Skip to main content

Instabilities in the Envelopes and Winds of Very Massive Stars

  • Chapter
  • First Online:
Very Massive Stars in the Local Universe

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 412))

Abstract

The high luminosity of Very Massive Stars (VMS) means that radiative forces play an important, dynamical role both in the structure and stability of their stellar envelope, and in driving strong stellar-wind mass loss. Focusing on the interplay of radiative flux and opacity, with emphasis on key distinctions between continuum vs. line opacity, this chapter reviews instabilities in the envelopes and winds of VMS. Specifically, we discuss how: (1) the iron opacity bump can induce an extensive inflation of the stellar envelope; (2) the density dependence of mean opacity leads to strange mode instabilities in the outer envelope; (3) desaturation of line-opacity by acceleration of near-surface layers initiates and sustains a line-driven stellar wind outflow; (4) an associated line-deshadowing instability leads to extensive small-scale structure in the outer regions of such line-driven winds; (5) a star with super-Eddington luminosity can develop extensive atmospheric structure from photon bubble instabilities, or from stagnation of flow that exceeds the “photon tiring” limit; (6) the associated porosity leads to a reduction in opacity that can regulate the extreme mass loss of such continuum-driven winds. Two overall themes are the potential links of such instabilities to Luminous Blue Variable (LBV) stars, and the potential role of radiation forces in establishing the upper mass limit of VMS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    As discussed in Sect. 5.5.1, even when the opacity is formally isotropic in the atom’s frame, a spherical wind expansion can lead to an anisotropy for line opacity in the stellar frame, through the directional dependence of the local velocity gradient.

  2. 2.

    An exception is when the spectral density of lines become high enough to lead to an effective “line-blanketing” effect, as occurs in the iron opacity bump discussed in Sect. 5.3.3.

  3. 3.

    Of course, this simple scaling relation has to be modified to accommodate gradients in the molecular weight as a star evolves from the zero-age main sequence, and it breaks down altogether in the coolest stars (both giants and dwarfs), for which convection dominates the envelope energy transport.

  4. 4.

    http://opalopacity.llnl.gov/

  5. 5.

    Here we use a slight variation of the standard CAK notation in which the artificial dependence on a fiducial ion thermal speed is avoided by simply setting v th  = c. Back-conversion to CAK notation is achieved by multiplying t by v th c and k by \(\left (v_{\mathit{th}}/c\right )^{\alpha }\). The line normalization \(\overline{Q}\) offers the advantages of being a dimensionless measure of line-opacity that is independent of the assumed ion thermal speed, with a nearly constant characteristic value of order \(\overline{Q} \sim 10^{3}\) for a wide range of ionization conditions (Gayley 1995).

  6. 6.

    The choice of these functions is arbitrary, to illustrate the photon-tiring effect within a simple model. More physically motivated models based on a medium’s porosity are presented in Sect. 5.6.5

  7. 7.

    Since the luminous stars are likely to be mostly convective (e.g. Sect. 5.6.2), the limiting time scale is that of the convective diffusion’s mixing length time in the stellar cores, which due to the high density is much longer than the dynamical time scales.

References

  • Abbott, D. C. (1980). The theory of radiatively driven stellar winds. I - A physical interpretation. Astrophysical Journal, 242, 1183.

    Google Scholar 

  • Abbott, D. C. (1982). The theory of radiatively driven stellar winds. II - The line acceleration. Astrophysical Journal, 259, 282.

    Google Scholar 

  • Arons, J. (1992). Photon bubbles - Overstability in a magnetized atmosphere. Astrophysical Journal, 388, 561.

    Article  ADS  Google Scholar 

  • Begelman, M. C. (2002). Super-eddington fluxes from thin accretion disks? Astrophysical Journal Letters, 568, L97.

    Article  ADS  Google Scholar 

  • Belyanin, A. A. (1999). Optically thick super-Eddington winds in galactic superluminal sources. Astronomy and Astrophysics, 344, 199.

