Skip to main content

Bioreactors for Mammalian Cells

  • Chapter
  • First Online:
Animal Cell Culture

Part of the book series: Cell Engineering ((CEEN,volume 9))

Abstract

Cultivation of mammalian cells has become a routine technique. Nevertheless, design and layout of cell culture processes has to meet cell specific demands. Numerous bioreactors and cultivation systems for cell culture, either for production of biopharmaceuticals or for tissue engineering, have been developed. Due to the special characteristics of these cells specific solutions are required. Selection of a suitable type of cell culture bioreactor system and/or an appropriate operation mode (batch, fed-batch, and perfusion) is affected by technical, biological, economical and regulatory considerations. Obviously there is no single cultivation system suitable for all applications. Furthermore, to compare different bioreactor systems or operation modes experimentally for a certain application is time consuming and expensive. Therefore, selection of an appropriate bioreactor or cultivation system requires extensive knowledge and expertise. The following contribution gives an introduction to bioreactor systems and cultivation strategies applied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Absi SF, Yang LY, Thompson P, Jiang C, Kandula S, Schilling B, Shukla AA (2010) Defining process design space for monoclonal antibody cell culture. Biotechnol Bioeng 106(6):894–905

    CAS  PubMed  Google Scholar 

  • Abu-Absi NR, Kenty BM, Cuellar ME, Borys MC, Sakhamuri S, Strachan D et al (2011) Real time monitoring of multiple parameters in mammalian cell culture bioreactors using an in-line Raman spectroscopy probe. Biotechnol Bioeng 108(5):1215–1221

    CAS  PubMed  Google Scholar 

  • Abu-Absi S, Xu S, Graham H, Dalal N, Boyer M, Dave K (2014) Cell culture process operations for recombinant protein production. Adv Biochem Eng Biotechnol 139:35–68

    PubMed  Google Scholar 

  • Al-Rubeai M, Singh RP (1998) Apoptosis in cell culture. Curr Opin Biotechnol 9:152–156

    CAS  PubMed  Google Scholar 

  • Atala A (2011) Principles of regenerative medicine. Elsevier/Academic, Amsterdam

    Google Scholar 

  • Aunins JG, Henzler HJ (1993) Aeration in cell culture bioreactors. In: Rehm HJ, Reed G (eds) Biotechnology, vol 3, 2nd edn. VCH, Weinheim, pp 219–281

    Google Scholar 

  • Baptista R, Fluri DA, Zandstra PW (2013) High density continuous production of murine pluripotent cells in an acoustic perfused bioreactor at different oxygen concentrations. Biotechnol Bioeng 110(2):648–655

    CAS  PubMed  Google Scholar 

  • Baumann F (2005) Small-scale biomanufacturing benefits from disposable bioreactors. Biopharm Int 18(12):22–30

    Google Scholar 

  • Birch JR, Racher JR (2006) Antibody production. Adv Drug Deliv Rev 58:671–685

    CAS  PubMed  Google Scholar 

  • Boedeker BG (2001) Production processes of licensed recombinant factor VIII preparations. Semin Thromb Hemost 27(4):385–394

    CAS  PubMed  Google Scholar 

  • Bohak Z, Kadouri A, Sussman MV, Feldman AF (1987) Novel anchorage matrices for suspension culture of mammalian cells. Biopol 26:205–213

    Google Scholar 

  • Bonham-Carter J, Shevitz J (2011) A brief history of perfusion biomanufacturing. BioProc Int 9(9):24–31

    Google Scholar 

  • Born C, Biselli M, Wandrey C (1995) Production of monoclonal antibodies in a pilot scale fluidized bed bioreactor. In: Beuvery EC et al (eds) Animal cell technology: developments towards the 21st century. Kluwer, The Netherlands, pp 683–686

    Google Scholar 

  • BĂĽchs J, Maier U, Milbradt C, Zoels B (2000a) Power consumption in shaking flasks on rotary shaking machines: I. Power consumption measurement in unbaffled flasks at low liquid viscosity. Biotechnol Bioeng 68(6):589–593

    PubMed  Google Scholar 

  • BĂĽchs J, Maier U, Milbradt C, Zoels B (2000b) Power consumption in shaking flasks on rotary shaking machines: II. Nondimensional description of specific power consumption and flow regimes in unbaffled flasks at elevated liquid viscosity. Biotechnol Bioeng 68(6):594–601

    PubMed  Google Scholar 

  • Butler M (2004) Animal cell culture and technology – the basics. Science, Garland

    Google Scholar 

  • Butler M (2005) Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Appl Microbiol Biotechnol 68:283–291

    CAS  PubMed  Google Scholar 

  • Calderbank PH, Moo-Young MB (1961) The continuous phase heat and mass-transfer properties of dispersions. Chem Eng Sci 16:39–54

    CAS  Google Scholar 

  • Cammann K et al (2002) Chemical and biochemical sensors. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  • Catapano G, Czermak P, Eibl R, Eibl D, Pörtner R (2009) Bioreactor design and scale-up. In: Eibl R, Eibl D, Pörtner R, Catapano G, Czermak P (eds) Cell and tissue reaction engineering. Springer, Berlin

    Google Scholar 

  • Chen D (2014) Safety assurance for biologics manufactured in Mammalian cell cultures: a multitiered strategy. Adv Biochem Eng Biotechnol 139:167–183

    PubMed  Google Scholar 

  • Cherry RS (1993) Animal cells in turbulent fluids: details of the physical stimulus and the biological response. Biotechnol Adv 11:279–299

