Skip to main content

Abstract

Cheese is a solid state fermentation and, in smear cheeses, the surface microflora a biofilm. Both these modes of growth have been the subject of increasing interest and renewed research. Looking at cheese from these perspectives may offer new tools and new insights. The cheese matrix is a solid state fermentation but it differs from many of the new solid state fermentations which are being developed, often aerobic fungal processes, but it shares many of the same challenges in the measurement of system parameters and spatial heterogeneity. The importance of water availability (aw) and temperature as controlling factors on both the organisms capable of growth and their performance are implicit in the cheese-making process but perhaps not as explicitly controlled and manipulated as in solid state fermentation processes. The study of biofilms is important in pathogenesis, fouling and environmental microbiology and, unlike in the laboratory and many industrial processes, most microorganisms grow in biofilms rather than as planktonic growth in suspended liquid culture. Liquid culture lends itself to sampling and the measurement of the average properties of a population whereas cells in biofilms are spatially heterogeneous and form phenotypically differentiated subpopulations in which it is challenging to measure the properties of individual cells dynamic across spatial and temporal timescales. New technological approaches in this area are making these studies tractable and throwing up surprising complexity and sophistication relevant to understanding the behaviour of microorganism in and on cheese.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aidoo KE, Hendry R, Wood BJB (1982) Solid-state fermentations. Adv Appl Microbiol 28:201–237

    Article  CAS  Google Scholar 

  • Allenby NEE, Watts CA, Homuth G, Pragai Z, Wipat A, Ward AC, Harwood CR (2006) Phosphate starvation induces the sporulation killing factor of Bacillus subtilis. J Bacteriol 188:5299–5303

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arnold JP (2005) Origin and history of beer and brewing: from prehistoric times to the beginning of brewing science and technology. BeerBooks, Cleveland

    Google Scholar 

  • Avery SV (2006) Microbial cell individuality and the underlying sources of heterogeneity. Nat Rev Microbiol 4:577–587

    Article  CAS  PubMed  Google Scholar 

  • Badel S, Bernardi T, Michaud P (2011) New perspectives for Lactobacilli exopolysaccharides. Biotechnol Adv 29:54–66

    Article  CAS  PubMed  Google Scholar 

  • Barrios-González J (2012) Solid-state fermentation: physiology of solid medium, its molecular basis and applications. Process Biochem 47:175–185

    Article  Google Scholar 

  • Battastuzzi FU, Feijao A, Hedges SB (2004) A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of the land. BMC Evol Biol 4:44

    Article  Google Scholar 

  • Beloin C, Ghigo JM (2005) Finding gene-expression patterns in bacterial biofilms. Trends Microbiol 13:16–19

    Article  CAS  PubMed  Google Scholar 

  • Bhargav S, Panda BP, Ali M, Javed S (2008) Solid-state fermentation: an overview. Chem Biochem Eng Q 22:49–70

    CAS  Google Scholar 

  • Bizzarri R, Serresi M, Luin S, Beltram F (2009) Green fluorescent protein based pH indicators for in vivo use: a review. Anal Bioanal Chem 393:1107–1122

    Article  CAS  PubMed  Google Scholar 

  • Block SS (1953) Humidity requirements for mold growth. Appl Microbiol 1:287–293

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brennan NM, Ward AC, Beresford TP, Fox PF, Goodfellow M, Cogan TM (2002) Biodiversity of the bacterial flora on the surface of a smear cheese. Appl Environ Microbiol 68:820–830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carpentier B, Cerf O (2011) Review – persistence of Listeria monocytogenes in food industry equipment and premises. Int J Food Microbiol 145:1–8

    Article  PubMed  Google Scholar 

  • Chalova VI, Kim WK, Woodward CL, Ricke SC (2007) Quantification of total and bioavailable lysine in feed protein sources by a whole-cell green fluorescent protein growth-based Escherichia coli biosensor. Appl Microbiol Biotechnol 76:91–99

    Article  CAS  PubMed  Google Scholar 

  • Chan Y, Van Nostrand JD, Zhou J, Pointing SB, Farrell RL (2013) Functional ecology of an Antarctic dry valley. Proc Natl Acad Sci USA 110:8990–8995

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coppola R, Blaiotta G, Ercolini D (2008) Dairy products. In: Cocolin L, Ercolini D (eds) Molecular techniques in the microbial ecology of fermented foods. Springer, New York, pp 31–90

    Chapter  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    Article  CAS  PubMed  Google Scholar 

  • De Freitas I, Pinon N, Thierry A, Lopez C, Maubois JL, Lortal S (2007) In depth dynamic characterisation of French PDO Cantal cheese made from raw milk. Lait 87:97–117

    Article  Google Scholar 

  • Dean MR, Berridge NJ, Mabbitt LA (1959) Microscopical observations on Cheddar cheese and curd. J Dairy Res 26:77–82

