Skip to main content

The Magnetic Field Structure of Prominences from Direct and Indirect Observations

  • Chapter
  • First Online:
Solar Prominences

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 415))

Abstract

Solar prominences are fascinating and unique magnetic structures in our solar system. From all observational evidence to date, their intricate structure, dynamics and plasma parameters are apparently all derived from observable source magnetic fields on the Sun. While the processes that convert these source fields to prominence magnetic fields are not fully understood, there is a trail of observational information that gives many clues about how prominence magnetic fields are derived from or related to these source fields and maintained for various lengths of time through multiple processes, over a wide range of spatial scales. This chapter highlights that trail of observational information for two primary magnetic types with very different origins: channel prominences and coronal cloud prominences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aulanier, G., Srivastava, N., & Martin, S. F. (2000). Model prediction for an observed filament. The Astrophysical Journal, 543(1), 447–456.

    Article  ADS  Google Scholar 

  • Babcock, H. D., & Babcock, H. W. (1955). The Sun’s magnetic field, 1952–1954. The Astrophysical Journal, 121, 349.

    Article  ADS  Google Scholar 

  • Bellan, P. M. (2003). Why current-carrying magnetic flux tubes gobble up plasma and become thin as a result. Physics of Plasmas, 10, 1999–2008.

    Article  ADS  Google Scholar 

  • Berger, T. E., Shine, R. A., Slater, G. L., et~al. (2008). Hinode SOT observations of solar quiescent prominence dynamics. The Astrophysical Journal, 676, L89–L92.

    Article  ADS  Google Scholar 

  • Berger, T. E., Slater, G., Hurlburt, N., et~al. (2010). Quiescent prominence dynamics observed with the Hinode solar optical telescope. I. Turbulent upflow plumes. The Astrophysical Journal, 716, 1288–1307.

    Article  ADS  Google Scholar 

  • Chae, J., Moon, Y.-J., & Park, Y.-D. (2005). The magnetic structure of filament barbs. The Astrophysical Journal, 626(1), 574–578.

    Article  ADS  Google Scholar 

  • de Toma, G., Casini, R., Berger, T. E., Low, B. C., de Wijn, A. G., Low, B. C., Burkepile, J. T., & Balasubramaniam, K. S. (2009). Observations of large-scale dynamic bubbles in prominences. In B. Lites, M. Cheung, T. Magara, J. Mariska, & K. Reeves (Eds.), ASP conference (Vol. 415, p. 163).

    Google Scholar 

  • Engvold, O. (2014). Description and classification of Prominences. In J.-C. Vial & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 31--60). New York: Springer.

    Google Scholar 

  • Foukal, P. (1971a). Morphological relationships in the chromospheric Hα fine structure. Solar Physics, 19, 59.

    Article  ADS  Google Scholar 

  • Foukal, P. (1971b). Hα fine structure and the chromospheric field. Solar Physics, 20, 298–309.

    Article  ADS  Google Scholar 

  • Gaizauskas, V. (1998). Filament channels: Essential ingredients for filament formation (Review). In ASP conference series. (Vol. 150, pp. 257–264).

    Google Scholar 

  • Gibson, S. (2014). Coronal cavities: Observations and implications for the magnetic environment of prominences. In J.-C. Vial & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 321--351). New York: Springer.

    Google Scholar 

  • Grigoryev, V. M., & Ermakova, L. V. (1999). On the origin of solar filament magnetic fields. Astronomical and Astrophysical Transactions, 17, 355–365.

    Article  ADS  Google Scholar 

  • Habbal, S. R., Druckmüller, M., Morgan, H., Ding, A., Johnson, J., Druckmüllerová, H., Daw, A., Arndt, M. B., Dietzel, M., & Saken, J. (2011). Thermodynamics of the solar corona and evolution of the solar magnetic field as inferred from the total solar eclipse observations of 2010 July 11. The Astrophysical Journal, 734(2). article id. 120, 18 pp.

    Google Scholar 

  • Hammerschlag, R. H., Sliepen, G., Bettonvil, F. C. M., Jägers, A. P. L., Sütterlin, P., Lin, Y., Martin, S. F., Panasenco, O., & Romashets, E. P. (2013). Optical Engineering, 52(8), 081603.

