Skip to main content

Phytoremediation of Heavy Metals: The Use of Green Approaches to Clean the Environment

  • Chapter
  • First Online:
Phytoremediation

Abstract

Environmental pollution is a hot topic of discussion nowadays, both in the developed as well as developing countries. With the rapid increase of industrialization there is a continual increase of pollution in the environment with organic and inorganic wastes. Among all the pollutions, heavy metal pollution is the major problem and plays a vital role in polluting the environment. Due to relatively high density, these are very toxic even in low concentration levels. Majority of the heavy metal pollution is caused by mercury (Hg), cadmium (Cd), arsenic (As), chromium (Cr), thallium (Tl), and lead (Pb) etc. These metals cannot be easily degraded or destroyed in the environment but transformed from one oxidation state to another. Phytoremediation is a cost-effective technology which can be applied to remediate such sites which are contaminated with heavy metal pollution. From the last two decades, efforts have been made to remediate the polluted soil and water resources. During this period research has also been carried out on the improvement in the metal uptake efficiency of the plants by means of plant–microbe interactions and transgenic technology for the development of highly efficient transgenic plants for the heavy metal removal from the contaminated sites. In the present chapter, various phytoremediation strategies have been discussed to overcome the heavy metal pollution from the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Shanab RI, Angle JS, Chaney RL (2006) Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem 38:2882–2889

    CAS  Google Scholar 

  • Adams JP, Adeli A, Hsu C-Y, Harkess RL, Page GP, dePamphilis CW, Schultz EB, Yuceer C (2011) Poplar maintains zinc homeostasis with heavy metal genes HMA4 and PCS1. J Expt Bot 62:3737–3752

    CAS  Google Scholar 

  • Adesodun JK, Atayese MO, Agbaje T, Osadiaye BA, Mafe O, Soretire AA (2010) Phytoremediation potentials of sunflowers (Tithonia diversifolia and Helianthus annuus) for metals in soils contaminated with zinc and lead nitrates. Water Air Soil Poll 207:195–201

    CAS  Google Scholar 

  • Agostini E, Talano MA, González PS, Oller ALW, Medina MI (2013) Application of hairy roots for phytoremediation: what makes them an interesting tool for this purpose? Appl Microb Biotech 97(3):1017–1030

    CAS  Google Scholar 

  • Akpor OB, Okolomike UF, Olaolu TD, Aderiye BI (2014) Remediation of polluted wastewater effluents: hydrocarbon removal. Trends Appl Sci Res 9(4):160–173

    CAS  Google Scholar 

  • Ali H, Naseer M, Sajad MA (2012) Phytoremediation of heavy metals by Trifolium alexandrinum. Int J Environ Sci 2:1459–1469

    CAS  Google Scholar 

  • Ali T, Mahmood S, Khan MY, Aslam A, Hussain MB, Asghar HN, Akhtar MJ (2013) Phytoremediation of cadmium contaminated soil by auxin assisted bacterial inoculation. Asian J Agric Biol 1(2):79–84

    Google Scholar 

  • Alkorta I, Hernandez-Allica J, Becerril JM, Amezaga I, Albizu I, Garbisu C (2004) Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Rev Environ Sci Biotech 3:71–90

    CAS  Google Scholar 

  • Alloway BJ (1995) Heavy metals in soils. Blackie Academic & Professional, London

    Google Scholar 

  • Al-Shalabi Z, Doran PM (2013) Metal uptake and nanoparticle synthesis in hairy root cultures. In: Doran PM (ed) Biotechnology of hairy root systems. Springer, Berlin, Heidelberg, pp 135–153

    Google Scholar 

  • Alves LQ, de Jesus RM, de Almeida AA, Souza VL, Mangabeira PA (2014) Effects of lead on anatomy, ultrastructure and concentration of nutrients in plants Oxycaryum cubense (Poep. & Kunth) Palla: a species with phytoremediator potential in contaminated watersheds. Environ Sci Pollut Res Int 21(10):6558–6570

    CAS  PubMed  Google Scholar 

  • Anderson TA, Guthrie EA, Walton BT (1993) Bioremediation in the rhizosphere: plant roots and associated microbes clean contaminated soil. Environ Sci Technol 27(13):2630–2636

    CAS  Google Scholar 

  • Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotech 25(8):356–362

    CAS  Google Scholar 

  • Assunção AGL, Schat H, Aarts MGM (2003) Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytol 159:351–360

    Google Scholar 

  • Atafar Z, Mesdaghinia A, Nouri J, Homaee M, Yunesian M, Ahmadimoghaddam M, Mahvi AH (2010) Effect of fertilizer application on soil heavy metal concentration. Environ Monit Assess 160(1–4):83–89

    CAS  PubMed  Google Scholar 

  • Baldwin PR, Butcher DJ (2007) Phytoremediation of arsenic by two hyperaccumulators in a hydroponic environment. Microchem J 85:297–300

    CAS  Google Scholar 

  • Balestrazzi A, Botti S, Zelasco S, Biondi S, Franchin C, Calligari P (2009) Expression of the PsMTA1 gene in white poplar engineered with the MAT system is associated with heavy metal tolerance and protection against 8-hydroxy-2′-deoxyguanosine mediated-DNA damage. Plant Cell Rep 28:1179–1192