    Article  CAS  Google Scholar 

  • Demain AL, Elander RP (1999) The beta-lactam antibiotics: past, present, and future. Antonie Van Leeuwenhoek 75:5–19

    Article  CAS  PubMed  Google Scholar 

  • Didienne R, Defargues C, Callon C, Meylheuc T, Hulin S, Montel MC (2012) Characteristics of microbial biofilm on wooden vats (‘gerles’) in PDO Salers cheese. Int J Food Microbiol 156:91–101

    Article  CAS  PubMed  Google Scholar 

  • Elhanati Y, Brenner N (2012) Metabolic variability in micro-populations. PLoS One 7:e52105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    CAS  PubMed  Google Scholar 

  • Fontana C, Cappa F, Rebecchi A, Cocconcelli PS (2010) Surface microbiota analysis of Taleggio, Gorgonzola, Casera, Scimudin and Formaggio di Fossa Italian cheeses. Int J Food Microbiol 138:205–211

    Article  PubMed  Google Scholar 

  • Garcia JR, Cha HJ, Rao G, Marten MR, Bentley WE (2009) Microbial nar-GFP cell sensors reveal oxygen limitations in highly agitated and aerated laboratory-scale fomenters. Microb Cell Fact 8:6

    Article  PubMed Central  PubMed  Google Scholar 

  • Ghoshal G, Basu S, Shivhare US (2012) Solid state fermentation in food processing. Int J Food Eng 8:25

    Article  Google Scholar 

  • Glassey J (2013) Multivariate data analysis for advancing the interpretation of bioprocess measurement and monitoring data. Adv Biochem Eng Biotechnol 132:167–191

    PubMed  Google Scholar 

  • Gorbushina AA (2007) Life on the rocks. Environ Microbiol 9:1613–1631

    Article  CAS  PubMed  Google Scholar 

  • Haussler S, Fuqua C (2013) Biofilms 2013: new discoveries and significant wrinkles in a dynamic field. J Bacteriol 195:2947–2958

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Herron PM, Gage DJ, Cardon ZG (2010) Micro-scale water potential gradients visualized in soil around plant root tips using microbiosensors. Plant Cell Environ 33:199–210

    Article  CAS  PubMed  Google Scholar 

  • Irlinger F, Mounier J (2009) Microbial interactions in cheese: implications for cheese quality and safety. Curr Opin Biotechnol 20:142–148

    Article  CAS  PubMed  Google Scholar 

  • Jeanson S, Chadoeuf J, Madec MN, Aly S, Floury J, Brocklehurst TF, Lortal S (2011) Spatial distribution of bacterial colonies in a model cheese. Appl Environ Microbiol 77:1493–1500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kang I, Lee K, Yang S-J, Choi A, Kang D, Yoo Kyoung Lee YK, Jang-Cheon Cho J-C (2012) Genome sequence of “Candidatus aquiluna” sp. strain IMCC13023, a marine member of the Actinobacteria isolated from an Arctic fjord. J Bacteriol 194:3550–3551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kleerebezem M (2004) Quorum sensing control of lantibiotic production; nisin and subtilin autoregulate their own biosynthesis. Peptides 25:1405–1414

    Article  CAS  PubMed  Google Scholar 

  • Knochel S (2010) Listeria monocytogenes – not only bad but also persistent. Aust J Dairy Technol 65:50–57

    Google Scholar 

  • Larpin-Laborde S, Imran M, Bonaïti C, Bora N, Gelsomino R, Goerges S, Irlinger F, Goodfellow M, Ward AC, Vancanneyt M, Swings J, Scherer S, Guéguen M, Desmasures N (2011) Surface microbial consortia from Livarot, a French smear-ripened cheese. Can J Microbiol 57:651–660

    Article  CAS  PubMed  Google Scholar 

  • Lobacz A, Kowalik J, Tarczynska A (2013) Modeling the growth of Listeria monocytogenes in mold-ripened cheeses. J Dairy Sci 96:3449–3460

    Article  CAS  PubMed  Google Scholar 

  • Lopez C, Maillard M-B, Briard-Bion V, Camier B, Hannon JA (2006) Lipolysis during ripening of Emmental cheese considering organization of fat and preferential localization of bacteria. J Agric Food Chem 54:5855–5867

    Article  CAS  PubMed  Google Scholar 

  • Mariani C, Oulahal N, Chamba JF, Dubois-Brissonnet F, Notz E, Briandet R (2011) Inhibition of Listeria monocytogenes by resident biofilms present on wooden shelves used for cheese ripening. Food Control 22:1357–1362