    CAS  PubMed  Google Scholar 

  • Chisti Y (2000) Animal-cell damage in sparged bioreactors. Trends Biotechnol 18:420–432

    CAS  PubMed  Google Scholar 

  • Chisti Y (2001) Hydrodynamic damage to animal cells. Crit Rev Biotechnol 21:67–110

    CAS  PubMed  Google Scholar 

  • Chmiel H (ed) (2011) Bioprozesstechnik, 3rd edn. Spektrum Akademischer Verlag/Elsevier, Heidelberg

    Google Scholar 

  • Chon JH, Zarbis-Papastoitsis G (2011) Advances in the production and downstream processing of antibodies. N Biotechnol 28(5):458–463

    CAS  PubMed  Google Scholar 

  • Chu CS, Lo YL (2008) Fiber-optic carbon dioxide sensor based on fluorinated xerogels doped with HPTS. Sens Actuators B 129:120–125

    CAS  Google Scholar 

  • Chudacek MW (1985) Impeller power numbers and impeller flow numbers in profiled bottom tanks. Ind Eng Chem Process Des Dev 24:858–867

    CAS  Google Scholar 

  • Chun C, Heineken K, Szeto D, Ryll T, Chamow S, Chung JD (2003) Application of factorial design to accelerate identification of CHO growth factor requirements. Biotechnol Prog 19(1):52–57

    CAS  PubMed  Google Scholar 

  • Clincke MF, Mölleryd C, Zhang Y, Lindskog E, Walsh K, Chotteau V (2013a) Very high density of CHO cells in perfusion by ATF or TFF in WAVE bioreactor™. Part I. Effect of the cell density on the process. Biotechnol Prog 29(3):754–767

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clincke MF, Mölleryd C, Samani PK, Lindskog E, Fäldt E, Walsh K, Chotteau V (2013b) Very high density of Chinese hamster ovary cells in perfusion by alternating tangential flow or tangential flow filtration in WAVE Bioreactor™-part II: applications for antibody production and cryopreservation. Biotechnol Prog 29(3):768–777

    CAS  PubMed Central  PubMed  Google Scholar 

  • Comer MJ, Kearns MJ, Wahl J, Munster M, Lorenz T, Szperalski B et al (1990) Industrial production of monoclonal antibodies and therapeutic proteins by dialysis fermentation. Cytotechnology 3(3):295–299

    CAS  PubMed  Google Scholar 

  • Cotter TG, Al-Rubeai M (1995) Cell death (apoptosis) in cell culture systems. Trends in Biotechnol 13:150–154

    CAS  Google Scholar 

  • Court FG, Wemyss-Holden SA, Dennison AR, Maddern GJ (2003) Bioartificial liver support devices: historical perspectives. ANZ J Surg 73(9):739–748

    PubMed  Google Scholar 

  • Czermak P, Pörtner R, Brix A (2009) Special engineering aspects. In: Eibl R, Eibl D, Pörtner R, Catapano G, Czermak P (eds) Cell and tissue reaction engineering. Springer, Berlin

    Google Scholar 

  • Davis J (2007) Hollow fibre cell culture. In: Pörtner R (ed) Animal cell biotechnol – methods and protocols. Humana, Totowa

    Google Scholar 

  • Davis JM, Hanak JA (1997) Hollow-fiber cell culture. Methods Mol Biol 75:77–89

    CAS  PubMed  Google Scholar 

  • del Val IJ, Kontoravdi C, Nagy JM (2010) Towards the implementation of quality by design to the production of therapeutic monoclonal antibodies with desired glycosylation patterns. Biotechnol Prog 26(6):1505–1527

    PubMed  Google Scholar 

  • Doyle A, Griffiths JB (1998) Laboratory procedures in biotechnology. Wiley, West Sussex

    Google Scholar 

  • Drugmand JC, Collignon F, Dubois S, Havelange N, Castillo J (2012a) Biomass sensors in iCELLis™ fixed-bed reactors: data on CHO and Vero cells. ESACT Proc 5:391–394

    Google Scholar 

  • Drugmand JC, Esteban G, Alaoui N, Jafâr N, Havelange N, Berteau O, Castillo J (2012b) On-line monitoring: animal cell cultivation in iCELLis™ fixed-bed reactor using dielectric measurements. ESACT Proc 5:395–399

    Google Scholar 

  • Ducommun P, Bolzonella I, Rhiel M, Pugeaud P, von Stockar U, Marison IW (2001) On-line determination of animal cell concentration. Biotechnol Bioeng 72:515–522

    CAS  PubMed  Google Scholar 

  • Ecker DM, Ransohoff TC (2014) Mammalian cell culture capacity for biopharmaceutical manufacturing. Adv Biochem Eng Biotechnol 139:185–225

    PubMed  Google Scholar 

  • Eibl D, Eibl R (2009a) Bioreactors for mammalian cells: general overview. In: Eibl R, Eibl D, Pörtner R, Catapano G, Czermak P (eds) Cell and tissue reaction engineering. Springer, Berlin

    Google Scholar 

  • Eibl R, Eibl D (2009b) Application of disposable bag bioreactors in tissue engineering and for the production of therapeutic agents. Adv Biochem Eng Biotechnol 112:183–207

    CAS  PubMed  Google Scholar 

  • Eibl R, Eibl D (eds) (2011a) Single-use technology in biopharmaceutical manufacture. Wiley-VCH, Weinheim, pp 34–51

    Google Scholar 

  • Eibl R, Eibl D (2011b) Single-use bioreactors:an overview. In: Eibl D, Eibl R (eds) Single-use technology in biopharmaceutical manufacture. Wiley-VCH, Weinheim, pp 34–51

    Google Scholar 

  • Eibl D, Eibl R, Pörtner R (2009) Mammalian cell culture technology: an emerging field. In: Eibl R, Eibl D, Pörtner R, Catapano G, Czermak P (eds) Cell and tissue reaction engineering. Springer, Berlin

    Google Scholar 

  • Eibl R, Kaiser S, Lombriser R, Eibl D (2010) Disposable bioreactors: the current state-of-the-art and recommended applications in biotechnology. Appl Microbiol Biotechnol 86(1):41–49

    CAS  PubMed  Google Scholar 

  • Einsele A (1978) Scaling up bioreactors. Process Biochem 7:13–14

    Google Scholar 

  • Falkenberg FW (1998) Production of monoclonal antibodies in the miniPERM bioreactor: comparison with other hybridoma culture methods. Res Immunol 149(6):560–570

    CAS  PubMed  Google Scholar 

  • Farid SS (2007) Process economics of industrial monoclonal antibody manufacture. J Chromatogr B Analyt Technol Biomed Life Sci 848(1):8–18

    CAS  PubMed  Google Scholar 

  • Fassnacht D, Pörtner R (1999) Experimental and theoretical considerations on oxygen supply for animal cell growth in fixed bed reactors. J Biotechnol 72(3):169–184

    CAS  PubMed  Google Scholar 

  • Fenge C, LĂĽllau E (2006) Cell culture bioreactors. In: Ozturk SS, Hu WS (eds) Cell culture technology for pharmaceutical and cell-based therapies. Taylor & Francis Group, New York

    Google Scholar 

  • Fisher MB, Mauck RL (2013) Tissue engineering and regenerative medicine: recent innovations and the transition to translation. Tissue Eng Part B Rev 19(1):1–13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frahm B (2014) Seed train optimization for cell culture. Methods Mol Biol 1104:355–367

    PubMed  Google Scholar 

  • Frahm B, Lane P, Märkl H, Pörtner R (2003) Improvement of a mammalian cell culture process by adaptive, model-based dialysis fed-batch cultivation and suppression of apoptosis. Bioprocess Biosyst Eng 26:1–10

    CAS  PubMed  Google Scholar 

  • Frahm B, Kirchner S, Kauling J, Brod H, Langer U, Bödeker B (2007) Dynamische Membranbegasung im Bioreaktor zur Intensivierung der Sauerstoffversorgung empfindlicher Zellinien. Chem Ing Tech 79:1052–1058

    CAS  Google Scholar 

  • Frahm B, Brod H, Langer U (2009) Improving bioreactor cultivation conditions for sensitive cell lines by dynamic membrane aeration. Cytotechnology 59(1):17–30

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frame KK, Hu WS (1991) Kinetic study of hybridoma cell growth in continuous culture. I. A model for non-producing cells. Biotechnol Bioeng 37(1):55–64

    CAS  PubMed  Google Scholar 

  • Ge X, Kostov Y, Rao G (2003) High-stability non-invasive autoclavable naked optical CO2 sensor. Biosens Bioelectron 18:857–865

    CAS  PubMed  Google Scholar 

  • Gelves R, Dietrich A, Takors R (2013) Modeling of gas-liquid mass transfer in a stirred tank bioreactor agitated by a Rushton turbine or a new pitched blade impeller. Bioprocess Biosyst Eng 37:365–375

    PubMed  Google Scholar 

  • Gnoth S, Jenzsch M, Simutis R, LĂĽbbert A (2008) Control of cultivation processes for recombinant protein production: a review. Bioprocess Biosyst Eng 31(1):21–39

    CAS  PubMed  Google Scholar 

  • Godoy-Silva R, Berdugo C, Chalmers JJ (2010) Aeration, mixing, and hydrodynamics, animal cell bioreactors. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. Wiley, Hoboken

    Google Scholar 

  • Goudar C, Biener R, Zhang C, Michaels J, Piret J, Konstantinov K (2006) Towards industrial application of quasi real-time metabolic flux analysis for mammalian cell culture. Adv Biochem Eng Biotechnol 101:99–118

    CAS  PubMed  Google Scholar 

  • Gramer P (1998) Screening tool for hollow-fiber bioreactor process development. Biotechnol Prog 14(2):203–209

    CAS  PubMed  Google Scholar 

  • Griffiths B (2000) Animal cell products, overview. In: Spier RE (ed) Enciclopedia of cell technology, vol 1. Wiley, New York, pp 70–76

    Google Scholar 

  • Hacker DL, Jesus M, Wurm FM (2009) 25 years of recombinant proteins from reactor-grown cells – where do we go from here? Biotechnol Adv 27(6):1023–1027

    CAS  PubMed  Google Scholar 

  • Hakemeyer C, Strauss U, Werz S, Jose GE, Folque F, Menezes JC (2012) At-line NIR spectroscopy as effective PAT monitoring technique in Mab cultivations during process development and manufacturing. Talanta 90:12–21

    CAS  PubMed  Google Scholar 

  • Hakemeyer C, Strauss U, Werz S, Folque F, Menezes JC (2013) Near-infrared and two-dimensional fluorescence spectroscopy monitoring of monoclonal antibody fermentation media quality: aged media decreases cell growth. Biotechnol J 8(7):835–846