    CAS  PubMed  Google Scholar 

  • Bani A, Pavlova D, Echevarria G, Mullaj A, Reeves RD, Morel JL, Sulçe S (2010) Nickel hyperaccumulation by the species of Alyssum and Thlaspi (Brassicaceae) from the ultramafic soils of the Balkans. Bot Serb 34:3–14

    Google Scholar 

  • Bañuelos G, Terry N, LeDuc DL, Pilon-Smits EA, Mackey B (2005) Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment. Environ Sci Technol 39(6):1771–1777

    PubMed  Google Scholar 

  • Barber DA, Lee RB (1974) The effect of microorganisms on the absorption of manganese by plants. New Phytol 73:97–106

    CAS  Google Scholar 

  • Bashan Y, Puente ME, Bashan LE, Hernandez JP (2008) Environmental uses of plant growth-promoting bacteria. In: Barka EA, Clémen C (eds) Plant-microbe interactions. Research Signpost, Kerala, India, pp 69–93

    Google Scholar 

  • Bauelos GS, Meek DW (1990) Accumulation of selenium in plants grown on selenium-treated soil. J Environ Qual 19:772

    Google Scholar 

  • Becerra-Castro C, Kidd P, Kuffner M, Prieto-Fernández Á, Hann S, Monterroso C, Sessitsch A, Wenzel W, Puschenreiter M (2013) Bacterially induced weathering of ultramafic rock and its implications for phytoextraction. Appl Eenviron Microbiol 79(17):5094–5103

    CAS  Google Scholar 

  • Becher M, Talke IN, Krall L, Krämer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251–268

    CAS  PubMed  Google Scholar 

  • Bennett LS, Burkhead JL, Hale KL, Terry N, Pilon M, Pilon-Smits EAH (2003) Analysis of transgenic indian mustard plants for phytoremediation of metal-contaminated mine tailings. J Environ Qual 32(2):432–440

    CAS  PubMed  Google Scholar 

  • Berti WR, Cunningham SD (2000) Phytostabilisation of metals. In: Raskin I (ed) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley-InterScience, New York, NY, pp 71–88

    Google Scholar 

  • Bissen M, Frimmel FH (2003) Arsenic a review. Part I: occurrence, toxicity, speciation, mobility. Acta Hydrochim Hydrobiol 31(1):9–18

    CAS  Google Scholar 

  • Boyajian GE, Carreira LH (1997) Phytoremediation: a clean transition from laboratory to marketplace? Nat Biotechnol 15:127–128

    CAS  PubMed  Google Scholar 

  • Branzini A, González RS, Zubillaga M (2012) Absorption and translocation of copper, zinc and chromium by Sesbania virgata. J Environ Manag 102:50–54

    CAS  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    CAS  PubMed  Google Scholar 

  • Brümmer G, Gerth J, Herms U (1986) Heavy metal species, mobility and availability in soils. Z Pflanzenernähr Bodenkd 149:382–398

    Google Scholar 

  • Burd GI, Dixon DG, Glick BR (1998) A plant growthpromoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chaudhry TM, Hayes WJ, Khan AG, Khoo CS (1998) Phytoremediation-focusing on accumulator plants that remediate metal contaminated soils. Aust J Ecotoxicol 4:37–51

    CAS  Google Scholar 

  • Chen L, Luo S, Li X, Wan Y, Chen J, Liu C (2014) Interaction of Cd-hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biol Biochem 68:300–308

    CAS  Google Scholar 

  • Chen Y, Xu W, Shen H, Yan H, Xu W, He Z, Ma M (2013) Engineering arsenic tolerance and hyperaccumulation in plants for phytoremediation by a PvACR3 transgenic approach. Environ Sci Tech 47(16):9355–9362

    CAS  Google Scholar 

  • Cherian MG, Goyer RA (1978) Metallothioneins and their role in the metabolism and toxicity of metals. Life Sci 23(1):1–9

    CAS  PubMed  Google Scholar 

  • Chiang PN, Chiu CY, Wang MK, Chen BT (2011) Low-molecular-weight organic acids exuded by millet (Setaria italica (L.) Beauv.) roots and their effect on the remediation of cadmium-contaminated soil. Soil Sci 176(1):33–38

    CAS  Google Scholar 

  • Clarkson DT, Luttge U (1989) Mineral nutrition: divalent cations, transport and compartmentalization. Prog Bot 51:93–112

    Google Scholar 

  • Clarkson TW (1992) Mercury: major issues in environmental health. Environ Health Perspect 100:31–38

    Google Scholar 

  • Clemens S, Palmgren MG, Krämer U (2002) A long way ahead: Understanding and engineering plant metal accumulation. Trend Plant Sci 7:309–315

    CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Ann Rev Plant Biol 53:159–182

    CAS  Google Scholar 

  • Cosio C, DeSantis L, Frey B, Diallo S, Keller C (2005) Distribution of cadmium in leaves of Thlaspi caerulescens. J Expt Bot 56(412):765–775

    CAS  Google Scholar 

  • Crowley DE, Wang YC, Reid CPP, Szaniszlo PJ (1991) Mechanisms of iron acquisition from siderophores by microorganisms and plants. Plant Soil 130:179–198

    CAS  Google Scholar 

  • Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13(9):393–397

    CAS  Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110(5):715–719

    PubMed Central  CAS  PubMed  Google Scholar 

  • Daghan H, Arslan M, Uygur V, Koleli N (2013) Transformation of tobacco with ScMTII gene‐enhanced Cadmium and Zinc accumulation. Clean Soil Air Water 41(5):503–509

    CAS  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245(1):35–47

    CAS  Google Scholar 

  • Day SD, Wiseman PE, Dickinson SB, Harris JR (2010) Tree root ecology in the urban environment and implications for a sustainable rhizosphere. Arboricult Urban Fores 36(5):193–205

    Google Scholar 

  • Dominguez-Solis JR, Lopez-Martin MC, Ager FJ, Ynsa MD, Romero LC, Gotor C (2004) Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana. Plant Biotechnol J 2:469–476

    CAS  PubMed  Google Scholar 

  • Dräger DB, Desbrosses-Fonrouge AG, Krach C, Chardonnens AN, Meyer RC, Saumitou-Laprade P, Krämer U (2004) Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co-segregate with zinc tolerance and account for high MTP1 transcript levels. Plant J 39:425–439

    PubMed  Google Scholar 

  • Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Intl J Phys Sci 2(5):112–118

    Google Scholar 

  • Dushenkov V, Kumar NPBA, Motto H, Raskin I (1995) Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29:1239–1245

    CAS  PubMed  Google Scholar 

  • Eapen S, D’Souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotech Adv 23:97–114

    CAS  Google Scholar 

  • Edwards CD, Beatty JC, Loiselle JB, Vlassov KA, Lefebvre DD (2013) Aerobic transformation of zinc into metal sulfide by photosynthetic microorganisms. Appl Microb Biotech 97(8):3613–3623

    CAS  Google Scholar 

  • Ernst WHO (1996) Bioavailability of heavy metals and decontamination of soils by plants. Appl Geochem 11(1–2):163–167

    CAS  Google Scholar 

  • Feng RW, Wei CY (2012) Antioxidative mechanisms on selenium accumulation in Pteris vittata L, a potential selenium phytoremediation plant. Plant Soil Environ 58(3):105–110

    CAS  Google Scholar 

  • Ferner DJ (2001) Toxicity, heavy metals. eMed J 2(5):1

    Google Scholar 

  • Ferro AM, Kennedy J, LaRue JC (2013) Phytoremediation of 1, 4-dioxane-containing recovered groundwater. Intl J Phytoremed 15(10):911–923

    CAS  Google Scholar 

  • Förstner U (1995) Non-linear release of metals from aquatic sediments. In: Salomons, W and Stigliani WM, Biogeodynamics of Pollutants in Soils and Sediments Environmental Science, pp 247–307

    Google Scholar 

  • Foster KJ, Miklavcic SJ (2014) On the competitive uptake and transport of ions through differentiated root tissues. J Theor Biol 340:1–10

    CAS  PubMed  Google Scholar 

  • Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Biores Technol 77(3):229–236

    CAS  Google Scholar 

  • Garbisu C, Alkorta I (2003) Basic concepts on heavy metal soil bioremediation. Eur J Min Proc Environ Protect 3:58–66

    Google Scholar 

  • Gardner WK, Barber DA, Parbery DG (1983) The acquisition of phosphorus by Lupinus albus L. III. The probabale mechanism by which phosphorus movement in the soil/root interface is enhanced. Plant Soil 70:107–124

    CAS  Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of It’s by products. Aust J Energy Environ 6(4):214–231

    Google Scholar 

  • Ghosh R, Xalxo R, Gope MC, Mishra S, Kumari B, Ghosh M (2011) Estimation of heavy metals in locally available vegetables collected from road side market sites (1-4) of different areas of Ranchi City. PHARMBIT Vol. XXIII & XXIV, No. 1 & 2, Jan–Dec, 2011

    Google Scholar 

  • Gilbert-Barness E (2010) Teratogenic causes of malformations. Ann Clin Lab Sci 40(2):99–114

    CAS  PubMed  Google Scholar 

  • Gisbert C, Ros R, de Haro A, Walker DJ, Pilar Bernal M, Serrano R, Avino JN (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303(2):440–445

    CAS  PubMed  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    CAS  PubMed  Google Scholar 

  • Gonzaga MIS, Santos JAG, Ma LQ (2006) Arsenic phytoextraction and hyperaccumulation by fern species. Sci Agric 63:90–101

    CAS  Google Scholar 

  • Gowd SS, Reddy RM, Govil PK (2010) Assessment of heavy metal contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the Ganga Plain, Uttar Pradesh, India. J Haz Mat 174(1):113–121

    CAS  Google Scholar 

  • Guo J, Xu W, Ma M (2012) The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of Cadmium and Arsenic in transgenic Arabidopsis thaliana. J Haz Mat 199:309–313

    Google Scholar 

  • Guo P, Wang T, Liu Y, Xia Y, Wang G, Shen Z, Chen Y (2014) Phytostabilization potential of evening primrose(Oenothera glazioviana) for copper-contaminated sites. Environ Sci Pollut Res 21:631–640

    CAS  Google Scholar 

  • Hammad DM (2011) Cu, Ni and Zn Phytoremediation and translocation by water hyacinth plant at different aquatic environments. Aust J Basic Appl Sci 5(11)