    Article  ADS  Google Scholar 

  • Harvey, K. L. (1993). Doctoral Thesis, University of Utrecht.

    Google Scholar 

  • Janssens, T. (1970). Long term observations of the Hα chromospheric network. Solar Physics, 11, 222–242.

    Article  ADS  Google Scholar 

  • Kucera, T. (2014). Derivations and observations of prominences bulk motions and mass. In J.-C. Vial & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 77--99). New York: Springer.

    Google Scholar 

  • Kuckein, C., Martinez Pillet, V., Centeno, R. (2012). An active region filament studied simultaneously in the chromosphere and photosphere. I. Magnetic structure, Astronomy & Astrophysics, 539. article id. A131, 15 pp.

    Google Scholar 

  • Leighton, R. B. (1959). Observations of solar magnetic fields in plage regions. The Astrophysical Journal, 130, 366.

    Article  ADS  Google Scholar 

  • Leighton, R. B., & Simon, G. W. (1964). Velocity fields in the solar atmosphere. III. Large-scale motions, the chromospheric network, and magnetic fields. The Astrophysical Journal, 140, 1120.

    Article  ADS  Google Scholar 

  • Leighton, R. B., Noyes, R. W., & Simon, G. W. (1962). Velocity fields in the solar atmosphere. I. Preliminary report. The Astrophysical Journal, 135, 474.

    Article  ADS  Google Scholar 

  • Leroy, J.-L. (1969). Photométries comparées des émissions de l’hydrogène et de l’hélium dans les régions externes des protubérances. Solar Physics, 7, 221–237.

    Article  ADS  Google Scholar 

  • Lin, H. (1995). On the distribution of the solar magnetic fields. The Astrophysical Journal, 446, 421.

    Article  ADS  Google Scholar 

  • Lin, Y. (2004). Magnetic field topology inferred from studies of fine threads in solar filaments. PhD Thesis, Institute of Theoretical Astrophysics, University of Oslo.

    Google Scholar 

  • Lin, Y., Engvold, O., & Wiik, J. E. (2003). Counterstreaming in a large polar crown filament. Solar Physics, 216, 109–120.

    Article  ADS  Google Scholar 

  • Lin, Y., Engvold, O., Rouppe van der Voort, L., Wiik, J., & Berger, T. (2005). Thin threads of solar filaments. Solar Physics, 226, 239–254.

    Article  ADS  Google Scholar 

  • Lin, Y., Martin, S. F., & Engvold, O. (2006). Coronal cloud prominences and their association with coronal mass ejections (abstract). Bulletin of the American Astronomical Society, 38, 219.

    ADS  Google Scholar 

  • Lites, B. W., Kubo, M., Berger, T., Frank, Z., Shine, R., Tarbell, T., Title, A., Okamoto, T. J., & Otsuji, K. (2010). Emergence of helical flux and the formation of an active region filament channel. The Astrophysical Journal, 718, 474–487.

    Article  ADS  Google Scholar 

  • Litvinenko, Y. E. (1999). Photospheric magnetic reconnection and canceling magnetic features on the sun. The Astrophysical Journal, 515, 435–440.

    Article  ADS  Google Scholar 

  • Litvinenko, Y. E. (2010). Evolution of the axial magnetic field in solar filament channels. The Astrophysical Journal, 720, 948–952.

    Article  ADS  Google Scholar 

  • Litvinenko, Y. E., & Martin, S. F. (1999). Magnetic reconnection as the cause of a photospheric canceling feature and mass flows in a filament. Solar Physics, 190, 45.

    Article  ADS  Google Scholar 

  • Litvinenko, Y., Chae, J., & Park, S.-Y. (2007). Flux pile-up magnetic reconnection in the solar photosphere. The Astrophysical Journal, 662, 1302–1308.

    Article  ADS  Google Scholar 

  • Liu, W., Berger, T. E., & Low, B. C. (2012). First SDO/AIA observation of solar prominence formation following an eruption: Magnetic dips and sustained condensation and drainage. The Astrophysical Journal Letters, 745, L21. 8 pp.

    Article  ADS  Google Scholar 

  • Liu, W., Berger, T. E., & Low, B. C. (2014). Coronal condensation in funnel prominences as return flows of the chromosphere–corona mass cycle. In IAU symposium (Vol. 300, pp. 441–442).

    Google Scholar 

  • Livi, S. H. B., Wang, J., & Martin, S. F. (1985). The cancellation of magnetic flux I – On the quiet Sun. Australian Journal of Physics, 38, 855.

    Article  ADS  Google Scholar 

  • Low, B. C. (1994). Coronal mass ejections and magnetic. Phenomena and solar wind consequences, ESA 373 (p. 123).

    Google Scholar 

  • Mackay, D. H., Gaizauskas, V., & Yeates, A. R. (2008). Where do solar filaments form?: Consequences for theoretical models. Solar Physics, 248, 51–65.

    Article  ADS  Google Scholar 

  • Mackay, D. H., Gaizauskas, V., & Yeates, A. R. (2014). Where do solar filaments form? Nature of prominences and their role in space weather. In B. Schmieder, J.-M. Malherbe, & S. T. Wu (Eds.), IAU symposium (Vol. 300, pp. 445–446).

    Google Scholar 

  • Martin, S. F. (1990). Conditions for the formation of prominences as inferred from optical observations. In Dynamics of solar prominences, IAU Colloquium at Hvar, Yugoslavia (Lecture notes in physics, p. 1). Berlin: Springer.

    Google Scholar 

  • Martin, S. F. (1998a). In D. Webb, D.M. Rust, & G. Schmieder (Eds.), IAU Colloquium 167, ASP Conf. Series (Vol. 150, p. 419)

    Google Scholar 

  • Martin, S. F. (1998b). Conditions for the formation and maintenance of filaments (invited review). Solar Physics, 182, 107–137.

    Article  ADS  Google Scholar 

  • Martin, S. F., & Echols, C. R. (1994). An observational and conceptual model of the magnetic field of a filament. In R. J. Rutten & C. J. Schrijver (Eds.), Solar surface magnetism (pp. 339–346). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Martin, S. F., & McAllister, A. H. (1996). The skew of X-ray coronal loops overlying H α Filaments. In Y. Uchida, T. Kosugi & H. S. Hudson (Eds.), Magnetodynamic phenomea in the solar atmosphere: Prototypes of stellar magnetic activity (p. 497). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Martin, S. F., & Panasenco, O. (2010). On dynamical properties of filament channels. Memorie della Societa Astronomica Italiana, 81, 662.

    ADS  Google Scholar 

  • Martin, S. F., Panasenco, O., Berger, M. A., Engvold, O., Lin, Y., Pevtsov, A. A., & Srivastava, N. (2012). The Build-Up to Eruptive Solar Events Viewed as the Development of Chiral Systems, The Second ATST-EAST Meeting: Magnetic Fields from the Photosphere to the Corona. In T. Rimmele, A. Tritschler, F. Woger, V. Collados, H. Socos-Navarro, R. Schlichenmaier, M. Carlsson, T. Berger, A. Cadavid, P. Gilbert, P. Goode & M. Knolker (Eds.), ASP Conference Proceedings. (Vol. 463, p. 157). San Francisco: Astronomical Society of the Pacific.

    Google Scholar 

  • Martin, S. F., Livi, S. H. B., & Wang, J. (1985). The cancellation of magnetic flux. II – In a decaying active region. Australian Journal of Physics, 38, 929–959.

    Article  ADS  Google Scholar 

  • Martin, S. F., Bilimoria, R., & Tracadas, P. W. (1994). Magnetic field configurations basic to filament channels and filaments. In R. J. Rutten & C. J. Schrijver (Eds.), Solar surface magnetism (p. 303). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Martin, S. F., Lin, Y., & Engvold, O. (2008). A method of resolving the 180 degree ambiguity employing the chirality of solar features. Solar Physics, 250, 31–51.

    Article  ADS  Google Scholar 

  • Metcalf, T. R., Leka, K. D., Barnes, G., Lites, B. W., Georgoulis, M. K., Pevtsov, A. A., Balasubramaniam, K. S., Gary, G. A., Jing, J., Li, J., et~al. (2006). An overview of existing algorithms for resolving the 180° ambiguity in vector magnetic fields: Quantitative tests with synthetic data. Solar Physics, 237, 267–296.