    CAS  PubMed  Google Scholar 

  • Handbook GE Healthcare. http://www.promix.ru/manuf/ge/cell/cult/recom.pdf. Accessed 30 Jan 2014

  • Harigae M, Matsumura M, Kataoka H (1994) Kinetic study on HBs-MAb production in continuous cultivation. J Biotechnol 34(3):227–235

    CAS  PubMed  Google Scholar 

  • Harrison R, St-Pierre JP, Stevens M (2014) Tissue engineering and regenerative medicine: a year in review. Tissue Eng Part B Rev 20:1–16

    PubMed  Google Scholar 

  • Hartnett T (1994) Instrumentation and control of bioprocesses. In: Lydersen BK, D’Elia NA, Nelson KL (eds) Bioprocess engineering: systems, equipment, and facilities. Wiley, New York

    Google Scholar 

  • Havelange N, Marigliano M, Sainte-Marie M, Debras F, Tazir N, Castillo J (2012) Poxvirus production on chicken embryo fibroblasts in iCELLis™ disposable fixed-bed bioreactor. ESACT Proc 5:719–722

    Google Scholar 

  • Heath CH, Kiss R (2007) Cell culture process development: advances in process engineering. Biotechnol Prog 23:46–51

    CAS  PubMed  Google Scholar 

  • Heidemann R, Riese U, LĂĽtkemeyer D, BĂĽntemeyer H, Lehmann J (1994) The super-spinner: a low cost animal cell culture bioreactor for the CO2 incubator. Cytotechnology 14(1):1–9

    CAS  PubMed  Google Scholar 

  • Henzler HJ (1982) Verfahrenstechnische Auslegungsunterlagen fur RĂĽhrbehalter als Fermenter. Chem Ing Tech 54(5):461–476

    CAS  Google Scholar 

  • Henzler HJ, Kauling DJ (1993) Oxygenation of cell cultures. Bioprocess Eng 9(2–3):61–75

    CAS  Google Scholar 

  • Horvath B, Mun M, Laird MW (2010) Characterization of a monoclonal antibody cell culture production process using a quality by design approach. Mol Biotechnol 45(3):203–206

    CAS  PubMed  Google Scholar 

  • Howaldt M, Walz F, Kempken R (2011) Kultivierung von Säugetierzellen. In: Chmiel H (ed) Bioprozesstechnik. Springer, Heidelberg

    Google Scholar 

  • HĂĽbner H (2007) Cell encapsulation. In: Pörtner R (ed) Animal cell biotechnol – methods and protocols. Humana Press, Totowa

    Google Scholar 

  • Huebner H, Buchholz R (1999) Microencapsulation. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis and bioseparation. Wiley, Weinheim, pp 1785–1798

    Google Scholar 

  • Huh D, Hamilton GA, Ingber DE (2011) From 3D cell culture to organs-on-chips. Trends Cell Biol 21(12):745–754

    CAS  PubMed  Google Scholar 

  • Huh D, Torisawa Y, Hamilton GA, Kim HJ, Ingber DE (2012) Microengineered physiological biomimicry: organs-on-chips. Lab Chip 12(12):2156–2164

    CAS  PubMed  Google Scholar 

  • Huh D, Kim HJ, Fraser JP, Shea DE, Khan M, Bahinski A et al (2013) Microfabrication of human organs-on-chips. Nat Protoc 8(11):2135–2157

    CAS  PubMed  Google Scholar 

  • Jesus M, Wurm FM (2011) Manufacturing recombinant proteins in kg-ton quantities using animal cells in bioreactors. Eur J Pharm Biopharm 78(2):184–188

    PubMed  Google Scholar 

  • Jordan M, Stettler M (2014) Tools for high-throughput process and medium optimization. Methods Mol Biol 1104:77–88

    PubMed  Google Scholar 

  • Justice C, Leber J, Freimark D, Pino Grace P, Kraume M, Czermak P (2011) Online- and offline- monitoring of stem cell expansion on microcarrier. Cytotechnology 63(4):325–335

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kantardjieff A, Zhou W (2014) Mammalian cell cultures for biologics manufacturing. Adv Biochem Eng Biotechnol 139:1–9

    PubMed  Google Scholar 

  • Kasper C, van Griensven M, Pörtner R (eds) (2009) Bioreactor systems for tissue engineering, vol 112, Advances in biochemical engineering/biotechnology. Springer, Berlin

    Google Scholar 

  • Kasper C, van Griensven M, Pörtner R (eds) (2010) Strategies for stem cell expansion and differentiation. Adv Biochem Eng Biotechnol 123: 163–200

    Google Scholar 

  • Kasper C, Witte F, Pörtner R (eds) (2012) Tissue engineering III: cell-surface interactions for tissue culture. Adv Biochem Eng Biotechnol 126: XI–XII

    Google Scholar 

  • Kato Y, Hiraoka S, Tada Y, Shirai S, Ue T, Koh ST, Yamaguchi T (1995) Power-consumption of horizontally shaking vessel with circulating motion. Kagaku Kogaku Ronbunshu 21(2):365–371

    CAS  Google Scholar 

  • Kelley B (2009) Industrialization of mAb production technology: the bioprocessing industry at a crossroads. MAbs 1(5):443–452

    PubMed Central  PubMed  Google Scholar 

  • Kelly WJ (2008) Using computational fluid dynamics to characterize and improve bioreactor performance. Biotechnol Appl Biochem 49(4):225–238