    Google Scholar 

  • Hani A, Pazira E (2011) Heavy metals assessment and identification of their sources in agricultural soils of Southern Tehran, Iran. Environ Monit Assess 176(1–4):677–691

    Google Scholar 

  • Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Krämer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–395

    CAS  PubMed  Google Scholar 

  • Hegazy AK, Abdel-Ghani NT, El-Chaghaby GA (2011) Phytoremediation of industrial wastewater potentiality by Typha domingensis. Intl J Environ Sci Tech 8(3):639–648

    CAS  Google Scholar 

  • Henry JR (2000) In an overview of phytoremediation of Lead and Mercury. NNEMS Report. Washington, DC, pp 3–9

    Google Scholar 

  • Hsieh JL, Chen CY, Chiu MH, Chein MF, Chang JS, Endo G, Huang CC (2009) Expressing a bacterial mercuric ion binding protein in plant for phytoremediation of heavy metals. J Haz Mat 161(2):920–925

    CAS  Google Scholar 

  • Hu P, Yin YG, Ishikawa S, Suzui N, Kawachi N, Fujimaki S, Igura M, Wu L (2013) Nitrate facilitates cadmium uptake, transport and accumulation in the hyperaccumulator Sedum plumbizincicola. Environ Sci Poll Res 20(9):6306–6316

    CAS  Google Scholar 

  • Huang CX, van Steveninck RFM (1989) Effect of moderate salinity on patterns of potassium, sodium and chloride accumulation in cells near the root tip of barley: role of differentiating metaxylem vessels. Physiol Plant 73:525–533

    Google Scholar 

  • Huang JW, Cunningham SD (1996) Lead phytoextraction: species variation in lead uptake and translocation. New Phytol 134(1):75–84

    CAS  Google Scholar 

  • Jing YX, Yan JL, He HD, Yang DJ, Xiao L, Zhong T, Yuan M, De Cai X, Li SB (2014) Characterization of bacteria in the rhizosphere soils of Polygonum pubescens and their potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Intl J Phytorem 16(4):321–333

    CAS  Google Scholar 

  • Juárez-Santillán LF, Lucho-Constantino CA, Vázquez-Rodríguez GA, Cerón-Ubilla NM, Beltrán-Hernández RI (2010) Manganese accumulation in plants of the mining zone of Hidalgo, Mexico. Bioresource Tech 101(15):5836–5841

    Google Scholar 

  • Kabata-Pendias A (2001) Trace elements in soils and plants, 3rd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  • Kagalkar AN, Jadhav MU, Bapat VA, Govindwar SP (2011) Phytodegradation of the triphenylmethane dye Malachite Green mediated by cell suspension cultures of Blumea malcolmii Hook. Bioresource Tech 102(22):10312–10318

    CAS  Google Scholar 

  • Kanu Sheku A, Okonkwo Jonathan O, Dakora Felix D (2013) Aspalathus linearis (Rooibos tea) as potential phytoremediation agent: a review on tolerance mechanisms for aluminum uptake. Environ Rev 21(2):85–92

    Google Scholar 

  • Karenlampi S, Schat H, Vangronsveld J, Verkleij JAC, Lelie D, Mergeay M, Tervahauta AI (2000) Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils. Environ Pollut 107(2):225–231

    CAS  PubMed  Google Scholar 

  • Karlson U, Frankenberger WT (1989) Accelerated rates of selenium volatilization from California soils. Soil Sci Soc Am J 53:749–753

    CAS  Google Scholar 

  • Khoudi H, Maatar Y, Brini F, Fourati A, Ammar N, Masmoudi K (2013) Phytoremediation potential of Arabidopsis thaliana, expressing ectopically a vacuolar proton pump, for the industrial waste phosphogypsum. Environ Sci Poll Res 20(1):270–280

    CAS  Google Scholar 

  • Kinnersely AM (1993) The role of phytochelates in plant growth and productivity. Plant Growth Regul 12:207–217

    Google Scholar 

  • Kiyono M, Oka Y, Sone Y, Tanaka M, Nakamura R, Sato MH, Pan-Hou H, Sakabe K, Inoue K (2012) Expression of the bacterial heavy metal transporter MerC fused with a plant SNARE, SYP121, in Arabidopsis thaliana increases cadmium accumulation and tolerance. Planta 235:841–850

    CAS  PubMed  Google Scholar 

  • Knox AS, Gamerdinger AP, Adriano DC, Kolka RK, Kaplan DI (1999) Sources and practices contributing to soil contamination. In: Adriano DC, Bollag JM, Frankenberg WT Jr, Sims RC (eds) Bioremediation of the contaminated soils. Agronomy Series No. 37, ASA, CSSA, SSSA, Madison, Wisconson, USA, pp 53–87

    Google Scholar 

  • Krämer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638

    Google Scholar 

  • Krämer U, Grime GW, Smith JAC, Hawes CR, Baker AJM (1997) Micro-PIXE as a technique for studying nickel localization in leaves of the hyperaccumulator plant Alyssum lesbiacum. Nucl Instr Meth Phy Res B 130(1):346–350

    Google Scholar 

  • Krämer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspispecies. Plant Physiol 122(4):1343–1354

    PubMed Central  PubMed  Google Scholar 

  • Krishna MP, Varghese R, Mohamed AA (2012) Depth wise variation of microbial load in the soils of midland region of Kerala: a function of important soil physicochemical characteristics and nutrients. Ind J Edu Inf Manage 1(3):126–129