    ADS  Google Scholar 

  • Blaes, O., & Socrates, A. (2003). Local radiative hydrodynamic and magnetohydrodynamic instabilities in optically thick media. Astrophysical Journal, 596, 509.

    Article  ADS  Google Scholar 

  • Castor, J. I., Abbott, D. C., & Klein, R. I. (1975). Radiation-driven winds in of stars. Astrophysical Journal, 195, 157.

    Article  ADS  Google Scholar 

  • Cohen, D. H., Leutenegger, M. A., Wollman, E. E., Zsargó, J., Hillier, D. J., Townsend, R. H. D., & Owocki, S. P. (2010). A mass-loss rate determination for ζ Puppis from the quantitative analysis of X-ray emission-line profiles. Monthly Notices of the Royal Astronomical Society, 405, 2391.

    ADS  Google Scholar 

  • Crowther, P. A. (2012). In Death of massive stars: Supernovae and gamma-ray bursts (Volume 279 of IAU symposium, Environments of massive stars and the upper mass limit, pp. 9–17), Nikkon.

    Google Scholar 

  • Crowther, P. A., Schnurr, O., Hirschi, R., Yusof, N., Parker, R. J., Goodwin, S. P., & Kassim, H. A. (2010). The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150Msolar stellar mass limit. Monthy Notices of the Royal Astronomical Society, 408, 731.

    Article  ADS  Google Scholar 

  • Dessart, L., & Owocki, S. P. (2003). Two-dimensional simulations of the line-driven instability in hot-star winds. Astronomy and Astrophysics, 406, L1.

    Article  ADS  Google Scholar 

  • Dessart, L., & Owocki, S. P. (2005). 2D simulations of the line-driven instability in hot-star winds. II. Approximations for the 2D radiation force. Astronomy and Astrophysics, 437, 657.

    Google Scholar 

  • Eddington, A. S. (1926). The internal constitution of the stars. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Feldmeier, A. (1995). Time-dependent structure and energy transfer in hot star winds. Astronomy and Astrophysics, 299, 523.

    ADS  Google Scholar 

  • Feldmeier, A., Puls, J., & Pauldrach, A. W. A. (1997). The X-ray emission from shock cooling zones in O star winds. Astronomy and Astrophysics, 322, 878.

    ADS  Google Scholar 

  • Figer, D. F. (2005). An upper limit to the masses of stars. Nature, 434, 192.

    Article  ADS  Google Scholar 

  • Friend, D. B., & Abbott, D. C. (1986). The theory of radiatively driven stellar winds. III - Wind models with finite disk correction and rotation. Astrophysical Journal, 311, 701.

    Google Scholar 

  • Fullerton, A. W., Massa, D. L., & Prinja, R. K. (2006). The discordance of mass-loss estimates for galactic O-type stars. Astrophysical Journal, 637, 1025.

    Article  ADS  Google Scholar 

  • Gammie, C. F. (1998). Photon bubbles in accretion discs. Monthy Notices of the Royal Astronomical Society, 297, 929.

    Article  ADS  Google Scholar 

  • Gayley, K. G. (1995). An improved line-strength parameterization in hot-star winds. Astrophysical Journal, 454, 410.

    Article  ADS  Google Scholar 

  • Glatzel, W. (1994). On the origin of strange modes and the mechanism of related instabilities. Monthy Notices of the Royal Astronomical Society, 271, 66.

    Article  ADS  Google Scholar 

  • Glatzel, W. (2005). In R. Humphreys & K. Stanek (Eds.) The fate of the most massive stars (Volume 332 of Astronomical Society of the Pacific conference series, Instabilities in the most massive evolved stars, p. 22), Jackson Hole, WY.

    Google Scholar 

  • Glatzel, W., & Kiriakidis, M. (1993). Stability of massive stars and the humphreys / davidson limit. Monthy Notices of the Royal Astronomical Society, 263, 375.