    CAS  PubMed  Google Scholar 

  • Klimant I, Meyer V, KĂĽhl M (1995) Fiber-optic oxygen microsensors, a new tool in aquatic biology. Limnol Oceanogr 40:1159–1165

    CAS  Google Scholar 

  • Kompala DS, Ozturk SS (2006) Optimization of high cell density perfusion bioreactors. In: Ozturk SS, Hu WS (eds) Cell culture technology for pharmaceutical and cell-based therapies. Taylor & Francis Group, New York, pp 387–416

    Google Scholar 

  • Krahe M (2003) Biochemical engineering. Ullmann’s encyclopedia of industrial chemistry. DOI:10.1002/14356007.b04_381

  • Langfield KK, Walker HJ, Gregory LC, Federspiel MJ (2011) Manufacture of measles viruses. Methods Mol Biol 737:345–366

    CAS  PubMed  Google Scholar 

  • Langheinrich C, Nienow AW (1999) Control of pH in large scale, free suspension animal cell bioreactors: alkali addition and pH excursions. Biotechnol Bioeng 66:171–179

    CAS  PubMed  Google Scholar 

  • Le H, Kabbur S, Pollastrini L, Sun Z, Mills K, Johnson K et al (2012) Multivariate analysis of cell culture bioprocess data–lactate consumption as process indicator. J Biotechnol 162(2–3):210–223

    CAS  PubMed  Google Scholar 

  • Lehmann J, Piehl GW, Schulz R (1987) Bubble free cell culture aeration with porous moving membranes. Dev Biol Stand 66:227–240

    CAS  PubMed  Google Scholar 

  • Lemoine R, Morsi BI (2005) An algorithm for predicting the hydrodynamic and mass transfer parameters in agitated reactors. Chem Eng J 114(1–3):9–31

    CAS  Google Scholar 

  • Li F, Vijayasankaran N, Shen AY, Kiss R, Amanullah A (2010) Cell culture processes for monoclonal antibody production. MAbs 2(5):466–479

    PubMed Central  PubMed  Google Scholar 

  • Lim AC, Washbrook J, Titchener-Hooker NJ, Farid SS (2006) A computer-aided approach to compare the production economics of fed-batch and perfusion culture under uncertainty. Biotechnol Bioeng 93(4):687–697

    CAS  PubMed  Google Scholar 

  • LĂĽdemann I, Pörtner R, Schaefer C, Schick K, Ĺ rámková K, Reher K, Neumaier M, FranĂ©k F, Märkl H (1996) Improvement of the culture stability of non-anchorage-dependent animal cells grown in serum-free media through immobilization. Cytotechnology 19:111–124

    Google Scholar 

  • Lundgren B, BlĂĽml G (1998) Microcarriers in cell culture production. In: Subramanian G (ed) Bioseparation and bioprocessing, vol 2. Wiley-VCH, Weinheim, pp 165–222

    Google Scholar 

  • Ma N, Mollet M, Chalmers JJ (2006) Aeration, mixing and hydrodynamics in bioreactors. In: Ozturk SS, Hu WS (eds) Cell culture technology for pharmaceutical and cell-based therapies. Taylor & Francis Group, New York

    Google Scholar 

  • Mandenius CF, Björkman M (2012) Scale-up of cell culture bioreactors using biomechatronic design. Biotechnol J 7(8):1026–1039

    CAS  PubMed  Google Scholar 

  • Marasco DM, Gao J, Griffiths K, Froggatt C, Wang T, Wei G (2014) Development and characterization of a cell culture manufacturing process using quality by design (QbD) principles. Adv Biochem Eng Biotechnol 139:93–121

    PubMed  Google Scholar 

  • Markopoulos J, Pantuflas E (2001) Power consumption in gas-liquid contactors agitated by double-stage Rushton turbines. Chem Eng Technol 24(11):1147–1150

    CAS  Google Scholar 

  • Marks DM (2003) Equipment design considerations for large scale cell culture. Cytotechnology 42:21–33

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martens DE, End EJ, Streefland M (2014) Configuration of bioreactors. In: Pörtner R (ed) Animal cell biotechnology – methods and protocols. Bd. 1104, Humana Press, Totowa, pp 285–311

    Google Scholar 

  • Martin I, Wendt D, Heberer M (2004) The role of bioreactors in tissue engineering. Tibtech 22:80–86

    CAS  Google Scholar 

  • Marx U, Sandig V (eds) (2007) Drug testing in vitro. Wiley-VCH, Weinheim

    Google Scholar 

  • Meuwly F, Loviat F, Ruffieux PA, Bernard AR, Kadouri A, von Stockar U (2006) Oxygen supply for CHO cells immobilized on a packed-bed of Fibra-Cel disks. Biotechnol Bioeng 93(4):791–800

    CAS  PubMed  Google Scholar 

  • Meuwly F, Ruffieux PA, Kadouri A, von Stockar U (2007) Packed-bed bioreactors for mammalian cell culture: bioprocess and biomedical applications. Biotechnol Adv 25(1):45–56

    CAS  PubMed  Google Scholar 

  • Meyer U (2009) Fundamentals of tissue engineering and regenerative medicine. Springer, Berlin

    Google Scholar 

  • Modjtahedi H, Ali S, Essapen S (2012) Therapeutic application of monoclonal antibodies in cancer: advances and challenges. Br Med Bull 104:41–59

    CAS  PubMed  Google Scholar 

  • Mostafa SS, Gu X (2003) Strategies for improved dCO2 removal in largescale fed-batch cultures. Biotechnol Prog 19:45–51