    Google Scholar 

  • Kubachka KM, Meija J, LeDuc DL, Terry N, Caruso JA (2007) Selenium volatiles as proxy to the metabolic pathways of selenium in genetically modified Brassica juncea. Environ Sci Technol 41(6):1863–1869

    CAS  PubMed  Google Scholar 

  • Kudo K, Kudo H, Yaeko KF, Kawai S (2013) The release of copper-induced phytosiderophores in barley plants is decreased by cadmium stress. Botany 91(8):568–572

    CAS  Google Scholar 

  • Kukreja S, Goutam U (2013) Phytoremediation: a new hope for the environment. Front Recent Develop Plant Sci 1:149–171

    Google Scholar 

  • Kumar PBAN, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Tech 29:1232–1238

    CAS  Google Scholar 

  • Küpper H, Lombi E, Zhao FJ, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212(1):75–84

    PubMed  Google Scholar 

  • Langella F, Grawunder A, Stark R, Weist A, Merten D, Haferburg G, Büchel G, Kothe E (2014) Microbially assisted phytoremediation approaches for two multi-element contaminated sites. Environ Sci Poll Res 21:6845–6858

    Google Scholar 

  • LeDuc DL, Tarun AS, Montes-Bayon M, Meija J, Malit MF, Wu CP, AbdelSamie M, Terry N (2004) Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant physiol 135(1):377–383

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee M, Yang M (2010) Rhizofiltration using sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) to remediate uranium contaminated groundwater. J Haz Mat 173(1):589–596

    CAS  Google Scholar 

  • Lee SB (2013) Toxin binding receptors and the mode of action of Bacillus thuringiensis subsp. israelensis Cry Toxins Ph. D. Thesis, University of California, Riverside

    Google Scholar 

  • Lenntech (2004) Water treatment and air purification. Lenntech, Rotterdamseweg, The Netherlands

    Google Scholar 

  • Levine F, Muenke FV (1991) Association with high prenatal lead exposure: similarities to animal models to lead teratogenicity. Pediatrics 87:390–392

    CAS  PubMed  Google Scholar 

  • Lindblom SD, Fakra SC, Landon J, Schulz P, Tracy B, Pilon‐Smits EA (2014) Inoculation of selenium hyperaccumulator Stanleya pinnata and related non‐accumulator Stanleya elata with hyperaccumulator rhizosphere fungi – investigation of effects on Se accumulation and speciation. Physiol Plant 150(1):107–118

    CAS  PubMed  Google Scholar 

  • Lindqvist O (1991) Mercury in the Swedish environment. Water Air Soil Bull 55(1):23–32

    Google Scholar 

  • Liu J, Shang W, Zhang X, Zhu Y, Yu K (2014) Mn accumulation and tolerance in Celosia argentea Linn.: a new Mn-hyperaccumulating plant species. J Haz Mat 267:136–141

    CAS  Google Scholar 

  • Liu XM, Wu QT, Banks MK (2005) Effect of simultaneous establishment of Sedum alfridii and Zea mays on heavy metal accumulation in plants. Int J Phytoremediation 7(1):43–53

    CAS  PubMed  Google Scholar 

  • Llugany M, Miralles R, Corrales I, Barceló J, Poschenrieder C (2012) Cynara cardunculus a potentially useful plant for remediation of soils polluted with cadmium or arsenic. J Geochem Expl 123:122–127

    CAS  Google Scholar 

  • Lorenz A, Rylott EL, Strand SE, Bruce NC (2013) Towards engineering degradation of the explosive pollutant hexahydro‐1, 3, 5‐trinitro‐1, 3, 5‐triazine in the rhizosphere. FEMS Microbiol Lett 340(1):49–54

    CAS  PubMed  Google Scholar 

  • Lu LL, Tian SK, Yang XE, Li TQ, He ZL (2009) Cadmium uptake and xylem loading are active processes in the hyperaccumulator Sedum alfredii. J Plant Physiol 166(6):579–587

    CAS  PubMed  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579

    CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Luo Y, Freitas H (2013) Phytoextraction of heavy metal polluted soils using Sedum plumbizincicola inoculated with metal mobilizing Phyllobacterium myrsinacearum RC6b. Chemosphere 93(7):1386–1392

    CAS  PubMed  Google Scholar 

  • Mahdieh M, Yazdani M, Mahdieh S (2013) The high potential of Pelargonium roseum plant for phytoremediation of heavy metals. Environ Monit Assess 185:7877–7881

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mahmood T (2010) Phytoextraction of heavy metals – the process and scope for remediation of contaminated soils. Soil Environ 29(2):91–109

    CAS  Google Scholar 

  • Marchiol L, Assolari S, Sacco P, Zerbi G (2004) Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environ Pollut 132:21–27

    CAS  PubMed  Google Scholar 

  • Marques AP, Moreira H, Franco AR, Rangel AO, Castro PM (2013) Inoculating Helianthus annuus (sunflower) grown in zinc and cadmium contaminated soils with plant growth promoting bacteria – effects on phytoremediation strategies. Chemosphere 92(1):74–83