    Article  ADS  Google Scholar 

  • Gräfener, G., Owocki, S. P., & Vink, J. S. (2012). Stellar envelope inflation near the Eddington limit. Implications for the radii of Wolf-Rayet stars and luminous blue variables. Astronomy and Astrophysics, 538, A40.

    Google Scholar 

  • Grevesse, N., & Noels, A. (1993). Atomic data and the spectrum of the solar photosphere. Physica Scripta T47, 133.

    Article  ADS  Google Scholar 

  • Humphreys, R. M., Davidson, K. (1979). Studies of luminous stars in nearby galaxies. III - Comments on the evolution of the most massive stars in the milky way and the large magellanic cloud. Astrophysical Journal, 232, 409.

    Google Scholar 

  • Iglesias, C. A., & Rogers, F. J. (1996). Updated opal opacities. Astrophysical Journal, 464, 943.

    Article  ADS  Google Scholar 

  • Joss, P. C., Salpeter, E. E., & Ostriker, J. P. (1973). On the “critical luminosity” in stellar interiors and stellar surface boundary conditions. Astrophysical Journal, 181, 429.

    Article  ADS  Google Scholar 

  • Kee, N. D., Owocki, S., & ud-Doula, A. (2014). Suppression of X-rays from radiative shocks by their thin-shell instability. Monthy Notices of the Royal Astronomical Society, 438, 3557.

    Google Scholar 

  • Kippenhahn, R., Weigert, A., & Weiss, A. (2013). Stellar structure and evolution: Astronomy and astrophysics library. Berlin/Heidelberg: Springer.

    Google Scholar 

  • Kudritzki, R. P., Puls, J., Lennon, D. J., Venn, K. A., Reetz, J., Najarro, F., McCarthy, J. K., & Herrero, A. (1999). The wind momentum-luminosity relationship of galactic A- and B-supergiants. Astronomy and Astrophysics, 350, 970.

    ADS  Google Scholar 

  • Levermore, C. D., Pomraning, G. C., Sanzo, D. L., & Wong, J. (1986). Linear transport theory in a random medium. Journal of Mathematical Physics, 27, 2526.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Lucy, L. B. (1984). Wave amplification in line-driven winds. Astrophysical Journal, 284, 351.

    Article  ADS  Google Scholar 

  • Lucy, L. B., & Solomon, P. M. (1970). Mass loss by hot stars. Astrophysical Journal, 159, 879.

    Article  ADS  Google Scholar 

  • MacGregor, K. B., Hartmann, L., & Raymond, J. C. (1979). Radiative amplification of sound waves in the winds of O and B stars. Astrophysical Journal, 231, 514.

    Article  ADS  Google Scholar 

  • Nugis, T., & Lamers, H. J. G. L. M. (2002). The mass-loss rates of Wolf-Rayet stars explained by optically thick radiation driven wind models. Astronomy and Astrophysics, 389, 162.

    Google Scholar 

  • Oey, M. S., & Clarke, C. J. (2005). Statistical confirmation of a stellar upper mass limit. Astrophysical Journal Letters, 620, L43.

    Article  ADS  Google Scholar 

  • Oskinova, L. M., Hamann, W.-R., & Feldmeier, A. (2007). Neglecting the porosity of hot-star winds can lead to underestimating mass-loss rates. Astronomy and Astrophysics, 476, 1331.

    Article  ADS  Google Scholar 

  • Owocki, S. P. (1991). In: L. Crivellari, I. Hubeny, & D. G. Hummer (Eds.) NATO ASIC proceedings 341: Stellar atmospheres – beyond classical models (A smooth source function method for including scattering in radiatively driven wind simulations, p. 235), Trieste.

    Google Scholar 

  • Owocki, S. P. (2008). In W.-R. Hamann, A. Feldmeier, L. M. Oskinova (Eds.), Clumping in hot-star winds (Dynamical simulation of the “velocity-porosity” reduction in observed strength of stellar wind lines, p. 121). Germany: Universitätsverlag Potsdam.

    Google Scholar 

  • Owocki, S. P. (2013). In T. D. Oswalt & M. A. Barstow (Eds.), Planets, stars and stellar systems. (Volume 4 of Stellar structure and evolution stellar winds, p. 735). Dordrecht/New York: Springer.

    Google Scholar 

  • Owocki, S. P., Castor, J. I., & Rybicki, G. B. (1988). Time-dependent models of radiatively driven stellar winds. I - Nonlinear evolution of instabilities for a pure absorption model. Astrophysical Journal, 335, 914.

    Google Scholar 

  • Owocki, S. P., & Cohen, D. H. (2006). The effect of porosity on X-ray emission-line profiles from hot-star winds. Astrophysical Journal, 648, 565.

    Article  ADS  Google Scholar 

  • Owocki, S. P., Gayley, K. G., & Shaviv, N. J. (2004). A porosity-length formalism for photon-tiring-limited mass loss from stars above the eddington limit. Astrophysical Journal, 616, 525.

    Article  ADS  Google Scholar 

  • Owocki, S. P., & Puls, J. (1996). Nonlocal escape-integral approximations for the line force in structured line-driven stellar winds. Astrophysical Journal, 462, 894.

    Article  ADS  Google Scholar 

  • Owocki, S. P., & Puls, J. (1999). Line-driven stellar winds: The dynamical role of diffuse radiation gradients and limitations to the sobolev approach. Astrophysical Journal, 510, 355.

    Article  ADS  Google Scholar 

  • Owocki, S. P., & Rybicki, G. B. (1984). Instabilities in line-driven stellar winds. I - Dependence on perturbation wavelength. Astrophysical Journal, 284, 337.

    Google Scholar 

  • Owocki, S. P., & Rybicki, G. B. (1985). Instabilities in line-driven stellar winds. II - Effect of scattering. Astrophysical Journal, 299, 265.

    Google Scholar 

  • Owocki, S. P., & ud-Doula, A. (2004). The effect of magnetic field tilt and divergence on the mass flux and flow speed in a line-driven stellar wind. Astrophysical Journal, 600, 1004.

    Google Scholar 

  • Papaloizou, J. C. B., Alberts, F., Pringle, J. E., & Savonije, G. J. (1997). On the nature of strange modes in massive stars. Monthy Notices of the Royal Astronomical Society, 284, 821.

    Article  ADS  Google Scholar 

  • Pauldrach, A., Puls, J., & Kudritzki, R. P. (1986). Radiation-driven winds of hot luminous stars - Improvements of the theory and first results. Astronomy and Astrophysics, 164, 86.

    MATH  ADS  Google Scholar 

  • Petrovic, J., Pols, O., & Langer, N. (2006). Are luminous and metal-rich Wolf-Rayet stars inflated? Astronomy and Astrophysics, 450, 219.

    Article  ADS  Google Scholar 

  • Pomraning, G. C. (1991). Linear kinetic theory and particle transport in stochastic mixtures. Singapore/New Jersey: World Scientific.

    MATH  Google Scholar 

  • Quinn, T., & Paczynski, B. (1985). Stellar winds driven by super-Eddington luminosities. Astrophysical Journal, 289, 634.

    Article  ADS  Google Scholar 

  • Runacres, M. C., & Owocki, S. P. (2002). The outer evolution of instability-generated structure in radiatively driven stellar winds. Astronomy and Astrophysics, 381, 1015.

    Article  ADS  Google Scholar 

  • Rybicki, G. B., Owocki, S. P., & Castor, J. I. (1990). Instabilities in line-driven stellar winds. IV - Linear perturbations in three dimensions. Astrophysical Journal, 349, 274.

    Google Scholar 

  • Shaviv, N. J. (1998). The eddington luminosity limit for multiphased media. Astrophysical Journal Letters, 494, L193.

    Article  ADS  Google Scholar 

  • Shaviv, N. J. (2000). The porous atmosphere of η carinae. Astrophysical Journal Letters, 532, L137.

    Article  ADS  Google Scholar 

  • Shaviv, N. J. (2001). The nature of the radiative hydrodynamic instabilities in radiatively supported thomson atmospheres. Astrophysical Journal, 549, 1093.

    Article  ADS  Google Scholar 

  • Smith, N. (2002). Dissecting the Homunculus nebula around Eta Carinae with spatially resolved near-infrared spectroscopy. Monthy Notices of the Royal Astronomical Society, 337, 1252.

    Article  ADS  Google Scholar 

  • Smith, N., Davidson, K., Gull, T. R., Ishibashi, K., & Hillier, D. J. (2003). Astrophysical Journal, 586, 432.

    Article  ADS  Google Scholar 

  • Smith, N., & Owocki, S. P. (2006). Latitude-dependent effects in the stellar wind of η Carinae. Astrophysical Journal Letters, 645, L45.

    Article  ADS  Google Scholar 

  • Sobolev, V. V. (1960). Moving envelopes of stars. Cambridge: Harvard University Press.

    Book  Google Scholar 

  • Spiegel, E. A. (1976). In: R. Cayrel & M. Steinberg (Eds.) Physique des Mouvements dans les Atmospheres (Photohydrodynamic instabilities of hot stellar atmospheres, p. 19). Paris: Editions du Centre National de la Recherche Scientifique.

    Google Scholar 

  • Spiegel, E. A. (1977). In: E. A. Spiegel & J.-P. Zahn (Eds.) Problems of Stellar Convection (Volume 71 of Lecture Notes in Physics; Photoconvection, pp. 267–283). Berlin: Springer.

    Google Scholar 

  • Spiegel, E. A., & Tao, L. (1999). Photofluid instabilities of hot stellar envelopes. Physics Reports, 311, 163.

    Article  ADS  Google Scholar 

  • Sundqvist, J. O., Owocki, S. P., Cohen, D. H., Leutenegger, M. A., & Townsend, R. H. D. (2012). A generalized porosity formalism for isotropic and anisotropic effective opacity and its effects on X-ray line attenuation in clumped O star winds. Monthy Notices of the Royal Astronomical Society, 420, 1553.

    Article  ADS  Google Scholar 

  • Sundqvist, J. O., Puls, J., Feldmeier, A., & Owocki, S. P. (2011). The nature and consequences of clumping in hot, massive star winds. Astronomy and Astrophysics, 528, A64.

    Article  ADS  Google Scholar 

  • van Marle, A. J., Owocki, S. P., & Shaviv, N. J. (2009). On the behaviour of stellar winds that exceed the photon-tiring limit. Monthy Notices of the Royal Astronomical Society, 394, 595.

    Article  ADS  Google Scholar 

  • Vishniac, E. T. (1994). Nonlinear instabilities in shock-bounded slabs. Astrophysical Journal, 428, 186.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NASA ATP grant NNX11AC40G, NASA Chandra grant TM3-14001A, and NSF grant 1312898 to the University of Delaware. I thank M. Giannotti for sharing his Mathematica notebook for the OPAL opacity tables, and N. Shaviv for many helpful discussions and for providing Fig. 5.12. I also acknowledge numerous discussions with G. Graefener, N. Smith, J. Sundqvist, J. Vink and A.J. van Marle.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley P. Owocki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Owocki, S.P. (2015). Instabilities in the Envelopes and Winds of Very Massive Stars. In: Vink, J. (eds) Very Massive Stars in the Local Universe. Astrophysics and Space Science Library, vol 412. Springer, Cham. https://doi.org/10.1007/978-3-319-09596-7_5

Download citation

Publish with us

Policies and ethics