Skip to main content

Proteomics in Cell Culture: From Genomics to Combined ‘Omics for Cell Line Engineering and Bioprocess Development

  • Chapter
  • First Online:
Animal Cell Culture

Part of the book series: Cell Engineering ((CEEN,volume 9))

Abstract

The genetic sequencing of Chinese hamster ovary cells has initiated a systems biology era for biotechnology applications. In addition to genomics, critical ‘omics data sets also include proteomics, transcriptomics and metabolomics. Recently, the use of proteomics in cell lines for recombinant protein production has increased significantly because proteomics can track changes in protein levels for different cell lines over time, which can be advantageous for bioprocess development and optimization. Specifically, the identification of proteins that affect cell culture processes can aid efforts in media development and cell line engineering to improve growth or productivity, delay the onset of apoptosis, or utilize nutrients efficiently. Mass-spectrometry based and other proteomics methods can provide for the detection of thousands of proteins from cell culture and bioinformatics analysis serves to identify and quantify protein levels. Optimizations of sample preparations and database development, including a detailed CHO proteome now available, have improved the quantity and accuracy of identified proteins. The applications are widespread and expanding, thus suggesting numerous applications of proteomics and combined ‘omics experiments in coming years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baik JY, Lee MS, An SR, Yoon SK, Kim YH, Park HW, Lee GM (2006) Initial transcriptome and proteome analyses of low culture temperature-induced expression in CHO cells producing erythropoietin. Biotechnol Bioeng 93(2):361–371

    Article  CAS  PubMed  Google Scholar 

  • Baik JY, Joo EJ, Kim YH, Lee GM (2008) Limitations to the comparative proteomic analysis of thrombopoeitin producing Chinese hamster ovary cells treated with sodium butyrate. J Biotechnol 133(4):461–468

    Article  CAS  PubMed  Google Scholar 

  • Baik JY, Ha TK, Kim YH, Lee GM (2011) Proteomic understanding of intracellular response of recombinant Chinese hamster ovary cells adapted to grow in serum-free suspension culture. Biotechnol Prog 27(6):1680–1688

    Article  CAS  Google Scholar 

  • Baycin-Hizal D, Tabb DL, Chaerkady R, Chen L, Lewis NE, Nagarajan H, Sarkaria V, Kumar A, Wolozny D, Colao J, Jacobson E, Tian Y, O’meally RN, Krag S, Cole RN, Palsson BO, Zhang H, Betenbaugh M (2012) Proteomic analysis of Chinese hamster ovary (CHO) cells. J Proteome Res 11(11):265–5276

    Article  Google Scholar 

  • Becker J, Hackl M, Rupp O, Jakobi T, Schneider J, Szczepanowski R, Bekel T, Borth N, Goesmann A, Grillari J et al (2011) Unraveling the Chinese hamster ovary cell line transcriptome by next-generation sequencing. J Biotechnol 156(3):227–235

    Article  CAS  PubMed  Google Scholar 

  • Beckmann TF, Kramer O, Klausing S, Heinrich C, Thute T, Buntemeyer H, Hoffrogge R, Noll T (2012) Effects of high passage cultivation of CHO cells: a global analysis. Appl Microbiol Biotechnol 94(3):659–671

    Article  CAS  PubMed  Google Scholar 

  • Bonner MK, Poole DS, Xu T, Sarkeshik A, Yates Iii JR, Skop AR (2011) Mitotic spindle proteomics in Chinese hamster ovary cells. PLoS One 6(5):e20489

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brinkrolf K, Rupp O, Laux H, Kollin F, Ernst W, Linke B, Kofler R, Romand S, Hesse F, Budach WE et al (2013) Chinese hamster genome sequenced from sorted chromosomes. Nat Biotechnol 31(8):694–695

    Article  CAS  PubMed  Google Scholar 

  • Carlage T, Hincapie M, Zang L, Lyubarskaya Y, Madden H, Mhatre R, Hancock WS (2009) Proteomic profiling of a high-producing Chinese hamster ovary cell culture. Anal Chem 81(17):7357–7362

    Article  CAS  PubMed  Google Scholar 

  • Carlage T, Kshirsagar R, Zang L, Janakiraman V, Hincapie M, Lyubarskaya Y, Weiskopf A, Hancock WS (2012) Analysis of dynamic changes in the proteome of a Bcl-Xl overexpressing Chinese hamster ovary cell culture during exponential and stationary phases. Biotechnol Prog 28(3):814–823

    Article  CAS  PubMed  Google Scholar 

  • Clarke C, Henry M, Doolan P, Kelly S, Aherne S, Sanchez N, Kelly P, Kinsella P, Breen L, Madden SF, Zhang L, Leonard M, Clynes M, Meleady P, Barron N (2012) Integrated miRNA, mRNA, and protein expression analysis reveals the role of post-transcriptional regulation in controlling CHO cell growth rate. BMC Genomics 13:656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Doolan P, Meleady P, Barron N, Henry M, Gallagher R, Gammell P, Melville M, Sinacore M, Mccarthy K, Leonard M, Charlebois T, Clynes M (2010) Microarray and proteomics expression profiling identifies several candidates, including the valosin-containing protein (VCP), involved in regulating high cellular growth rate in production CHO cell lines. Biotechnol Bioeng 106(1):42–56

    CAS  PubMed  Google Scholar 

  • Dorai H, Liu S, Yao X, Wang Y, Tekindemir U, Lewis MJ, Wu S, Hancock W (2013) Proteomic analysis of bioreactor cultures of an antibody expressing CHO-GS cell line that promotes high productivity. J Proteomics Bioinformatics 6:99–108

    Article  CAS  Google Scholar 

  • Druz A, Chu C, Majors B, Santuary R, Betenbaugh M, Shiloach J (2011) A novel microRNA mmu-miR-466h affects apoptosis regulation in mammalian cells. Biotechnol Bioeng 108(7):1651–1661

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Druz A, Son YJ, Betenbaugh M, Shiloach J (2013) Stable inhibition of mmu-miR-466h-5p improves apoptosis resistance and protein production in CHO cells. Metab Eng 16:67–94

    Article  Google Scholar 

  • Fischer S, Wagner A, Kos A, Aschrafi A, Handrick R, Hannemann J, Otte K (2013) Breaking limitations of complex culture media: functional non-viral miRNA delivery into pharmaceutical production cell lines. J Biotechnol 168(4):589–600

    Article  CAS  PubMed  Google Scholar 

  • Gaj T, Guo J, Kato Y, Sirk SJ, Barbas Iii CF (2012) Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. Nat Methods 9(8):805–807

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, Scott G, Steffen D, Worley KC, Burch PE et al (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428(6982):493–521

    Article  CAS  PubMed  Google Scholar 

  • Hackl M, Jakobi T, Blom J, Doppmeier D, Brinkrolf K, Szczepanowski R, Bernhart SH, Honer Zu Siderdissen C, Bort JA, Wieser M et al (2011) Next-generation sequencing of the Chinese hamster ovary microRNA transcriptome: identification, annotation and profiling of microRNAs as targets for cellular engineering. J Biotechnol 153(1–2):62–75

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hackl M, Jadhav V, Jakobi T, Rupp O, Brinkrolf K, Goesmann A, Puhler A, Noll T, Borth N, Grillari J (2012) Computational identification of microRNA gene loci and precursor microRNA sequences in CHO cell lines. J Biotechnol 158(3):151–155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hammond S, Kaplarevic M, Borth N, Betenbaugh MJ, Lee KH (2012) Chinese hamster genome database: an online resource for the CHO community at www.CHOgenome.org. Biotechnol Bioeng 109(6):1353–1356

    Article  CAS  PubMed  Google Scholar 

  • Harsha HC, Molina H, Pandey A (2008) Quantitative proteomics using stable isotope labeling with amino acids in cell culture. Nat Protoc 3(3):505–516

    Article  CAS  PubMed  Google Scholar 

  • Hayduk EJ, Choe LH, Lee KH (2004) A two-dimensional electrophoresis map of Chinese hamster ovary cell proteins based on fluorescence staining. Electrophoresis 25(15):2545–2556

    Article  CAS  PubMed  Google Scholar 

  • Hernandez Bort JA, Hackl M, Hoflmayer H, Jadhav V, Harreither E, Kumar N, Ernst W, Grillari J, Borth N (2012) Dynamic mRNA and miRNA profiling of CHO-K1 suspension cell cultures. Biotechnol J 7(4):500–515

    Article  PubMed  Google Scholar 

  • Kang S, Ren D, Xiao G, Daris K, Buck L, Enyenihi AA, Zubarev R, Bondarenko PV, Deshpande R, (2013) Cell line profiling to improve monoclonal antibody production. Biotechnol Bioeng 111(4):748–760

    Google Scholar 

  • Kantardjieff A, Jacob NM, Yee JC, Epstein E, Kok Y, Philp R, Betenbaugh MJ, Hu W (2010) Transcriptome and proteome analysis of Chinese hamster ovary cells under low temperature and butyrate treatment. J Biotechnol 145(2):143–159

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Kim Y, Han YK, Choi HS, Kim YH, Lee GM (2011) Proteomic understanding of intracellular responses of recombinant Chinese hamster ovary cells cultivated in serum-free medium supplemented with hydrosylates. Appl Microbiol Biotechnol 89(6):1917–1928

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Kim YG, Lee GM (2012) CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl Microbiol Biotechnol 93(3):917–930

    Article  CAS  PubMed  Google Scholar 

  • Kuystermans D, Dunn MJ, Al-Rubeai M (2010) A proteomic study of cMyc improvement of CHO culture. BMC Biotechnol 10:25

    Article  PubMed Central  PubMed  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, Fitzhugh W et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921

    Article  CAS  PubMed  Google Scholar 

  • Lawrence S, Lahteenmaki R (2014) Public biotech 2013 the numbers. Nat Biotechnol 32:626–632

    Article  CAS  PubMed  Google Scholar 

  • Lee JS, Park HJ, Kim YH, Lee GM (2010) Protein reference mapping of dihydrofolate reductase-deficient CHO DG44 cell lines using 2-dimensional electrophoresis. Proteomics 10(12):2292–2302

    Article  CAS  PubMed  Google Scholar 

  • Lewis NE, Liu X, Li Y, Nagarajan H, Yerganian G, O’brien E, Bordbar A, Roth AM, Rosenbloom J, Bian C (2013) Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome. Nat Biotechnol 31(8):759–765

    Article  CAS  PubMed  Google Scholar 

  • Lim UM, Yap MG, Lim YP, Goh L, Ng SK (2013) Identification of autocrine growth factors secreted by CHO cells for applications in single-cell cloning media. J Proteome Res 12(7):3496–3510

    Article  CAS  PubMed  Google Scholar 

  • Megger DA, Pott LL, Ahrens M, Padden J, Bracht T, Kuhlmann K, Eisenacher M, Meyer HE, Sitek B (2013) Comparison of label-free and label-based strategies for proteome analysis of hepatoma cell lines. Biochim Biophys Acta 1844(5):967–976

    Google Scholar 

  • Meleady P, Doolan P, Henry M, Barron N, Keenan J, O’sullivan F, Clarke C, Gammell P, Melville M, Leonard M, Clynes M (2011) Sustained productivity in recombinant Chinese hamster ovary (CHO) cell lines: proteome analysis of the molecular basis for a process-related phenotype. BMC Biotechnol 11:78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meleady P, Gallagher M, Clarke C, Henry M, Sanchez N, Barron N, Clynes M (2012a) Impact of miR-7 over-expression on the proteome of Chinese hamster ovary cells. J Biotechnol 160(3–4):251–262

    Article  CAS  PubMed  Google Scholar 

  • Meleady P, Hoffrogge R, Henry M, Rupp O, Bort JH, Clarke C, Brinkrolf K, Kelly S, Muller B, Doolan P, Hackl M, Beckmann TF, Noll T, Grillari J, Barron N, Puhler A, Clynes M, Borth N (2012b) Utilization and evaluation of CHO-specific sequence databases for mass spectrometry based proteomics. Biotechnol Bioeng 109(6):1386–1394

    Article  CAS  PubMed  Google Scholar 

  • Mertins P, Udeshi ND, Clauser KR, Mani DR, Patel J, Ong SE, Jaffe JD, Carr SA (2012) iTRAQ labeling is superior to mTRAQ for quantitative global proteomics and phosphoproteomics. Mol Cell Proteomics 11(6):M111.014423

    Article  PubMed Central  PubMed  Google Scholar 

  • Ohsfeldt E, Huang S, Baycin-Hizal D, Kristoffersen L, Le TT, Li E, Hristova K, Betenbaugh MJ (2012) Increased expression of the integral membrane proteins EGFR and FGFR3 in anti-apoptotic Chinese hamster ovary cell lines. Biotechnol Appl Biochem 59(3):155–162

    Article  CAS  PubMed  Google Scholar 

  • Park SS, Wu WW, Zhou Y, Shen RF, Martin B, Maudsley S (2012) Effective correction of experimental errors in quantitative proteomics using stable isotope labeling by amino acids in cell culture (SILAC). J Proteomics 75(12):3720–3732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Puck TT, Cieciura SJ, Robinson A (1958) Genetics of somatic mammalian cells III Long-term cultivation of euploid cells from human and animal subjects. J Exp Med 108(6):945–956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Slade PG, Hajivandi M, Bartel CM, Gorfien SF (2012) Identifying the CHO secretome using mucin-type-O-linked glycosylation and click-chemistry. J Proteome Res 11(12):6175–6186

    CAS  PubMed  Google Scholar 

  • Tabuchi H, Sugiyama T, Tanaka S, Tainaka S (2010) Overexpression of taurine transporter in Chinese hamster ovary cells can enhance cell viability and product yield, while promoting glutamine consumption. Biotechnol Bioeng 107(6):998–1003

    Article  CAS  PubMed  Google Scholar 

  • Valente KN, Choe LH, Lenhoff AM, Lee KH (2012) Optimization of protein sample preparation for two-dimensional electrophoresis. Electrophoresis 33(13):1947–1957

    Article  CAS  PubMed  Google Scholar 

  • Valente KN, Schaefer AK, Kempton HR, Lenhoff AM, Lee KH (2014) Recovery of Chinese hamster ovary host cell proteins for proteomic analysis. Biotechnol J 9(1):87–99

    Article  CAS  PubMed  Google Scholar 

  • Van Dyk DD, Misztal DR, Wilkins MR, Mackintosh JA, Poljak A, Varnai JC, Teber E, Walsh BJ, Gray PP (2003) Identification of cellular changes associated with increased production of human growth hormone in a recombinant Chinese hamster ovary cell line. Proteomics 3(2):147–156

    Article  PubMed  Google Scholar 

  • Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420(6915):520–562

    Article  CAS  PubMed  Google Scholar 

  • Wei YC, Naderi S, Meshram M, Budman H, Scharer JM, Ingalls BP, Mcconkey BJ (2011) Proteomics analysis of Chinese hamster ovary cells undergoing apoptosis during prolonged cultivation. Cytotechnology 63(6):663–677

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wiese S, Reidegeld KA, Meyer HE, Warscheid B (2007) Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Proteomics 7(3):340–350

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6(5):359

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Nagarajan H, Lewis NE, Pan S, Cai Z, Liu X, Chen W, Xie M, Wang W, Hammond S (2011) The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat Biotechnol 29:735–741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yee JC, de Leon GM, Philp RJ, Yap M, Hu WS (2008) Genomic and proteomic exploration of CHO and hybridoma cells under sodium butyrate treatment. Biotechnol Bioeng 99(5):1186–1204

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Betenbaugh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Heffner, K., Kaas, C.S., Kumar, A., Baycin-Hizal, D., Betenbaugh, M. (2015). Proteomics in Cell Culture: From Genomics to Combined ‘Omics for Cell Line Engineering and Bioprocess Development. In: Al-Rubeai, M. (eds) Animal Cell Culture. Cell Engineering, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-10320-4_19

Download citation

Publish with us

Policies and ethics