    CAS  PubMed  Google Scholar 

  • Meda AR, Scheuermann EB, Prechsl UE, Erenoglu B, Schaaf G, Hayen H, Weber G, von Wirén N (2007) Iron acquisition by phytosiderophores contributes to cadmium tolerance. Plant Physiol 143(4):1761–1773

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mendoza-Cozatl D, Jobe T, Hauser F, Schroeder J (2011) Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Curr Opin Plant Biol 14:554–562

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mociardini P, Podini D, Marmiroli N (1998) Exotic gene expression in transgenic plants as a tool for monitoring environmental pollution. Chemosphere 37:2761–2772

    Google Scholar 

  • Morikawa H, Erkin OC (2003) Basic processes in phytoremediation and some applications to air pollution control. Chemosphere 52:1553–1558

    CAS  PubMed  Google Scholar 

  • Mueller B, Rock S, Gowswami D, Ensley D (1999) Phytoremediation Decision Tree. – Prepared by – Interstate Technology and Regulatory Cooperation Work Group, pp 1–36

    Google Scholar 

  • Muthunarayanan V, Santhiya M, Swabna V, Geetha A (2011) Phytodegradation of textile dyes by Water Hyacinth (Eichhornia Crassipes) from aqueous dye solutions. Intl J Environ Sci 1(7):1702–1717

    Google Scholar 

  • Negri MC, Hinchman RR (1996) Plants that remove contaminants from the environment. Lab Med 27(1):36–40

    Google Scholar 

  • Newman LA, Strand SE, Choe N, Duffy J, Ekuan G, Ruszaj M, Shurtleff BB, Wilmoth J, Heilman P, Gordon MP (1997) Uptake and biotransformation of trichloroethylene by hybrid poplars. Environ Sci Technol 31:1062–1067

    CAS  Google Scholar 

  • Nolan K (2003) Copper toxicity syndrome. J Orthomol Psych 12(4):270–282

    Google Scholar 

  • Ó Lochlainn S, Bowen HC, Fray RG, Hammond JP, King GJ, White PJ, Graham NS, Broadley MR (2011) Tandem quadruplication of HMA4 in the zinc (Zn) and cadmium (Cd) hyperaccumulator Noccaea caerulescens. PLoS One 6:e17814

    PubMed Central  PubMed  Google Scholar 

  • Park W, Ahn SJ (2014) How do heavy metal ATPases contribute to hyperaccumulation? J Plant Nutr Soil Sci 177(2):121–127

    CAS  Google Scholar 

  • Peers G, Quesnel S, Price NM (2005) Copper requirements for iron acquisition and growth of coastal and oceanic diatoms. Limnol Ocean 50(4):1149–1158

    CAS  Google Scholar 

  • Pérez-Esteban J, Escolástico C, Ruiz-Fernández J, Masaguer A, Moliner A (2013) Bioavailability and extraction of heavy metals from contaminated soil by Atriplex alimus. Environ Exptl Bot 88:53–59

    Google Scholar 

  • Perronnet K, Schwartz C, Morel JL (2003) Distribution of cadmium and zinc in the hyperaccumulator Thlaspi caerulescens grown on multicontaminated soil. Plant Soil 249:19–25

    CAS  Google Scholar 

  • Pivetz BE (2001) Ground water issue: phytoremediation of contaminated soil and ground water at hazardous waste sites. National Risk Management Research Lab ADA OK

    Google Scholar 

  • Plessl M, Rigola D, Hassinen VH, Tervahauta A, Kärenlampi S, Schat H, Aarts MG, Ernst D (2010) Comparison of two ecotypes of the metal hyperaccumulator Thlaspi caerulescens (J & C PRESL) at the transcriptional level. Protoplasma 239:81–93

    PubMed  Google Scholar 

  • Prasad MNV, Freitas HMO (2003) Metal hyperaccumulation in plants biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:285–321

    Google Scholar 

  • Przemeck E, Haase NU (1991) On the bonding of manganese, copper and cadmium to peptides of the xylem sap of plant roots. Water Air Soil Pollut 57(1):569–577

    Google Scholar 

  • Puschenreiter M, Wittstock F, Friesl-Hanl W, Wenzel WW (2013) Predictability of the Zn and Cd phytoextraction efficiency of a Salix smithiana clone by DGT and conventional bioavailability assays. Plant Soil 369(1–2):531–541

    CAS  Google Scholar 

  • Qiu Z, Tan H, Zhou S, Cao L (2014) Enhanced phytoremediation of toxic metals by inoculating endophytic Enterobacter sp. CBSB1 expressing bifunctional glutathione synthase. J Haz Mat 267:17–20

    CAS  Google Scholar 

  • Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotech 8(2):221–226

    CAS  PubMed  Google Scholar 

  • Rawat K, Fulekar MH, Pathak B (2012) Rhizofiltration: a green technology for remediation of heavy metals. Intl J Inno Biosci 2(4):193–199

    Google Scholar 

  • Robinson NJ, Tommey AM, Kuske C, Jackson PJ (1993) Plant metallothioneins. Biochem 295:1–10

    CAS  Google Scholar 

  • Römheld V (1991) The role of phytosiderophores in acquisition of iron and other micronutrients in graminaceous species: an ecological approach. Plant Soil 130(1–2):127–134

    Google Scholar 

  • Rugh CL, Wilde HD, Stack NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci U S A 93:3182–3187

    PubMed Central  CAS  PubMed  Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995a) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biol Technol 13(5):468–474

    CAS  Google Scholar 

  • Salt DE, Prince RC, Pickering IJ, Raskin I (1995b) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1427–1433

    PubMed Central  CAS  PubMed  Google Scholar 

  • San Miguel A, Ravanel P, Raveton M (2013) A comparative study on the uptake and translocation of organochlorines by Phragmites australis. J Haz Mat 244:60–69

    Google Scholar 

  • Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:318–323

    Google Scholar 

  • Seaward MRD, Richardson DHS (1990) Atmospheric sources of metal pollution and effects on vegetation. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Florida, pp 75–92

    Google Scholar 

  • Sebastian A, Prasad MNV (2014) Photosynthesis mediated decrease in cadmium translocation protect shoot growth of Oryza sativa seedlings up on ammonium phosphate–sulfur fertilization. Environ Sci Poll Res 21(2):986–997

    CAS  Google Scholar 

  • Senden MHMN, Van der Meer AJGM, Verburg TG, Wolterbeek HT (1995) Citric acid in tomato plant roots and its effect on cadmium uptake and distribution. Plant Soil 171(2):333–339

    CAS  Google Scholar 

  • Sheng XF, Xia JJ (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64:1036–1042

    CAS  PubMed  Google Scholar 

  • Shim D, Kim S, Choi YI, Song WY, Park J, Youk ES, Jeong SC, Martinoia E, Noh EW, Lee Y (2013) Transgenic poplar trees expressing yeast cadmium factor 1 exhibit the characteristics necessary for the phytoremediation of mine tailing soil. Chemosphere 90(4):1478–1486

    CAS  PubMed  Google Scholar 

  • Simmons RW, Chaney RL, Angle JS, Kruatrachue M, Klinphoklap S, Reeves RD, Bellamy P (2014) Towards practical cadmium phytoextraction with Noccaea caerulescens. Int J Phytore. doi:10.1080/15226514.2013.876961

    Google Scholar 

  • Singh NK, Rai UN, Verma DK, Rathore G (2014) Kocuria flava induced growth and chromium accumulation in Cicer Arietinum L. Intl J Phytor 16(1):14–28

    CAS  Google Scholar 

  • Soleimani M, Akbar S, Hajabbasi MA (2011) Enhancing phytoremediation efficiency in response to environmental pollution stress. In: Vasanthaiah, HKN and Kambiranda, D Plants and Environment, InTech, Rijeka, Croatia. pp 1–14

    Google Scholar 

  • Soudek P, Šárka Petrová S, Vaněk T (2012) Phytostabilization or accumulation of heavy metals by using of energy crop Sorghum sp. 3rd international conference on biology, environment and chemistry IPCBEE. IACSIT Press, Singapore

    Google Scholar 

  • Srivastava S (2007) Phytoremediation of heavy metal contaminated soils. J Dept Appl Sci Hum 6:95–97

    Google Scholar 

  • Sunkar R, Kaplan B, Bouche N, Arazi T, Dolev D, Talke IN, Frans JM, Maathuis FJM, Sanders D, Bouchez D, Fromm H (2000) Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confer Pb2+ tolerance. Plant J 24(4):533–542

    CAS  PubMed  Google Scholar 

  • Tandy S, Schulin R, Nowack B (2006) The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers. Chemosphere 62(9):1454–1463

    CAS  PubMed  Google Scholar 

  • Terry N, Banuelos GS (2000) Phytoremediation of contaminated soil and water. Lewis, Boca Raton, FL, p 389

    Google Scholar 

  • Thayaparan M, Iqbal SS, Chathuranga PKD, Iqbal MCM (2013) Rhizofiltration of Pb by Azolla pinnata. Intl J Environ Sci 3(6)

    Google Scholar 

  • Thomas JC, Davies EC, Malick FK, Endreszl C, Williams CR, Abbas M, Petrella S, Swisher K, Perron M, Edwards R, Ostenkowski P, Urbanczyk N, Wiesend WN, Murray KS (2003) Yeast metallothionein in transgenic tobacco promotes copper uptake from contaminated soils. Biotechnol Prog 19(2):273–280

    CAS  PubMed  Google Scholar 

  • Trotta A, Falaschi P, Cornara L, Mingati V, Fusconi A, Drava G, Berta G (2006) Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L. Chemosphere 65:74–81

    CAS  PubMed  Google Scholar 

  • Tu C, Ma LQ, Bondada B (2002) Arsenic accumulation in the hyperaccumulator Chinese brake and its utilization potential for phytoremediation. J Environ Qual 31:1671–1675

    CAS  PubMed  Google Scholar 

  • Ukiwe LN, Egereonu UU, Njoku PC, Nwoko CI (2013) Combined chemical and water hyacinth (Eichhornia crassipes) treatment of PAHs contaminated soil. Intl J Sci Eng Res 4:1–12

    Google Scholar 

  • van de Mortel JE, Villanueva LA, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, van Themaat EVL, Koornneef M, Aarts MG (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142(3):1127–1147

    PubMed Central  PubMed  Google Scholar 

  • Vandenhove H, Van Hees M, Van Winkel S (2001) Feasibility of phytoextraction to clean up low-level uranium-contaminated soil. Int J Phytoremediation 3:301–320