    Article  CAS  Google Scholar 

  • Monnet C, Back A, Irlinger F (2012) Growth of aerobic ripening bacteria at the cheese surface is limited by the availability of iron. Appl Environ Microbiol 78:3185–3192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mounier J, Gelsomino R, Goerges S, Vancanneyt M, Vandemeulebroecke K, Hoste B, Scherer S, Swings J, Fitzgerald GF, Cogan TM (2005) Surface microflora of four smear-ripened cheeses. Appl Environ Microbiol 71:6489–6500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mounier J, Goerges S, Gelsomino R, Vancanneyt M, Vandemeulebroecke K, Hoste B, Bren-nan NM, Scherer S, Swings J, Fitzgerald GF, Cogan TM (2006) Sources of the adventitious microflora of a smear-ripened cheese. J Appl Microbiol 101:668–681

    Article  CAS  PubMed  Google Scholar 

  • Ong SA, Neilands JB (1979) Siderophores in microbially processed cheese. J Agric Food Chem 27:990–995

    Article  CAS  PubMed  Google Scholar 

  • Parker ML, Gunning PA, Macedo AC, Malcata FX, Brocklehurst TF (1998) Microstructure and distribution of micro-organisms within mature Serra cheese. J Appl Microbiol 84:523–530

    Article  CAS  PubMed  Google Scholar 

  • Potts M (1994) Desiccation tolerance of prokaryotes. Microbiol Rev 58:755–805

    CAS  PubMed Central  PubMed  Google Scholar 

  • Quigley L, O’Sullivan O, Beresford TP, Ross RP, Fitzgerald GF, Cotter PD (2012) High-throughput sequencing for detection of subpopulations of bacteria not previously associated with artisanal cheeses. Appl Environ Microbiol 78:5717–5723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rappé MS, Gordon DA, Vergin KL, Giovannoni SJ (1999) Phylogeny of actinobacteria small subunit (SSU) rRNA gene clones recovered from marine bacterioplankton. Syst Appl Microbiol 22:106–112

    Article  Google Scholar 

  • Rijnkels M (2002) Multispecies comparison of the casein gene loci and evolution of casein gene family. J Mammary Gland Biol Neoplasia 7:327–345

    Article  PubMed  Google Scholar 

  • Ruas-Madiedo P, Hugenholtz J, Zoon P (2002) An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int Dairy J 12:163–171

    Article  CAS  Google Scholar 

  • Ryssel M, Duan Z, Siegumfeldt H (2013) In situ examination of cell growth and death of Lactococcus lactis. FEMS Microbiol Lett 343:82–88

    Article  CAS  PubMed  Google Scholar 

  • Sauer K (2003) The genomics and proteomics of biofilm formation. Genome Biol 4:219

    Article  PubMed Central  PubMed  Google Scholar 

  • Scheerer S, Ortega-Morales O, Gaylarde C (2009) Microbial deterioration of stone monuments – an updated overview. Adv Appl Microbiol 66:97–139

    Article  CAS  PubMed  Google Scholar 

  • Singhania RR, Patel AK, Soccolc CR, Pandeya A (2009) Recent advances in solid-state fermentation. Biochem Eng J 44:13–18

    Article  CAS  Google Scholar 

  • Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209

    Article  CAS  PubMed  Google Scholar 

  • Veening JW, Igoshin OA, Eijlander RT, Nijland R, Hamoen LW, Kuipers OP (2008a) Transient heterogeneity in extracellular protease production by Bacillus subtilis. Mol Syst Biol 4:184

    Article  PubMed Central  PubMed  Google Scholar 

  • Veening JW, Smits WK, Kuipers OP (2008b) Bistability, epigenetics, and bet-hedging in bacteria. Annu Rev Microbiol 62:193–210

    Article  CAS  PubMed  Google Scholar 

  • Vizcaino-Caston I, Wyre C, Overton Tim W (2012) Fluorescent proteins in microbial biotechnology-new proteins and new applications. Biotechnol Lett 34:175–186

    Article  CAS  PubMed  Google Scholar 

  • Ward AC, Bora N (2008) The actinobacteria. In: Goldman E, Green LH (eds) Practical handbook of microbiology, 2nd edn. CRC Press, London, pp 375–444

    Google Scholar 

  • Warnecke F, Amann R, Pernthaler J (2004) Actinobacterial 16S rRNA genes from freshwater habitats cluster in four distinct lineages. Environ Microbiol 6:242–253

    Article  CAS  PubMed  Google Scholar 

  • Zisu B, Shah NP (2007) Texture characteristics and pizza bake properties of low-fat mozzarella cheese as influenced by pre-acidification with citric acid and use of encapsulated and ropy exopolysaccharide producing cultures. Int Dairy J 17:985–997

    Article  CAS  Google Scholar 

  • Zobell CE (1937) The influence of solid surface upon the physiological activities of bacteria in seawater. J Bacteriol 33:86

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan C. Ward .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Glassey, J., Ward, A.C. (2015). Solid State Fermentation. In: Bora, N., Dodd, C., Desmasures, N. (eds) Diversity, Dynamics and Functional Role of Actinomycetes on European Smear Ripened Cheeses. Springer, Cham. https://doi.org/10.1007/978-3-319-10464-5_10

Download citation

Publish with us

Policies and ethics