    Article  ADS  Google Scholar 

  • Okamoto, T. J., Tsuneta, S., Lites, B. W., Kubo, M., Yokoyama, T., Berger, T. E., Ichimoto, K., Katsukawa, Y., Nagata, S., Shibata, K., et~al. (2008). Emergence of a helical flux rope under an active region prominence. The Astrophysical Journal, 673, L215–L218.

    Article  ADS  Google Scholar 

  • Pevtsov, A. A., Canfield, R. C., & Zirin, H. (1996). Reconnection and helicity in a solar flare. Astrophysical Journal, 473, 533--538.

    Google Scholar 

  • Pikel’Ner, S. B. (1971). Nature of the fine structure of the chromosphere. Astronomicheskii Zhurnal, 48, 1212.

    ADS  Google Scholar 

  • Rompolt, B., & Bogdan, T. (1986). On the formation of active region prominences (H αfilaments). In NASA. Goddard space flight center, coronal and prominence plasmas (pp. 81–87) (SEE N87-20871 13–92).

    Google Scholar 

  • Rompolt, B. (1990). Small scale structure and dynamics of prominences. Hvar Observatory Bulletin, 14(1), 37.

    Google Scholar 

  • Rust, D. M. (1994). Spawning and shedding helical magnetic fields in the solar atmosphere. Geophysical Research Letters, 21, 241–244.

    Article  ADS  Google Scholar 

  • Sheeley, N. R., Jr., & Warren, H. P. (2012). Coronal cells. The Astrophysical Journal, 749, 40–54.

    Article  ADS  Google Scholar 

  • Sheeley, N. R., Jr., Martin, S. F., Panasenco, O., & Warren, H. P. (2013). Using coronal cells to infer the magnetic field structure and chirality of filament channels. The Astrophysical Journal, 772. article id. 88, 11 pp.

    Google Scholar 

  • Smith, S. F. (1968) The formation, structure and changes in filaments in active regions. In IAU symposium (Vol. 35, p. 267).

    Google Scholar 

  • Smith, S. F., Ramsey, H. E., & Howard, R. (1965). Some characteristic properties of solar magnetic fields. Astronomical Journal, 70, 330.

    Article  ADS  Google Scholar 

  • Su, J. T., Jing, J., Wang, H. M., Mao, X. J., Wang, X. F., Zhang, H. Q., Deng, Y. Y., Guo, J., & Wang, G. P. (2010). Observational evidence of changing photospheric vector magnetic fields associated with solar flares. The Astrophysical Journal, 721, 901.

    Article  ADS  Google Scholar 

  • Wang, Y.-M., & Muglach, K. (2007). On the formation of filament channels. The Astrophysical Journal, 666, 1284–1295.

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N. R., Jr., Howard, R. A., Cyr, O. C. S., & Simnett, G. M. (1999). Coronagraph observations of inflows during high solar activity. Geophysical Research Letters, 26, 1203–1206.

    Article  ADS  Google Scholar 

  • Wang, J., Li, W., Denker, C., Lee, C., Wang, H., Goode, P. R., McAllister, A., & Martin, S. F. (2000). Minifilament eruption on the quiet Sun. I. Observations at Hα central line. The Astrophysical Journal, 530, 1071–1084.

    Article  ADS  Google Scholar 

  • Zirin, H. (1972). Fine structure of solar magnetic fields. Solar Physics, 22, 34–48.

    Article  ADS  Google Scholar 

  • Zwaan, C. (1987). Elements and patterns in the solar magnetic field. Annual Review of Astronomy and Astrophysics, 25, 83–111.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

SFM wishes to thank all colleagues who shared the work on NSF grants AGS-0837915 and AGS-1024793 and to express appreciation for many valuable discussions related to the topic of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara F. Martin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Martin, S.F. (2015). The Magnetic Field Structure of Prominences from Direct and Indirect Observations. In: Vial, JC., Engvold, O. (eds) Solar Prominences. Astrophysics and Space Science Library, vol 415. Springer, Cham. https://doi.org/10.1007/978-3-319-10416-4_9

Download citation

Publish with us

Policies and ethics