    CAS  Google Scholar 

  • Venkatesan S, Kirithika M, Rajapriya R, Ganesan R, Muthuchelian K (2011) Improvement of economic Phytoremediation with heavy metal tolerant Rhizosphere Bacteria. Intl J Environ Sci 1(7):1864–1873

    CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opinion Plant Biol 12:364–372

    CAS  Google Scholar 

  • Veselý T, Tlustoš P, Száková J (2011) The use of water lettuce (Pistia stratiotes L.) for rhizofiltration of a highly polluted solution by cadmium and lead. Intl J Phytorem 13(9):859–872

    Google Scholar 

  • Veselý T, Trakal L, Neuberg M, Száková J, Drábek O, Tejnecký V, Balíková M, Tlustoš P (2012) Removal of Al, Fe and Mn by Pistia stratiotes L. and its stress response. Cent Euro J Biol 7(6):1037–1045

    Google Scholar 

  • Vishnoi SR, Srivastava PN (2007) Phytoremediation-green for environmental clean. In: Proceedings of Taal2007: the 12th World lake conference 1016:1021

    Google Scholar 

  • Vivas A, Vörös I, Biro B, Campos E, Barea JM, Azcon R (2003) Symbiotic efficiency of autochthonous arbuscular mycorrhizal fungus (G. mosseae) and Brevibacillus sp. isolated from cadmium polluted soil under increasing cadmium levels. Environ Pollut 126:179–189

    CAS  PubMed  Google Scholar 

  • Walsh PR, Duce RA, Finishing JI (1979) Consideration of the enrichment, sources, and flux of arsenic in the troposphere. J Geophys Res 84:1719–1726

    CAS  Google Scholar 

  • Wang F, Zhao L, Shen Y, Meng H, Xiang X, Cheng H, Luo Y (2013) Analysis of heavy metal contents and source tracing in organic fertilizer from livestock manure in North China. Trans Chin Soc Agric Eng 29(19):202–208

    CAS  Google Scholar 

  • Welch RM, Norvell WA, Schaefer SC, Shaff JE, Kochian LV (1993) Induction of iron (III) reduction in pea (Pisum sativim L.) roots by Fe and Cu status: does the root-cell plasmalemma Fe(III) – chelate reductase perform a general role in regulating cation uptake? Planta 190:555–561

    CAS  Google Scholar 

  • Wenzel W, Jockwer F (1999) Accumulation of heavy metals in plants grown on mineralised soils of the Austrian Alps. Environ Pollut 104:145–155

    CAS  Google Scholar 

  • Weyens N, Gielen M, Beckers B, Boulet J, Lelie D, Taghavi S, Carleer R, Vangronsveld J (2014) Bacteria associated with yellow lupine grown on a metal‐contaminated soil: in vitro screening and in vivo evaluation for their potential to enhance Cd phytoextraction. Plant Biol (Stuttg) 16(5):988–996

    CAS  Google Scholar 

  • Wiseman CL, Zereini F, Püttmann W (2014) Metal translocation patterns in Solanum melongena grown in close proximity to traffic. Environ Sci Poll Res 21(2):1572–1581

    CAS  Google Scholar 

  • Xue L, Liu J, Shi S, Wei Y, Chang E, Gao M, Chen L, Jiang Z (2014) Uptake of heavy metals by native herbaceous plants in an antimony mine (Hunan, China). Clean Soil Air Water 42(1):81–87

    CAS  Google Scholar 

  • Yadav BK, Siebel MA, van Bruggen JJ (2011) Rhizofiltration of a heavy metal (lead) containing wastewater using the wetland plant Carex pendula. Clean Soil Air Water 39(5):467–474

    CAS  Google Scholar 

  • Young RA (2005) Toxicity profiles: toxicity summary for cadmium, risk assessment information system, RAIS, University of Tennessee

    Google Scholar 

  • Zaier H, Ghnaya T, Rejeb KB, Lakhdar SR, Jemal F (2010) Effects of EDTA on phytoextraction of heavy metals (Zn, Mn and Pb) from sludge-amended soil with Brassica napus. Biores Technol 101(11):3978–3983

    CAS  Google Scholar 

  • Zhai G, Walters KS, Peate DW, Alvarez PJ, Schnoor JL (2014) Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar. Environ Sci Tech Lett 1(2):146–151

    Google Scholar 

  • Zhang BZ, Wu ZB, Feng ZH (2011) Study on phytodegradation of Bisphenol A by Hydrilla verticillata & Myriophyllum verticillatum. J Huaihai Inst Tech 2:025

    Google Scholar 

  • Zhang Y, Liu J, Zhou Y, Gong T, Wang J, Ge Y (2013) Enhanced phytoremediation of mixed heavy metal (mercury)-organic pollutants (trichloroethylene) with transgenic alfalfa co-expressing glutathione S-transferase and human P450 2E1. J Haz Mat 260:1100–1107

    CAS  Google Scholar 

  • Zhou ML, Tang YX, Wu YM (2013) Plant hairy roots for remediation of aqueous pollutants. Plant Mol Biol Rep 31(1):1–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Rani Santal Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Singh, N.P., Santal, A.R. (2015). Phytoremediation of Heavy Metals: The Use of Green Approaches to Clean the Environment. In: Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-10969-5_10

Download citation

Publish with us

Policies and ethics