    CAS  PubMed  Google Scholar 

  • Mulukutla BC, Gramer M, Hu WS (2012) On metabolic shift to lactate consumption in fed-batch culture of mammalian cells. Metab Eng 14(2):138–149

    CAS  PubMed  Google Scholar 

  • Munro TP, Mahler SM, Huang EP, Chin DY, Gray PP (2011) Bridging the gap: facilities and technologies for development of early stage therapeutic mAb candidates. MAbs 3(5):440–452

    PubMed Central  PubMed  Google Scholar 

  • Naderi H, Matin MM, Bahrami AR (2011) Review paper: critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems. J Biomater Appl 26(4):383–417

    CAS  PubMed  Google Scholar 

  • Nehring D, Czermak P, Luebben H, Vorlop J (2004) Experimental study of a ceramic microsparging aeration system in a pilot scale animal cell culture. Biotechnol Prog 20:1710–1717

    CAS  PubMed  Google Scholar 

  • Nienow AW (1990) Gas dispersion performance in fermenter operation. Chem Eng Prog 85(2):61–71

    Google Scholar 

  • Nienow AW (1996) Gas-liquid mixing studies: a comparison of Rushton turbines with some modern impellers. Trans IChemE A Chem Eng Res Des 74(A):417–423

    CAS  Google Scholar 

  • Noll TBM, Wandrey C (1997) On-line biomass monitoring of immobilised hybridoma cells by dielectrical measurements. In: Carrondo MJT, Griffiths JB, Moreira JLP (eds) Animal cell technology: from vaccine to genetic medicine. Kluwer, Dordrecht, pp 289–294

    Google Scholar 

  • OncĂĽl AA, Kalmbach A, Genzel Y, Reichl U, ThĂ©venin D (2010) Characterization of flow conditions in 2 L and 20 L wave bioreactors using computational fluid dynamics. Biotechnol Prog 26(1):101–110

    PubMed  Google Scholar 

  • Ozturk SS (1996) Engineering challenges in high density cell culture systems. Cytotechnology 22:3–16

    CAS  PubMed  Google Scholar 

  • Ozturk SS (2006) Cell culture technology – an overview. In: Ozturk SS, Hu WS (eds) Cell culture technology for pharmaceutical and cell-based therapies. Taylor & Francis Group, New York, pp 1–14

    Google Scholar 

  • Ozturk SS (2014) Equipment for large-scale mammalian cell culture. Adv Biochem Eng Biotechnol 139:69–92

    PubMed  Google Scholar 

  • Ozturk SS, Hu WS (eds) (2006) Cell culture technology for pharmaceutical and cell-based therapies. Taylor & Francis Group, New York

    Google Scholar 

  • Papoutsakis ET (1991) Fluid-mechanical damage of animal cells in bioreactors. Tibtech 9:427–437

    CAS  Google Scholar 

  • Park TH, Shuler ML (2003) Integration of cell culture and microfabrication technology. Biotechnol Prog 19(2):243–253

    CAS  PubMed  Google Scholar 

  • Pattison RN, Swamy J, Mendenhall B, Hwang C, Frohlich BT (2000) Measurement and control of dissolved carbon dioxide in mammalian cell culture processes using an in situ fiber optic chemical sensor. Biotechnol Prog 16:769–774

    CAS  PubMed  Google Scholar 

  • Pinto RCV, Medronho RA, Castilho LR (2008) Separation of CHO cells using hydrocyclones. Cytotechnology 56(1):57–67

    PubMed Central  PubMed  Google Scholar 

  • Platas OB, Jandt U, Phan LM, Villanueva ME, Schaletzky M, Rath A, Freund S, Reichl U, Skerhutt E, Scholz S, Noll T, Sandig V, Pörtner R, Zeng AP (2012) Evaluation of criteria for bioreactor comparison and operation standardisation for mammalian cell culture. Eng Life Sci 12(5):518–528

    Google Scholar 

  • Platas OB, Sandig V, Pörtner R, Zeng AP (2013) Evaluation of process parameters in shake flasks for mammalian cell culture. BMC Proc 7(Suppl 6):17

    Google Scholar 

  • Plotkin SA (2005) Vaccines: past, present and future. Nat Med 11(4):5–11

    Google Scholar 

  • Pohlscheidt M, Jacobs M, Wolf S, Thiele J, Jockwer A, Gabelsberger J et al (2013) Optimizing capacity utilization by large scale 3000 L perfusion in seed train bioreactors. Biotechnol Prog 29(1):222–229

    CAS  PubMed  Google Scholar 

  • Pollock J, Ho SV, Farid SS (2013) Fed-batch and perfusion culture processes: economic, environmental, and operational feasibility under uncertainty. Biotechnol Bioeng 110(1):206–219

    CAS  PubMed  Google Scholar 

  • Pörtner R, Märkl H (1995) Festbettreaktoren fĂĽr die Kultur tierischer Zellen. BIOforum 18:449–452

    Google Scholar 

  • Pörtner R, Märkl H (1998) Dialysis cultures. Appl Microbiol Biotechnol 50:403–414

    PubMed  Google Scholar 

  • Pörtner R, Platas Barradas OBJ (2007) Cultivation of mammalian cells in fixed bed reactors. In: Pörtner R (ed) Animal cell biotechnology – methods and protocols. Humana, Totowa

    Google Scholar 

  • Pörtner R, Schäfer T (1996) Modelling hybridoma cell growth and metabolism – a comparison of selected models and data. J Biotechnol 49:119–135

