorithm. Here Guided Artificial Bee Colony (GABC) and Gbest Guided Artificial Bee Colony (GGABC) algorithms are hybrid called Hybrid Guided ABC algorithm. The HGABC algorithm used to train MLP for earthquake time-series data for the prediction task. The performance of proposed Hybrid Guided ABC compared with ordinary BP, GGABC and ABC learning algorithms. The simulation results show that proposed learning algorithm HGGABC has outstanding prediction performance than BP, GGABC and ABC algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shah, H., et al.: Using artificial bee colony algorithm for MLP training on earthquake time series data prediction. J. Comput. 3, 7 (2011)

    Google Scholar 

  2. Suratgar, A.A., et al.: Magnitude of earthquake prediction using neural network. In: Natural Computation, Fourth International Conference on, 2008, pp. 448–452 (2008)

    Google Scholar 

  3. Ghazali, R., et al.: Application of ridge polynomial neural networks to financial time series prediction. In: International Joint Conference on Neural Networks, pp. 913–920 (2006)

    Google Scholar 

  4. Ghazali, R., Hussain, A.J., Al-Jumeily, D., Merabti, M.: Dynamic ridge polynomial neural networks in exchange rates time series forecasting. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4432, pp. 123–132. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Yümlü, S., et al.: A comparison of global, recurrent and smoothed-piecewise neural models for Istanbul stock exchange (ISE) prediction. Pattern Recogn. Lett. 26, 2093–2103 (2005)

    Article  Google Scholar 

  6. Ho, S.L., et al.: A comparative study of neural network and Box-Jenkins ARIMA modeling in time series prediction. Comput. Ind. Eng. 42, 371–375 (2002)

    Article  Google Scholar 

  7. Shah, H., Ghazali, R., Nawi, N.M., Deris, M.M., Herawan, T.: Global artificial bee colony-Levenberq-Marquardt (GABC-LM) algorithm for classification. Int. J. Appl. Evol. Comput. (IJAEC) 4, 58–74 (2013)

    Article  Google Scholar 

  8. Brillinger, D.R.: Time Series: Data Analysis and Theory. SIAM: Society for Industrial and Applied Mathematics, Philadelphia (2001)

    Google Scholar 

  9. Chatfield, C.: The Analysis of Time Series: Theory and Practice. Chapman and Hall, London (1975)

    Google Scholar 

  10. Brockwell, P.: Time Series. In: Lovric, M. (ed.) International Encyclopedia of Statistical Science, pp. 1601–1605. Springer, Berlin (2011)

    Google Scholar 

  11. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice-Hall, Upper Saddle River (1999)

    MATH  Google Scholar 

  12. Rosenblatt, F.: The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain, vol. 65, pp. 386–408. Cornell Aeronautical Laboratory (1958)

    Google Scholar 

  13. Shah, H., Ghazali, R., Nawim, N.M.: Hybrid global artificial bee colony algorithm for classification and prediction tasks. J. Appl. Sci. Res. 9, 3328–3337 (2013)

    Article  Google Scholar 

  14. Shah, H., Ghazali, R., Nawi, N.M.: Global artificial bee colony algorithm for boolean function classification. In: Selamat, A., Nguyen, N.T., Haron, H. (eds.) ACIIDS 2013, Part I. LNCS (LNAI), vol. 7802, pp. 12–20. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  15. Karaboga, D., Akay, B.: Artificial bee colony (ABC) algorithm on training artificial neural networks. In: IEEE 15th Signal Processing and Communications Applications, pp. 1–4 (2007)

    Google Scholar 

  16. Karaboga, D., Akay, B., Ozturk, C.: Artificial bee colony (ABC) optimization algorithm for training feed-forward neural networks. In: Torra, V., Narukawa, Y., Yoshida, Y. (eds.) MDAI 2007. LNCS (LNAI), vol. 4617, pp. 318–329. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Ozturk, C., Ozturk, D.: Hybrid artificial bee colony algorithm for neural network training. In: IEEE Congress on Evolutionary Computation (CEC), pp. 84–88 (2011)

    Google Scholar 

  18. Zhu, G., Kwong, S.: Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl. Math. Comput. 217, 3166–3173 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tuba, M., et al.: Guided artificial bee colony algorithm. In: Proceedings of the 5th European Conference on European Computing Conference, Paris, France (2011)

    Google Scholar 

  20. Peng, G., et al.: Global artificial bee colony search algorithm for numerical function optimization. In: Seventh International Conference on Natural Computation (ICNC), pp. 1280–1283 (2011)

    Google Scholar 

  21. Shah, H., Ghazali, R., Mohmad Hassim, Y.M.: Honey bees inspired learning algorithm: nature intelligence can predict natural disaster. In: Herawan, T., Ghazali, R., Deris, M.M. (eds.) Recent Advances on Soft Computing and Data Mining SCDM 2014. AISC, vol. 287, pp. 215–225. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  22. SCEDC.: Southern California Earthquake Data Center (SCEDC), 12 Jan 2010. http://www.data.scec.org/ftp/catalogs/SCSN/2010.catalog

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Shah, H., Ghazali, R., Herawan, T., Khan, N., Sadiq Khan, M. (2014). Hybrid Guided Artificial Bee Colony Algorithm for Earthquake Time Series Data Prediction. In: Shaikh, F., Chowdhry, B., Zeadally, S., Hussain, D., Memon, A., Uqaili, M. (eds) Communication Technologies, Information Security and Sustainable Development. IMTIC 2013. Communications in Computer and Information Science, vol 414. Springer, Cham. https://doi.org/10.1007/978-3-319-10987-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10987-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10986-2

  • Online ISBN: 978-3-319-10987-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics