Skip to main content

Innovative Strategies for Combating Biofilm-Based Infections

  • Chapter
  • First Online:
Biofilm-based Healthcare-associated Infections

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 831))

Abstract

Biofilms, defined as a surface attached community of bacteria embedded in a matrix of extracellular polymeric substances, are a significant global health problem, causing considerable patient morbidity and mortality and contributing to the economic burden of infectious disease. Conventional antibiotics are largely ineffective against bacteria residing with a biofilm, necessitating alternative strategies to combat biofilms. Such strategies, which either inhibit biofilm formation or disperse existing biofilms, are ideally based upon a non-microbicidal approach, which avoids placing direct evolutionary pressure on the bacteria to develop resistance. Several such approaches are discussed in this chapter and range from the design of small molecules to interfere with the bacterial communication and signaling pathways that control biofilm formation and maintenance, such as quorum sensing and two-component signal transduction systems, to macromolecular approaches to biofilm eradication such as enzymatic degradation of the biofilm matrix and the development of biofilm-specific antibodies. When combined with conventional antibiotics that are effective against planktonic bacteria, the strategies discussed here have the potential to eradicate biofilm based bacterial infections and have a significant impact upon human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham NM, Lamlertthon S, Fowler VG, Jefferson KK (2012) Chelating agents exert distinct effects on biofilm formation in Staphylococcus aureus depending on strain background: role for clumping factor B. J Med Microbiol 61(Pt 8):1062–1070

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ali F, Sangwan PL, Koul S, Pandey A, Bani S, Abdullah ST, Sharma PR, Kitchlu S, Khan IA (2012) 4-epi-pimaric acid: a phytomolecule as a potent antibacterial and anti-biofilm agent for oral cavity pathogens. Eur J Clin Microbiol 31(2):149–159

    CAS  Google Scholar 

  • Alipour M, Suntres ZE, Omri A (2009) Importance of DNase and alginate lyase for enhancing free and liposome encapsulated aminoglycoside activity against Pseudomonas aeruginosa. J Antimicrob Chemother 64(2):317–325

    CAS  PubMed  Google Scholar 

  • Alkawash MA, Soothill JS, Schiller NL (2006) Alginate lyase enhances antibiotic killing of mucoid Pseudomonas aeruginosa in biofilms. APMIS 114(2):131–138

    CAS  PubMed  Google Scholar 

  • Amara N, Mashiach R, Amar D, Krief P, Spieser SA, Bottomley MJ, Aharoni A, Meijler MM (2009) Covalent inhibition of bacterial quorum sensing. J Am Chem Soc 131(30):10610–10619

    CAS  PubMed  Google Scholar 

  • Antoniani D, Bocci P, Maciag A, Raffaelli N, Landini P (2010) Monitoring of diguanylate cyclase activity and of cyclic-di-GMP biosynthesis by whole-cell assays suitable for high-throughput screening of biofilm inhibitors. Appl Microbiol Biotechnol 85(4):1095–1104

    CAS  PubMed  Google Scholar 

  • Augustine N, Goel AK, Sivakumar KC, Ajay Kumar R, Thomas S (2014) Resveratrol – a potential inhibitor of biofilm formation in Vibrio cholerae. Phytomedicine 21(3):286–289

    CAS  PubMed  Google Scholar 

  • Banin E, Brady KM, Greenberg EP (2006) Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm. Appl Environ Microbiol 72(3):2064–2069

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bayer AS, Park S, Ramos MC, Nast CC, Eftekhar F, Schiller NL (1992) Effects of alginase on the natural history and antibiotic therapy of experimental endocarditis caused by mucoid Pseudomonas aeruginosa. Infect Immun 60(10):3979–3985

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bjarnsholt T, Jensen PO, Rasmussen TB, Christophersen L, Calum H, Hentzer M, Hougen HP, Rygaard J, Moser C, Eberl L, Hoiby N, Givskov K (2005) Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology 151:3873–3880

    CAS  PubMed  Google Scholar 

  • Boles BR, Horswill AR (2008) Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog 4(4):e1000052. doi:10.1371/journal.ppat.1000052

    PubMed Central  PubMed  Google Scholar 

  • Bordi C, de Bentzmann S (2011) Hacking into bacterial biofilms: a new therapeutic challenge. Ann Intensive Care 1(1):19

    PubMed Central  PubMed  Google Scholar 

  • Brackman G, Celen S, Baruah K, Bossier P, Van Calenbergh S, Nelis HJ, Coenye T (2009) AI-2 quorum-sensing inhibitors affect the starvation response and reduce virulence in several Vibrio species, most likely by interfering with LuxPQ. Microbiology 155(Pt 12):4114–4122

    CAS  PubMed  Google Scholar 

  • Braekman JC, Daloze D, Stoller C, Vansoest RWM (1992) Chemotaxonomy of Agelas (Porifera, Demospongiae). Biochem Syst Ecol 20(5):417–431. doi:10.1016/0305-1978(92)90082-O

    CAS  Google Scholar 

  • Bunders CA, Richards JJ, Melander C (2010) Identification of aryl 2-aminoimidazoles as biofilm inhibitors in Gram-negative bacteria. Bioorg Med Chem Lett 20(12):3797–3800

    CAS  PubMed  Google Scholar 

  • Bunders C, Cavanagh J, Melander C (2011a) Flustramine inspired synthesis and biological evaluation of pyrroloindoline triazole amides as novel inhibitors of bacterial biofilms. Org Biomol Chem 9(15):5476–5481

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bunders CA, Minvielle MJ, Worthington RJ, Ortiz M, Cavanagh J, Melander C (2011b) Intercepting bacterial indole signaling with flustramine derivatives. J Am Chem Soc 133(50):20160–20163

    CAS  PubMed Central  PubMed  Google Scholar 

  • Camilli A, Bassler BL (2006) Bacterial small-molecule signaling pathways. Science 311(5764):1113–1116

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chan WC, Coyle BJ, Williams P (2004) Virulence regulation and quorum sensing in staphylococcal infections: competitive AgrC antagonists as quorum sensing inhibitors. J Med Chem 47(19):4633–4641

    CAS  PubMed  Google Scholar 

  • Coates AR, Hu Y (2008) Targeting non-multiplying organisms as a way to develop novel antimicrobials. Trends Pharmacol Sci 29(3):143–150

    CAS  PubMed  Google Scholar 

  • Darouiche RO, Mansouri MD, Gawande PV, Madhyastha S (2009) Antimicrobial and antibiofilm efficacy of triclosan and DispersinB combination. J Antimicrob Chemother 64(1):88–93

    CAS  PubMed  Google Scholar 

  • Davey ME, O’Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64(4):847–867

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2(2):114–122

    CAS  PubMed  Google Scholar 

  • Davies DG, Marques CNH (2009) A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol 191(5):1393–1403

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280(5361):295–298

    CAS  PubMed  Google Scholar 

  • Digiandomenico A, Warrener P, Hamilton M, Guillard S, Ravn P, Minter R, Camara MM, Venkatraman V, Macgill RS, Lin J, Wang Q, Keller AE, Bonnell JC, Tomich M, Jermutus L, McCarthy MP, Melnick DA, Suzich JA, Stover CK (2012) Identification of broadly protective human antibodies to Pseudomonas aeruginosa exopolysaccharide Psl by phenotypic screening. J Exp Med 209(7):1273–1287

    CAS  PubMed Central  PubMed  Google Scholar 

  • Donelli G, Francolini I, Romoli D, Guaglianone E, Piozzi A, Ragunath C, Kaplan JB (2007) Synergistic activity of dispersin B and cefamandole nafate in inhibition of staphylococcal biofilm growth on polyurethanes. Antimicrob Agents Chemother 51(8):2733–2740

    CAS  PubMed Central  PubMed  Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15(2):167–193

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dow JM, Crossman L, Findlay K, He YQ, Feng JX, Tang JL (2003) Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc Natl Acad Sci U S A 100(19):10995–11000

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eguchi Y, Kubo N, Matsunaga H, Igarashi M, Utsumi R (2011) Development of an antivirulence drug against Streptococcus mutans: repression of biofilm formation, acid tolerance, and competence by a histidine kinase inhibitor, walkmycin C. Antimicrob Agents Chemother 55(4):1475–1484

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ermolat’ev DS, Bariwal JB, Steenackers HP, De Keersmaecker SC, Van der Eycken EV (2010) Concise and diversity-oriented route toward polysubstituted 2-aminoimidazole alkaloids and their analogues. Angew Chem Int Ed Engl 49(49):9465–9468. doi:10.1002/anie.201004256

    PubMed  Google Scholar 

  • Finch RG, Pritchard DI, Bycroft BW, Williams P, Stewart GS (1998) Quorum sensing: a novel target for anti-infective therapy. J Antimicrob Chemother 42(5):569–571

    CAS  PubMed  Google Scholar 

  • Flemming HC, Neu TR, Wozniak DJ (2007) The EPS matrix: the “house of biofilm cells”. J Bacteriol 189(22):7945–7947. doi:10.1128/JB.00858-07

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fowler SA, Stacy DM, Blackwell HE (2008) Design and synthesis of macrocyclic peptomers as mimics of a quorum sensing signal from Staphylococcus aureus. Org Lett 10(12):2329–2332

    CAS  PubMed  Google Scholar 

  • Frederiksen B, Pressler T, Hansen A, Koch C, Hoiby N (2006) Effect of aerosolized rhDNase (Pulmozyme) on pulmonary colonization in patients with cystic fibrosis. Acta Paediatr 95(9):1070–1074

    PubMed  Google Scholar 

  • Frei R, Breitbach AS, Blackwell HE (2012) 2-Aminobenzimidazole derivatives strongly inhibit and disperse Pseudomonas aeruginosa biofilms. Angew Chem Int Ed Engl 51(21):5226–5229

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fux CA, Stoodley P, Hall-Stoodley L, Costerton JW (2003) Bacterial biofilms: a diagnostic and therapeutic challenge. Expert Rev Anti Infect Ther 1(4):667–683

    PubMed  Google Scholar 

  • Geske GD, Wezeman RJ, Siegel AP, Blackwell HE (2005) Small molecule inhibitors of bacterial quorum sensing and biofilm formation. J Am Chem Soc 127(37):12762–12763

    CAS  PubMed  Google Scholar 

  • Giacometti A, Cirioni O, Gov Y, Ghiselli R, Del Prete MS, Mocchegiani F, Saba V, Orlando F, Scalise G, Balaban N, Dell’Acqua G (2003) RNA III inhibiting peptide inhibits in vivo biofilm formation by drug-resistant Staphylococcus aureus. Antimicrob Agents Chemother 47(6):1979–1983

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gotoh Y, Eguchi Y, Watanabe T, Okamoto S, Doi A, Utsumi R (2010) Two-component signal transduction as potential drug targets in pathogenic bacteria. Curr Opin Microbiol 13(2):232–239

    CAS  PubMed  Google Scholar 

  • Gutierrez JA, Crowder T, Rinaldo-Matthis A, Ho MC, Almo SC, Schramm VL (2009) Transition state analogs of 5′-methylthioadenosine nucleosidase disrupt quorum sensing. Nat Chem Biol 5(4):251–257

    CAS  PubMed Central  PubMed  Google Scholar 

  • Han Y, Hou S, Simon KA, Ren D, Luk YY (2008) Identifying the important structural elements of brominated furanones for inhibiting biofilm formation by Escherichia coli. Bioorg Med Chem Lett 18(3):1006–1010

    CAS  PubMed  Google Scholar 

  • Hausner M, Wuertz S (1999) High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Appl Environ Microbiol 65(8):3710–3713

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hentzer M, Givskov M (2003) Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J Clin Invest 112(9):1300–1307

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hentzer M, Riedel K, Rasmussen TB, Heydorn A, Andersen JB, Parsek MR, Rice SA, Eberl L, Molin S, Hoiby N, Kjelleberg S, Givskov M (2002) Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148:87–102

    CAS  PubMed  Google Scholar 

  • Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, Kumar N, Schembri MA, Song ZJ, Kristoffersen P, Manefield M, Costerton JW, Molin S, Eberl L, Steinberg P, Kjelleberg S, Hoiby N, Givskov M (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. Embo J 22(15):3803–3815

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hertiani T, Edrada-Ebel R, Ortlepp S, van Soest RW, de Voogd NJ, Wray V, Hentschel U, Kozytska S, Muller WE, Proksch P (2010) From anti-fouling to biofilm inhibition: new cytotoxic secondary metabolites from two Indonesian Agelas sponges. Bioorg Med Chem 18(3):1297–1311

    CAS  PubMed  Google Scholar 

  • Hochbaum AI, Kolodkin-Gal I, Foulston L, Kolter R, Aizenberg J, Losick R (2011) Inhibitory effects of D-amino acids on Staphylococcus aureus biofilm development. J Bacteriol 193(20):5616–5622

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010a) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35(4):322–332. doi:10.1016/j.ijantimicag.2009.12.011

    PubMed  Google Scholar 

  • Hoiby N, Ciofu O, Bjarnsholt T (2010b) Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol 5(11):1663–1674

    CAS  PubMed  Google Scholar 

  • Huigens RW, Richards JJ, Parise G, Ballard TE, Zeng W, Deora R, Melander C (2007) Inhibition of Pseudomonas aeruginosa biofilm formation with bromoageliferin analogues. J Am Chem Soc 129(22):6966–6967

    CAS  PubMed  Google Scholar 

  • Huigens RW, Ma L, Gambino C, Basso A, Moeller PDR, Cavanagh J, Wozniak DJ, Melander C (2008) Control of bacterial biofilms with marine alkaloid derivatives. Mol Biosyst 4(6):614–621

    CAS  PubMed  Google Scholar 

  • Hurdle JG, O’Neill AJ, Chopra I, Lee RE (2011) Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections. Nat Rev Microbiol 9(1):62–75

    CAS  PubMed Central  PubMed  Google Scholar 

  • Irie Y, Parsek MR (2008) Quorum sensing and microbial biofilms. Curr Top Microbiol Immunol 322:67–84

    CAS  PubMed  Google Scholar 

  • Ishida T, Ikeda T, Takiguchi N, Kuroda A, Ohtake H, Kato J (2007) Inhibition of quorum sensing in Pseudomonas aeruginosa by N-acyl cyclopentylamides. Appl Environ Microbiol 73(10):3183–3188

    CAS  PubMed Central  PubMed  Google Scholar 

  • Itoh Y, Wang X, Hinnebusch BJ, Preston JF 3rd, Romeo T (2005) Depolymerization of beta-1,6-N-acetyl-D-glucosamine disrupts the integrity of diverse bacterial biofilms. J Bacteriol 187(1):382–387

    CAS  PubMed Central  PubMed  Google Scholar 

  • Iwase T, Uehara Y, Shinji H, Tajima A, Seo H, Takada K, Agata T, Mizunoe Y (2010) Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 465(7296):346–349

    CAS  PubMed  Google Scholar 

  • Izano EA, Amarante MA, Kher WB, Kaplan JB (2008) Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Appl Environ Microbiol 74(2):470–476

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jackson KD, Starkey M, Kremer S, Parsek MR, Wozniak DJ (2004) Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation. J Bacteriol 186(14):4466–4475

    CAS  PubMed Central  PubMed  Google Scholar 

  • Junker LM, Clardy J (2007) High-throughput screens for small-molecule inhibitors of Pseudomonas aeruginosa biofilm development. Antimicrob Agents Chemother 51(10):3582–3590

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaplan JB (2010) Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. J Dent Res 89(3):205–218

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaplan JB (2011) Antibiotic-induced biofilm formation. Int J Artif Organs 34(9):737–751

    CAS  PubMed  Google Scholar 

  • Kaplan JB, Ragunath C, Velliyagounder K, Fine DH, Ramasubbu N (2004) Enzymatic detachment of Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother 48(7):2633–2636

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaplan JB, LoVetri K, Cardona ST, Madhyastha S, Sadovskaya I, Jabbouri S, Izano EA (2012) Recombinant human DNase I decreases biofilm and increases antimicrobial susceptibility in staphylococci. J Antibiot (Tokyo) 65(2):73–77

    CAS  Google Scholar 

  • Kiedrowski MR, Kavanaugh JS, Malone CL, Mootz JM, Voyich JM, Smeltzer MS, Bayles KW, Horswill AR (2011) Nuclease modulates biofilm formation in community-associated methicillin-resistant Staphylococcus aureus. PLoS One 6(11):e26714

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim C, Kim J, Park HY, Park HJ, Lee JH, Kim CK, Yoon J (2008) Furanone derivatives as quorum-sensing antagonists of Pseudomonas aeruginosa. Appl Microbiol Biotechnol 80(1):37–47

    CAS  PubMed  Google Scholar 

  • Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R (2010) D-amino acids trigger biofilm disassembly. Science 328(5978):627–629

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kunze B, Reck M, Dotsch A, Lemme A, Schummer D, Irschik H, Steinmetz H, Wagner-Dobler I (2010) Damage of Streptococcus mutans biofilms by carolacton, a secondary metabolite from the mycobacterium Sorangium cellulosum. BMC Microbiol 10:199

    PubMed Central  PubMed  Google Scholar 

  • Lai PK, Roy J (2004) Antimicrobial and chemopreventive properties of herbs and spices. Curr Med Chem 11(11):1451–1460

    CAS  PubMed  Google Scholar 

  • Lamppa JW, Griswold KE (2013) Alginate lyase exhibits catalysis-independent biofilm dispersion and antibiotic synergy. Antimicrob Agents Chemother 57(1):137–145

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee J, Lee JH (2010) Indole as an intercellular signal in microbial communities. Fems Microbiol Rev 34(4):426–444

    CAS  PubMed  Google Scholar 

  • Lee J, Bansal T, Jayaraman A, Bentley WE, Wood TK (2007a) Enterohemorrhagic Escherichia coli biofilms are inhibited by 7-hydroxyindole and stimulated by isatin. Appl Environ Microbiol 73(13):4100–4109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee J, Jayaraman A, Wood TK (2007b) Indole is an inter-species biofilm signal mediated by SdiA. BMC Microbiol 7:42

    PubMed Central  PubMed  Google Scholar 

  • Lee JH, Cho MH, Lee J (2011a) 3-indolylacetonitrile decreases Escherichia coli O157:H7 biofilm formation and Pseudomonas aeruginosa virulence. Environ Microbiol 13(1):62–73

    CAS  PubMed  Google Scholar 

  • Lee JH, Regmi SC, Kim JA, Cho MH, Yun H, Lee CS, Lee J (2011b) Apple flavonoid phloretin inhibits Escherichia coli O157:H7 biofilm formation and ameliorates colon inflammation in rats. Infect Immun 79(12):4819–4827

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee JH, Kim YG, Cho MH, Kim JA, Lee J (2012) 7-fluoroindole as an antivirulence compound against Pseudomonas aeruginosa. FEMS Microbiol Lett 329(1):36–44

    CAS  PubMed  Google Scholar 

  • Lieberman OJ, Orr MW, Wang Y, Lee VT (2014) High-throughput screening using the differential radial capillary action of ligand assay identifies ebselen as an inhibitor of diguanylate cyclases. ACS Chem Biol 9(1):183–192

    CAS  PubMed  Google Scholar 

  • Lin MH, Shu JC, Huang HY, Cheng YC (2012) Involvement of iron in biofilm formation by Staphylococcus aureus. PLoS One 7(3):e34388

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lindsey EA, Worthington RJ, Alcaraz C, Melander C (2012) 2-Aminopyrimidine as a novel scaffold for biofilm modulation. Org Biomol Chem 10(13):2552–2561

    CAS  PubMed Central  PubMed  Google Scholar 

  • Longhi C, Scoarughi GL, Poggiali F, Cellini A, Carpentieri A, Seganti L, Pucci P, Amoresano A, Cocconcelli PS, Artini M, Costerton JW, Selan L (2008) Protease treatment affects both invasion ability and biofilm formation in Listeria monocytogenes. Microb Pathog 45(1):45–52

    CAS  PubMed  Google Scholar 

  • Lonn-Stensrud J, Petersen FC, Benneche T, Scheie AA (2007) Synthetic bromated furanone inhibits autoinducer-2-mediated communication and biofilm formation in oral streptococci. Oral Microbiol Immunol 22(5):340–346

    CAS  PubMed  Google Scholar 

  • Lowery CA, Park J, Kaufmann GF, Janda KD (2008) An unexpected switch in the modulation of AI-2-based quorum sensing discovered through synthetic 4,5-dihydroxy-2,3-pentanedione analogues. J Am Chem Soc 130(29):9200–9201

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lyon GJ, Novick RP (2004) Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria. Peptides 25(9):1389–1403

    CAS  PubMed  Google Scholar 

  • Mah TFC, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9(1):34–39

    CAS  PubMed  Google Scholar 

  • Maira-Litran T, Kropec A, Goldmann DA, Pier GB (2005) Comparative opsonic and protective activities of Staphylococcus aureus conjugate vaccines containing native or deacetylated Staphylococcal Poly-N-acetyl-beta-(1–6)-glucosamine. Infect Immun 73(10):6752–6762

    CAS  PubMed Central  PubMed  Google Scholar 

  • Manefield M, Rasmussen TB, Henzter M, Andersen JB, Steinberg P, Kjelleberg S, Givskov M (2002) Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology 148:1119–1127

    CAS  PubMed  Google Scholar 

  • Miller ST, Xavier KB, Campagna SR, Taga ME, Semmelhack MF, Bassler BL, Hughson FM (2004) Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. Mol Cell 15(5):677–687

    CAS  PubMed  Google Scholar 

  • Minvielle MJ, Bunders CA, Melander C (2013a) Indole/triazole conjugates are selective inhibitors and inducers of bacterial biofilms. Medchemcomm 4(6):916–919

    CAS  PubMed Central  PubMed  Google Scholar 

  • Minvielle MJ, Eguren K, Melander C (2013b) Highly active modulators of indole signaling alter pathogenic behaviors in gram-negative and gram-positive bacteria. Chemistry 19(51):17595–17602

    CAS  PubMed  Google Scholar 

  • Musk DJ, Hergenrother PJ (2006) Chemical countermeasures for the control of bacterial biofilms: effective compounds and promising targets. Curr Med Chem 13(18):2163–2177

    CAS  PubMed  Google Scholar 

  • Musk DJ Jr, Hergenrother PJ (2008) Chelated iron sources are inhibitors of Pseudomonas aeruginosa biofilms and distribute efficiently in an in vitro model of drug delivery to the human lung. J Appl Microbiol 105(2):380–388

    CAS  PubMed  Google Scholar 

  • Musk DJ, Banko DA, Hergenrother PJ (2005) Iron salts perturb biofilm formation and disrupt existing biofilms of Pseudomonas aeruginosa. Chem Biol 12(7):789–796

    CAS  PubMed  Google Scholar 

  • Nguyen UT, Wenderska IB, Chong MA, Koteva K, Wright GD, Burrows LL (2012) Small-molecule modulators of Listeria monocytogenes biofilm development. Appl Environ Microbiol 78(5):1454–1465

    CAS  PubMed Central  PubMed  Google Scholar 

  • O’Loughlin CT, Miller LC, Siryaporn A, Drescher K, Semmelhack MF, Bassler BL (2013) A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc Natl Acad Sci U S A 110(44):17981–17986

    PubMed Central  PubMed  Google Scholar 

  • Park JH, Lee JH, Cho MH, Herzberg M, Lee J (2012) Acceleration of protease effect on Staphylococcus aureus biofilm dispersal. FEMS Microbiol Lett 335(1):31–38

    CAS  PubMed  Google Scholar 

  • Parkins MD, Ceri H, Storey DG (2001) Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation. Mol Microbiol 40(5):1215–1226, doi: mmi2469 [pii]

    CAS  PubMed  Google Scholar 

  • Parsek MR, Greenberg EP (2000) Acyl-homoserine lactone quorum sensing in gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc Natl Acad Sci U S A 97(16):8789–8793

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parsiegla G, Noguere C, Santell L, Lazarus RA, Bourne Y (2012) The structure of human DNase I bound to magnesium and phosphate ions points to a catalytic mechanism common to members of the DNase I-like superfamily. Biochemistry 51(51):10250–10258

    CAS  PubMed  Google Scholar 

  • Persson T, Hansen TH, Rasmussen TB, Skinderso ME, Givskov M, Nielsen J (2005) Rational design and synthesis of new quorum-sensing inhibitors derived from acylated homoserine lactones and natural products from garlic. Org Biomol Chem 3(2):253–262

    CAS  PubMed  Google Scholar 

  • Peters L, Konig GM, Wright AD, Pukall R, Stackebrandt E, Eberl L, Riedel K (2003) Secondary metabolites of Flustra foliacea and their influence on bacteria. Appl Environ Microbiol 69(6):3469–3475

    CAS  PubMed Central  PubMed  Google Scholar 

  • Petrova OE, Schurr JR, Schurr MJ, Sauer K (2011) The novel Pseudomonas aeruginosa two-component regulator BfmR controls bacteriophage-mediated lysis and DNA release during biofilm development through PhdA. Mol Microbiol 81(3):767–783

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qi F, Merritt J, Lux R, Shi W (2004) Inactivation of the ciaH Gene in Streptococcus mutans diminishes mutacin production and competence development, alters sucrose-dependent biofilm formation, and reduces stress tolerance. Infect Immun 72(8):4895–4899

    CAS  PubMed Central  PubMed  Google Scholar 

  • Quave CL, Estevez-Carmona M, Compadre CM, Hobby G, Hendrickson H, Beenken KE, Smeltzer MS (2012) Ellagic acid derivatives from Rubus ulmifolius inhibit Staphylococcus aureus biofilm formation and improve response to antibiotics. PLoS One 7(1):e28737

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raad I, Chatzinikolaou I, Chaiban G, Hanna H, Hachem R, Dvorak T, Cook G, Costerton W (2003) In vitro and ex vivo activities of minocycline and EDTA against microorganisms embedded in biofilm on catheter surfaces. Antimicrob Agents Chemother 47(11):3580–3585

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rasmussen TB, Givskov M (2006) Quorum-sensing inhibitors as anti-pathogenic drugs. Int J Med Microbiol 296(2–3):149–161

    CAS  PubMed  Google Scholar 

  • Rasmussen TB, Manefield M, Andersen JB, Eberl L, Anthoni U, Christophersen C, Steinberg P, Kjelleberg S, Givskov M (2000) How Delisea pulchra furanones affect quorum sensing and swarming motility in Serratia liquefaciens MG1. Microbiology 146(Pt 12):3237–3244

    CAS  PubMed  Google Scholar 

  • Reck M, Rutz K, Kunze B, Tomasch J, Surapaneni SK, Schulz S, Wagner-Dobler I (2011) The biofilm inhibitor carolacton disturbs membrane integrity and cell division of Streptococcus mutans through the serine/threonine protein kinase PknB. J Bacteriol 193(20):5692–5706

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ren D, Sims JJ, Wood TK (2001) Inhibition of biofilm formation and swarming of Escherichia coli by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone. Environ Microbiol 3(11):731–736

    CAS  PubMed  Google Scholar 

  • Ren D, Sims JJ, Wood TK (2002) Inhibition of biofilm formation and swarming of Bacillus subtilis by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone. Lett Appl Microbiol 34(4):293–299

    CAS  PubMed  Google Scholar 

  • Ren DC, Zuo RJ, Barrios AFG, Bedzyk LA, Eldridge GR, Pasmore ME, Wood TK (2005) Differential gene expression for investigation of Escherichia coli biofilm inhibition by plant extract ursolic acid. Appl Environ Microbiol 71(7):4022–4034

    CAS  PubMed Central  PubMed  Google Scholar 

  • Richards JJ, Ballard TE, Huigens RW, Melander C (2008a) Synthesis and screening of an oroidin library against Pseudomonas aeruginosa biofilms. Chembiochem: Eur J Chem Biol 9(8):1267–1279

    CAS  Google Scholar 

  • Richards JJ, Ballard TE, Melander C (2008b) Inhibition and dispersion of Pseudomonas aeruginosa biofilms with reverse amide 2-aminoimidazole oroidin analogues. Org Biomol Chem 6(8):1356–1363

    CAS  PubMed  Google Scholar 

  • Richards JJ, Huigens RW, Ballard TE, Basso A, Cavanagh J, Melander C (2008c) Inhibition and dispersion of proteobacterial biofilms. Chem Commun 14:1698–1700

    Google Scholar 

  • Richards JJ, Reed CS, Melander C (2008d) Effects of N-pyrrole substitution on the anti-biofilm activities of oroidin derivatives against Acinetobacter baumannii. Bioorg Med Chem Lett 18(15):4325–4327

    CAS  PubMed  Google Scholar 

  • Rogers SA, Melander C (2008) Construction and screening of a 2-aminoimidazole library identifies a small molecule capable of inhibiting and dispersing biofilms across bacterial order, class, and phylum. Angew Chem Int Ed 47(28):5229–5231

    CAS  Google Scholar 

  • Rogers SA, Huigens RW, Melander C (2009) A 2-aminobenzimidazole that inhibits and disperses gram-positive biofilms through a zinc-dependent mechanism. J Am Chem Soc 131(29):9868–9869

    CAS  PubMed  Google Scholar 

  • Rogers SA, Huigens RW 3rd, Cavanagh J, Melander C (2010a) Synergistic effects between conventional antibiotics and 2-aminoimidazole-derived antibiofilm agents. Antimicrob Agents Chemother 54(5):2112–2118

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rogers SA, Whitehead DC, Mullikin T, Melander C (2010b) Synthesis and bacterial biofilm inhibition studies of ethyl N-(2-phenethyl) carbamate derivatives. Org Biomol Chem 8(17):3857–3859

    CAS  PubMed  Google Scholar 

  • Ronning DR, Iacopelli NM, Mishra V (2010) Enzyme-ligand interactions that drive active site rearrangements in the Helicobacter pylori 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase. Protein Sci 19(12):2498–2510

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roy V, Meyer MT, Smith JA, Gamby S, Sintim HO, Ghodssi R, Bentley WE (2013) AI-2 analogs and antibiotics: a synergistic approach to reduce bacterial biofilms. Appl Microbiol Biotechnol 97(6):2627–2638

    CAS  PubMed  Google Scholar 

  • Ryjenkov DA, Tarutina M, Moskvin OV, Gomelsky M (2005) Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: insights into biochemistry of the GGDEF protein domain. J Bacteriol 187(5):1792–1798

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saginur R, Stdenis M, Ferris W, Aaron SD, Chan F, Lee C, Ramotar K (2006) Multiple combination bactericidal testing of staphylococcal biofilms from implant-associated infections. Antimicrob Agents Chemother 50(1):55–61

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sambanthamoorthy K, Gokhale AA, Lao W, Parashar V, Neiditch MB, Semmelhack MF, Lee I, Waters CM (2011) Identification of a novel benzimidazole that inhibits bacterial biofilm formation in a broad-spectrum manner. Antimicrob Agents Chemother 55(9):4369–4378

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sambanthamoorthy K, Sloup RE, Parashar V, Smith JM, Kim EE, Semmelhack MF, Neiditch MB, Waters CM (2012) Identification of small molecules that antagonize diguanylate cyclase enzymes to inhibit biofilm formation. Antimicrob Agents Chemother 56(10):5202–5211

    CAS  PubMed Central  PubMed  Google Scholar 

  • Selan L, Berlutti F, Passariello C, Comodi-Ballanti MR, Thaller MC (1993) Proteolytic enzymes: a new treatment strategy for prosthetic infections? Antimicrob Agents Chemother 37(12):2618–2621

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharma-Kuinkel BK, Mann EE, Ahn JS, Kuechenmeister LJ, Dunman PM, Bayles KW (2009) The Staphylococcus aureus LytSR two-component regulatory system affects biofilm formation. J Bacteriol 191(15):4767–4775

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shirtliff ME, Leid JG (ed) (2009) Biofilms and device-related infections. In: Costerton JW (ed) Springer series on biofilms. Springer, New York. doi:10.1007/978-3-540-68119-9

  • Simonetti O, Cirioni O, Mocchegiani F, Cacciatore I, Silvestri C, Baldassarre L, Orlando F, Castelli P, Provinciali M, Vivarelli M, Fornasari E, Giacometti A, Offidani A (2013) The efficacy of the quorum sensing inhibitor FS8 and tigecycline in preventing prosthesis biofilm in an animal model of staphylococcal infection. Int J Mol Sci 14(8):16321–16332

    PubMed Central  PubMed  Google Scholar 

  • Slusarenko AJ, Patel A, Portz D (2008) Control of plant diseases by natural products: allicin from garlic as a case study. Eur J Plant Pathol 121(3):313–322

    Google Scholar 

  • Sobke A, Klinger M, Hermann B, Sachse S, Nietzsche S, Makarewicz O, Keller PM, Pfister W, Straube E (2012) The urinary antibiotic 5-nitro-8-hydroxyquinoline (Nitroxoline) reduces the formation and induces the dispersal of Pseudomonas aeruginosa biofilms by chelation of iron and zinc. Antimicrob Agents Chemother 56(11):6021–6025

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spoering AL, Lewis K (2001) Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 183(23):6746–6751

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steenackers HP, Ermolat’ev DS, Savaliya B, De Weerdt A, De Coster D, Shah A, Van der Eycken EV, De Vos DE, Vanderleyden J, De Keersmaecker SC (2011a) Structure-activity relationship of 4(5)-aryl-2-amino-1H-imidazoles, N1-substituted 2-aminoimidazoles and imidazo[1,2-a]pyrimidinium salts as inhibitors of biofilm formation by Salmonella typhimurium and Pseudomonas aeruginosa. J Med Chem 54(2):472–484

    CAS  PubMed  Google Scholar 

  • Steenackers HP, Ermolat’ev DS, Savaliya B, Weerdt AD, Coster DD, Shah A, Van der Eycken EV, De Vos DE, Vanderleyden J, De Keersmaecker SC (2011b) Structure-activity relationship of 2-hydroxy-2-aryl-2,3-dihydro-imidazo[1,2-a]pyrimidinium salts and 2 N-substituted 4(5)-aryl-2-amino-1H-imidazoles as inhibitors of biofilm formation by Salmonella Typhimurium and Pseudomonas aeruginosa. Bioorg Med Chem 19(11):3462–3473

    CAS  PubMed  Google Scholar 

  • Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215

    CAS  PubMed  Google Scholar 

  • Su Z, Peng L, Worthington RJ, Melander C (2011) Evaluation of 4,5-disubstituted-2-aminoimidazole-triazole conjugates for antibiofilm/antibiotic resensitization activity against MRSA and Acinetobacter baumannii. ChemMedChem 6(12):2243–2251

    CAS  PubMed  Google Scholar 

  • Tamayo R, Pratt JT, Camilli A (2007) Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu Rev Microbiol 61:131–148

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tetz VV, Tetz GV (2010) Effect of extracellular DNA destruction by DNase I on characteristics of forming biofilms. DNA Cell Biol 29(8):399–405

    CAS  PubMed  Google Scholar 

  • Thompson RJ, Bobay BG, Stowe SD, Olson AL, Peng L, Su Z, Actis LA, Melander C, Cavanagh J (2012) Identification of BfmR, a response regulator involved in biofilm development, as a target for a 2-aminoimidazole-based antibiofilm agent. Biochemistry 51(49):9776–9778

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tomaras AP, Flagler MJ, Dorsey CW, Gaddy JA, Actis LA (2008) Characterization of a two-component regulatory system from Acinetobacter baumannii that controls biofilm formation and cellular morphology. Microbiology 154:3398–3409

    CAS  PubMed  Google Scholar 

  • Tsuchikama K, Zhu J, Lowery CA, Kaufmann GF, Janda KD (2012) C4-alkoxy-HPD: a potent class of synthetic modulators surpassing nature in AI-2 quorum sensing. J Am Chem Soc 134(33):13562–13564

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vikram A, Jayaprakasha GK, Jesudhasan PR, Pillai SD, Patil BS (2010) Suppression of bacterial cell-cell signalling, biofilm formation and type III secretion system by citrus flavonoids. J Appl Microbiol 109(2):515–527

    CAS  PubMed  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    CAS  PubMed  Google Scholar 

  • Wenderska IB, Chong M, McNulty J, Wright GD, Burrows LL (2011) Palmitoyl-DL-carnitine is a multitarget inhibitor of Pseudomonas aeruginosa biofilm development. Chembiochem: Eur J Chem Biol 12(18):2759–2766

    CAS  Google Scholar 

  • Wood TK, Lee J, Zhang XS, Hegde M, Bentley WE, Jayaraman A (2008) Indole cell signaling occurs primarily at low temperatures in Escherichia coli. Isme J 2(10):1007–1023

    PubMed  Google Scholar 

  • Worthington RJ, Blackledge MS, Melander C (2013) Small molecule inhibition of bacterial two-component systems to combat antibiotic resistance and virulence. Future Med Chem 5(11):1265–1284

    CAS  PubMed  Google Scholar 

  • Yamada A, Kitamura H, Yamaguchi K, Fukuzawa S, Kamijima C, Yazawa K, Kuramoto M, Wang GYS, Fujitani Y, Uemura D (1997) Development of chemical substances regulating biofilm formation. Bull Chem Soc Jpn 70(12):3061–3069

    CAS  Google Scholar 

  • Yan H, Chen W (2010) 3′,5′-Cyclic diguanylic acid: a small nucleotide that makes big impacts. Chem Soc Rev 39(8):2914–2924

    CAS  PubMed  Google Scholar 

  • Yang L, Barken KB, Skindersoe ME, Christensen AB, Givskov M, Tolker-Nielsen T (2007) Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. Microbiology 153(Pt 5):1318–1328

    CAS  PubMed  Google Scholar 

  • Yates EA, Philipp B, Buckley C, Atkinson S, Chhabra SR, Sockett RE, Goldner M, Dessaux Y, Camara M, Smith H, Williams P (2002) N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect Immun 70(10):5635–5646

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou J, Watt S, Wang J, Nakayama S, Sayre DA, Lam YF, Lee VT, Sintim HO (2013) Potent suppression of c-di-GMP synthesis via I-site allosteric inhibition of diguanylate cyclases with 2′-F-c-di-GMP. Bioorg Med Chem 21(14):4396–4404

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Melander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Melander, R.J., Melander, C. (2015). Innovative Strategies for Combating Biofilm-Based Infections. In: Donelli, G. (eds) Biofilm-based Healthcare-associated Infections. Advances in Experimental Medicine and Biology, vol 831. Springer, Cham. https://doi.org/10.1007/978-3-319-09782-4_6

Download citation

Publish with us

Policies and ethics