    PubMed  Google Scholar 

  • Pörtner R, Schwabe JO, Frahm B (2004) Evaluation of selected control strategies for fed-batch cultures of a hybridoma cell line. Biotechnol Appl Biochem 40:47–55

    PubMed  Google Scholar 

  • Pörtner R, Nagel-Heyer S, Goepfert C, Adamietz P, Meenen NM (2005) Bioreactor design for tissue engineering. J Biosci Bioeng 100(3):235–245

    PubMed  Google Scholar 

  • Pörtner R, Platas Barradas OBJ, Fassnacht D, Nehring D, Czermak P, Märkl H (2007) Fixed bed reactors for the cultivation of mammalian cells: design, performance and scale-up. Open Biotechnol J 1:41–46

    Google Scholar 

  • Pörtner R, Goepfert C, Wiegandt K, Janssen R, Ilinich E, Paetzhold H, Eisenbarth E, Morlock MM (2009) Technical strategies to improve tissue engineering of cartilage carrier constructs – a case study. Adv Biochem Eng Biotechnol 112:145–182

    PubMed  Google Scholar 

  • Pörtner R, Hsu HH, Goepfert C (2013) Bioreaktoren fĂĽr Knochen tissue engineering. Osteologie 22(3):188–195

    Google Scholar 

  • Qi HN, Goudar CT, Michaelis JD, Henzler HJ, Jovanovic GN, Konstantinov KB (2003) Experimental and theoretical analysis of tubular membrane aeration for mammalian cell bioreactors. Biotechnol Prog 19:1183–1189

    CAS  PubMed  Google Scholar 

  • Rader RA (2008) (Re)defining biopharmaceutical. Nat Biotechnol 26(7):743–751

    CAS  PubMed  Google Scholar 

  • Reuss M (1993) Oxygen transfer and mixing: scale-up implications. In: Rehm HJ, Reed G (eds) Biotechnology: bioprocessing, vol 3, 2nd edn. VCH Verlagsgesellschaft mbH, pp 185–217

    Google Scholar 

  • Riley M (2006) Instrumentation and process control. In: Ozturk SS, Hu WS (eds) Cell culture technology for pharmaceutical and cell-based therapies. CRC Press, Boca Raton, p 276

    Google Scholar 

  • Rodrigues ME, Costa AR, Henriques M, Azeredo J, Oliveira R (2010) Technological progresses in monoclonal antibody production systems. Biotechnol Prog 26(2):332–351

    CAS  PubMed  Google Scholar 

  • Rodrigues ME, Costa AR, Henriques M, Azeredo J, Oliveira R (2014) Evaluation of solid and porous microcarriers for cell growth and production of recombinant proteins. Methods Mol Biol 1104:137–147

    PubMed  Google Scholar 

  • Rushton JH, Costich EW, Everett HJ (1950a) Power characteristics of mixing impellers. Part I. Chem Eng Prog 46(8):395–404

    CAS  Google Scholar 

  • Rushton JH, Costich EW, Everett HJ (1950b) Power characteristics of mixing impellers. Part II. Chem Eng Prog 46(9):467–476

    CAS  Google Scholar 

  • Schneider M, Reymond F, Marison IW, von Stockar U (1995) Bubble-free oxygenation by means of hydrophobic porous membranes. Enzyme Microb Technol 17:839–847

    CAS  Google Scholar 

  • Shukla AA, Thömmes J (2010) Recent advances in large-scale production of monoclonal antibodies and related proteins. Trends Biotechnol 28(5):253–261

    CAS  PubMed  Google Scholar 

  • Sieblist C, Hägeholz O, Aehle M, Jenzsch M, Pohlscheidt M, LĂĽbbert A (2011a) Insights into large-scale cell-culture reactors: II. Gas-phase mixing and CO2 stripping. Biotechnol J 6(12):1547–1556

    CAS  PubMed  Google Scholar 

  • Sieblist C, Jenzsch M, Pohlscheidt M, LĂĽbbert A (2011b) Insights into large-scale cell-culture reactors: I. Liquid mixing and oxygen supply. Biotechnol J 6(12):1532–1546

    CAS  PubMed  Google Scholar 

  • Singh V (1999) Disposable bioreactor for cell culture using wave-induced motion. Cytotechnology 30(1/3):149–158

    CAS  PubMed Central  PubMed  Google Scholar 

  • Singh RP, Al-Rubeai M, Gregory CD, Emery AN (1994) Cell death in bioreactors: a role for apoptosis. Biotechnol Bioeng 44:720–726

    CAS  PubMed  Google Scholar 

  • Spier RE, Griffiths B (1983) An examination of the data and concepts germane to the oxygenation of cultured animal cells. Dev Biol Stand 55:81–92

    CAS  PubMed  Google Scholar 

  • Stacey GN, Davis J (2007) Medicines from animal cell culture. Wiley, Chichester

    Google Scholar 

  • Stolpe A, Toonder IJ (2013) Workshop meeting report organs-on-chips: human disease models. Lab Chip 13:3449–3470

    PubMed  Google Scholar 

  • van der Velden-de Groot CAM (1995) Microcarrier technology, present status and perspective. Cytotechnology 18:51–56

    PubMed  Google Scholar 

  • van Lier FL, van Duijnhoven GC, de Vaan MM, Vlak JM, Tramper J (1994) Continuous beta-galactosidase production in insect cells with a p10 gene based baculovirus vector in a two-stage bioreactor system. Biotechnol Prog 10:60–64

    PubMed  Google Scholar 

  • van Wezel AL (1967) Growth of cell strains and primary cells on microcarriers in homogenous culture. Nature 216:64–65

    PubMed  Google Scholar 

  • Varley J, Birch J (1999) Reactor design for large scale suspension animal cell culture. Cytotechnology 29:177–205

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vermasvuori R, Hurme M (2011) Economic comparison of diagnostic antibody production in perfusion stirred tank and in hollow fiber bioreactor processes. Biotechnol Prog 27(6):1588–1598

    CAS  PubMed  Google Scholar 

  • Vogel JH, Nguyen H, Giovannini R, Ignowski J, Garger S, Salgotra A, Tom J (2012) A new large-scale manufacturing platform for complex biopharmaceuticals. Biotechnol Bioeng 109(12):3049–3058

    CAS  PubMed  Google Scholar 

  • Voisard D, Meuwly F, Ruffieux PA, Baer G, Kadouri A (2003) Potential of cell retention techniques for large-scale high-density perfusion culture of suspended mammalian cells. Biotechnol Bioeng 82:751–765

    CAS  PubMed  Google Scholar 

  • Wagner I, Materne EM, Brincker S, SĂĽssbier U, Frädrich C, Busek M et al (2013) A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture. Lab Chip 13(18):3538–3547

    CAS  PubMed  Google Scholar 

  • Walsh G (2012) New biopharmaceuticals. BioPharm Int 25:34–38

    Google Scholar 

  • Warikoo V, Godawat R, Brower K, Jain S, Cummings D, Simons E et al (2012) Integrated continuous production of recombinant therapeutic proteins. Biotechnol Bioeng 109(12):3018–3029

    CAS  PubMed  Google Scholar 

  • Warr SRC (2014) Microbioreactors and scale-down models: growth of CHO cells using the Pall Micro24 MicroReactor system. Methods Mol Biol 1104:149–165

    PubMed  Google Scholar 

  • Weber C, Pohl S, Pörtner R, Wallrapp C, Kassem M, Geigle P, Czermak P (2007) Cultivation and differentiation of encapsulated hMSC-TERT in a disposable small-scale syringe-Like fixed bed reactor. Open Biomed Eng J 1:64–70

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weber C, Freimark D, Pörtner R, Pino-Grace P, Pohl S, Wallrapp C, Geigle P, Czermak P (2010) Expansion of human mesenchymal stem cells in a fixed-bed bioreactor system based on non-porous glass carrier – part A: inoculation, cultivation, and cell harvest procedures. Int J Artif Organs 33(8):512–525

    PubMed  Google Scholar 

  • Wendt D, Riboldi SA, Cioffi M, Martin I (2009) Bioreactors in tissue engineering: scientific challenges and clinical perspectives. Adv Biochem Eng Biotechnol 112:1–27

    CAS  PubMed  Google Scholar 

  • Wittmann C, Kim HM, John G, Heinzle E (2003) Characterization and application of an optical sensor for quantification of dissolved O2 in shake flasks. Biotechnol Lett 25:377–380

    CAS  PubMed  Google Scholar 

  • Wolfbeis OS (ed) (1991) Fiber optic chemical sensors and biosensors, vol 1 & 2. CRC, Boca Raton

    Google Scholar 

  • Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1397

    CAS  PubMed  Google Scholar 

  • Wurm FM (2005) Manufacture of recombinant biopharmaceutical proteins by cultivated mammalian cells in bioreactors. In: Knäblein J (ed) Modern biopharmaceuticals, vol 3. Wiley-VCH, Weinheim, pp 723–759

    Google Scholar 

  • Xing Z, Kenty BM, Li ZJ, Lee SS (2009) Scale-up analysis for a CHO cell culture process in large-scale bioreactors. Biotechnol Bioeng 103(4):733–746

    CAS  PubMed  Google Scholar 

  • Yang JD, Lu C, Stasny B, Henley J, Guinto W, Gonzalez C et al (2007) Fed-batch bioreactor process scale-up from 3-L to 2,500-L scale for monoclonal antibody production from cell culture. Biotechnol Bioeng 98(1):141–154

    CAS  PubMed  Google Scholar 

  • Young EWK (2013) Cells, tissues, and organs on chips: challenges and opportunities for the cancer tumor microenvironment. Integr Biol (Camb) 5(9):1096–1109

    CAS  Google Scholar 

  • Zhang H, Williams-Dalson W, Keshavarz-Moore E, Shamlou PA (2005) Computational-fluid-dynamics (CFD) analysis of mixing and gas-liquid mass transfer in shake flasks. Biotechnol Appl Biochem 41(1):1–8

    PubMed  Google Scholar 

  • Zhang H, Wang W, Quan C, Fan S (2010) Engineering considerations for process development in mammalian cell cultivation. Curr Pharm Biotechnol 11(1):103–112

    CAS  PubMed  Google Scholar 

  • Zhou JX, Tressel T, Yang X, Seewoester T (2008) Implementation of advanced technologies in commercial monoclonal antibody production. Biotechnol J 3(9–10):1185–1200

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Chapters 1, 2, 3 and 4 were summarized from “Eibl R., Eibl D., Pörtner R., Catapano G., Czermak P. (2009): Cell and Tissue Reaction Engineering, Springer” with kind permission from Springer Science + Business Media

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Pörtner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pörtner, R. (2015). Bioreactors for Mammalian Cells. In: Al-Rubeai, M. (eds) Animal Cell Culture. Cell Engineering, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-10320-4_4

Download citation

Publish with us

Policies and ethics