Skip to main content

Efficient Proofs of Secure Erasure

  • Conference paper
Security and Cryptography for Networks (SCN 2014)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8642))

Included in the following conference series:

Abstract

A proof of secure erasure (PoSE) enables a space restricted prover to convince a verifier that he has erased his memory of size S. So far the only known PoSEs have linear communication complexity in S or quadratic computation complexity in S, hence their applicability is limited, since Θ(S) communication or Θ(S 2) computation can be quite impractical (e.g., for devices with S memory words when S is in the order of GB’s). In this work we put forth two new PoSEs that for the first time achieve sublinear communication and quasilinear computation complexity hence they are more efficient than what was previously known. Efficiency comes at the price of slightly more relaxed security guarantees that we describe and motivate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Capalbo, M.R.: Noga Alon and Michael R. Capalbo. Smaller explicit superconcentrators. Internet Mathematics 1(2), 151–163 (2003)

    Article  MathSciNet  Google Scholar 

  2. Ateniese, G., Bonacina, I., Faonio, A., Galesi, N.: Proofs of space: When space is of the essence. Cryptology ePrint Archive, Report 2013/805 (2013), http://eprint.iacr.org/

  3. Castelluccia, C., Francillon, A., Perito, D., Soriente, C.: On the difficulty of software-based attestation of embedded devices. In: ACM Conference on Computer and Communications Security, pp. 400–409 (2009)

    Google Scholar 

  4. De, A., Trevisan, L., Tulsiani, M.: Time Space Tradeoffs for Attacks against One-Way Functions and PRGs. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 649–665. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Dwork, C., Naor, M.: Pricing via Processing or Combatting Junk Mail. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  6. Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K.: Proofs of space. Cryptology ePrint Archive, Report 2013/796 (2013), http://eprint.iacr.org/

  7. Dziembowski, S., Kazana, T., Wichs, D.: One-Time Computable Self-erasing Functions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 125–143. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Fiat, A., Naor, M.: Rigorous time/space trade-offs for inverting functions. SIAM J. Comput. 29(3), 790–803 (1999)

    Article  MathSciNet  Google Scholar 

  9. Martin, E.: A cryptanalytic time-memory trade-off. IEEE Transactions on Information Theory 26(4), 401–406 (1980)

    Article  MATH  Google Scholar 

  10. Horowitz, E., Sahni, S.: Computing partitions with applications to the knapsack problem. J. ACM 21(2), 277–292 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  11. Nordström, J.: New wine into old wineskins: A survey of some pebbling classics with supplemental results (2011)

    Google Scholar 

  12. Paul, W.J., Tarjan, R.E., Celoni, J.R.: Space bounds for a game of graphs. In: Chandra, A.K., Wotschke, D., Friedman, E.P., Harrison, M.A. (eds.) STOC, pp. 149–160. ACM (1976)

    Google Scholar 

  13. Perito, D., Tsudik, G.: Secure Code Update for Embedded Devices via Proofs of Secure Erasure. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 643–662. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Smith, A., Zhang, Y.: Near-linear time, leakage-resilient key evolution schemes from expander graphs. Cryptology ePrint Archive, Report 2013/864 (2013), http://eprint.iacr.org/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Karvelas, N.P., Kiayias, A. (2014). Efficient Proofs of Secure Erasure. In: Abdalla, M., De Prisco, R. (eds) Security and Cryptography for Networks. SCN 2014. Lecture Notes in Computer Science, vol 8642. Springer, Cham. https://doi.org/10.1007/978-3-319-10879-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10879-7_30

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10878-0

  • Online ISBN: 978-3-319-10879-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics